Symposium Research and Sustainability Obstacles to the clean energy transition

Michaël Aklin

PASU Lab | EPFL

Remarkable era...

150 -100 -50 -0.8-GDP (trillion) Ē 0.6 -0.4 500 1000 1500 2000 30 60 90 GDP per capita (k\$) 90 120

Figure 1: Data: World Bank.

... but an unsustainable one

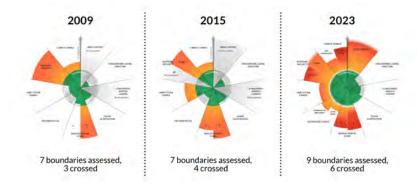


Figure 2: Source: Richardson et al. (2023)

... with real costs

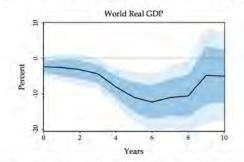
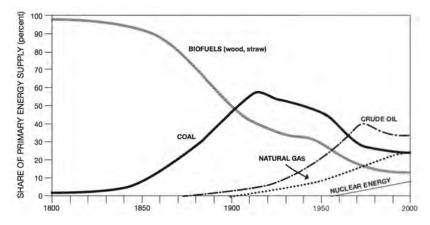


Figure 3: The Effect of Global Temperature Shocks on World Output

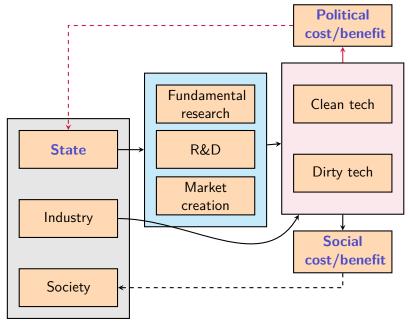
Notes: The figure shows the impulse responses of world real GDP per capita to a global temperature shock, estimated based on (2). The solid line is the point estimate and the dark and light shaded areas are 68 and 90% confidence bands, respectively.

Figure 3: Source: Bilal and Känzig (2024)


Why is the system not self-correcting?

Politics and sustainability

In the clean energy transition...


- 1. State involvement is necessary
- 2. State involvement is unavoidable

Necessary

Unavoidable

Implication

To be scaled up and crowd out "dirty" tech, clean tech must generate sufficient political and social payoffs

Two illustrations: energy poverty and fossil phaseout

Case I: Solving energy poverty

Solutions exist

700m people w/o electricity

3b people w/o modern cooking tech \rightarrow large welfare losses

Solar microgrids as a solution?

References: Aklin et al. (2016), Aklin et al. (2017), Aklin et al. (2018), Rosenberg et al. (2020)

Figure 5: Uttar Pradesh, India

... but they don't always work

	Savings		Expenses		Business		Work time		Study		Phone charging	
	(1) ITT	(2) LATE	(3) ITT	(4) LATE	(5) ITT	(6) LATE	(7) ITT	(8) LATE	(9) ITT	(10) LATE	(11) (TT	(12) LATE
Treatment	65,82 (88,96)	224.17 (316.67)	192.81 (174.24)	656,69 (638,43)	-0.01 (0.02)	-0,03 (0.06)	-0.05 (0.21)	-0,18 (0.71)	-0.01 (0.03)	-0.02 (0.10)	0.66 (1.11)	2.55 (4.34)

Figure 6: Effect of solar microgrids. Source: Aklin et al. (2017)

 \rightarrow Low social acceptance ("fake electricity")

Basic energy access does not unlock broader socioeconomic benefits Rural India needs solar power for more than just lighting, study finds

```
Figure 7: Hindustan Times
```

Figure 8: Reuters

Case II: Costly fossil fuel phaseouts

References: Blankenship et al. (2022), Lim, Aklin, and Frank (2023), Aklin (forthcoming)

In the US...

- Energy transition imposes econ costs on fossil regions
- Electoral implications (Egli, Schmid, and Schmidt 2022)

Biden administration: fossil-to-green job pipeline

- If effective: would reduce political cost of climate action
- Plausible? Do they live in the right place? Do they have the right skills?

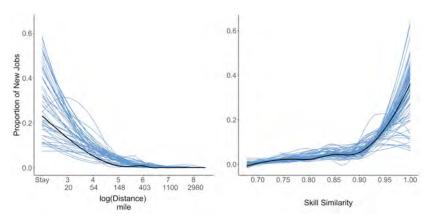


Figure 9: Source: Lim, Aklin, and Frank (2023).

 \rightarrow Fossil fuel workers are not particularly mobile

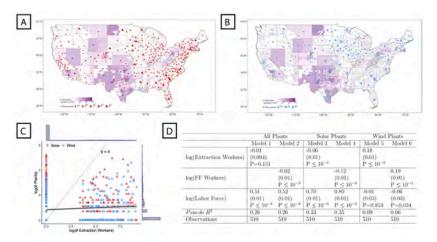


Figure 10: Source: Lim, Aklin, and Frank (2023).

 \rightarrow Fossil fuel workers don't live near emerging clean energy hubs

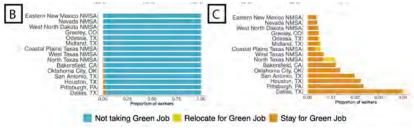


Figure 11: Source: Lim, Aklin, and Frank (2023).

Few fossil fuel workers will take green jobs

 \rightarrow Fossil fuel-to-green pipeline: unlikely to reduce political costs Other policies will be needed to reduce barriers to clean tech What Europe? India? China?

To conclude

Sustainability: exit and entry of tech is (co)determined by politics Implications...

Identify policymakers' objective function over new technologies

Increase social acceptance/fairness

From Bavaria to Ohio, build coalitions

Figure 12: Lithium battery plants... Source: NREL

Thank you

References

Aklin, Michaël. forthcoming. "The Political Logic of Just Transition Policies." Climate Policy, forthcoming.

- Aklin, Michaël, Patrick Bayer, S. P. Harish, and Johannes Urpelainen. 2017. "Does Basic Energy Access Generate Socioeconomic Benefits? A Field Experiment with Off-Grid Solar Power in India." Science Advances 3 (5): e1602153.
 - ——. 2018. Escaping the Energy Poverty Trap: When and How Governments Power the Lives of the Poor. Cambridge, MA: MIT Press.
- Aklin, Michaël, Chao-yo Cheng, Johannes Urpelainen, Karthik Ganesan, and Abhishek Jain. 2016. "Factors Affecting Household Satisfaction with Electricity Supply in Rural India." Nature Energy 1: 1–6.
- Bilal, Adrien, and Diego Känzig. 2024. "The Macroeconomic Impact of Climate Change: Global Vs. Local Temperature."
- Blankenship, Brian, Michaël Aklin, Johannes Urpelainen, and Vagisha Nandan. 2022. "Jobs for a Just Transition: Evidence on Coal Job Preferences from India." *Energy Policy* 165: 112910.
- Egli, Florian, Nicolas Schmid, and Tobias S Schmidt. 2022. "Backlash to Fossil Fuel Phase-Outs: The Case of Coal Mining in US Presidential Elections." Environmental Research Letters 17 (9): 094002.
- Lim, Junghyun, Michaël Aklin, and Morgan Frank. 2023. "Location Is a Major Barrier for Transferring US Fossil Fuel Employment to Green Jobs." *Nature Communications* 5711.
- Richardson, Katherine, Will Steffen, Wolfgang Lucht, Jørgen Bendtsen, Sarah E Cornell, Jonathan F Donges, Markus Drüke, et al. 2023. "Earth Beyond Six of Nine Planetary Boundaries." Science Advances 9 (37): eadh2458.
- Rosenberg, Meital, Daniel Armanios, Michaël Aklin, and Paulina Jaramillo. 2020. "Evidence of Gender Inequality in Energy Use from a Mixed Methods Study in India." *Nature Sustainability* 3: 110–18.
- Smil, Vaclav. 2018. Energy and Civilization: A History. MIT Press.