François Genoud
Short vita
2018- …: Director, CMS
2017-2018: Associate Professor at the Université Libre de Bruxelles
2015-2017: Assistant Professor at the Delft University of Technology
2013-2015: Postdoc at the University of Vienna
2010-2013: Postdoc at Heriot-Watt University (Edinburgh)
2009-2010: Postdoc at the University of Oxford
2005-2008: Graduate studies in Mathematics at EPFL
2000-2005: Undergraduate studies in Physics at EPFL
Research interests
Partial differential equations, evolution equations, nonlinear analysis, bifurcation theory, calculus of variations, mathematical physics.
Publications
30. (with S. Rota Nodari) Standing wave solutions of a quasilinear Schrödinger equation in the small frequency limit, preprint (2024), arXiv:2407.16179.
29. (with S. Le Coz and J. Royer) A minimal mass blow-up solution on a nonlinear quantum star graph, preprint (2023), arXiv:2302.09678.
28. (with E. Csobo, M. Ohta and J. Royer) Stability of standing waves for a nonlinear Klein–Gordon equation with delta potentials. J. Differential Equations 268 (2019), no. 1, 353-388, arXiv_1810.04874.
27. (with E. Csobo) Minimal mass blow-up solutions for the $L^2$ critical NLS with inverse-square potential, Nonlinear Anal. 168 (2018), 110-129, arXiv_1707.01421.
26. Instability of an integrable nonlocal NLS, C. R. Math. Acad. Sci. Paris 355 (2017), 299-303, arXiv_1612.03139.
25. Extrema of the dynamic pressure in a solitary wave, Nonlinear Anal. 155 (2017), 65-71, arXiv_1612.07918.
24. (with S. Bachmann) Mean-field limit and phase transitions for nematic liquid crystals in the continuum, J. Stat. Phys. 168 (2017), 746-771, arXiv_1508.05025.
23. (with V. Combet) Classification of minimal mass blow-up solutions for an $L^2$ critical inhomogeneous NLS, J. Evol. Equ. 16 (2016), 483-500, arXiv_1503.08915.
22. (with B. A. Malomed and R. M. Weishäupl) Stable NLS solitons in a cubic-quintic medium with a delta-function potential, Nonlinear Anal. 133 (2016), 28-50, arXiv_1409.6511.
21. (with S. de Bièvre and S. Rota Nodari) Orbital stability: analysis meets geometry, in: C. Besse, J. C. Garreau (eds.), Nonlinear Optical and Atomic Systems, Lecture Notes in Mathematics 2146, Springer, 2015, pp. 147-273, ISBN 978-3-319-19015-0, arXiv_1407.5951.
20. (with A. Derlet) Existence of nodal solutions for quasilinear elliptic problems in $R^N$, Proc. Roy. Soc. Edinburgh Sect. A 145 (2015), 937-957, arXiv_1312.3457.
19. (with D. Henry) Instability of equatorial water waves with an underlying current, J. Math. Fluid Mech. 16 (2014), 661-667, arXiv_1403.1880.
18. Monotonicity of bifurcating branches for the radial p-Laplacian, Monografías Matemáticas García de Galdeano 39 (2014), 111-119.
17. Some bifurcation results for quasilinear Dirichlet boundary value problems, Electron. J. Diff. Equ. Conference 21 (2014), 87-100.
16. Orbitally stable standing waves for the asymptotically linear one-dimensional NLS, Evolution Equations and Control Theory 2 (2013), 81-100, arXiv_1209.2057.
15. (with B. P. Rynne) Landesman-Lazer conditions at half-eigenvalues of the p-Laplacian, J. Differential Equations 254 (2013), 3461-3475, arXiv_1207.2489.
14. Global bifurcation for asymptotically linear Schrödinger equations, NoDEA Nonlinear Differential Equations Appl. 20 (2013), 23-35, arXiv_1106.5879.
13. Bifurcation along curves for the p-Laplacian with radial symmetry, Electron. J. Diff. Equ. 2012, no. 124, arXiv_1202.4654.
12. (with B. P. Rynne) Half eigenvalues and the Fucik spectrum of multi-point, boundary value problems, J. Differential Equations 252 (2012), 5076-5095, arXiv_1110.0712.
11. An inhomogeneous, $L^2$ critical, nonlinear Schrödinger equation, Z. Anal. Anwend. 31 (2012), 283-290, arXiv_1110.0915.
10. (with B. P. Rynne) Some recent results on the spectrum of multi-point eigenvalue problems for the p-Laplacian, Commun. Appl. Anal. 15 (2011), 413-434.
9. Bifurcation from infinity for an asymptotically linear problem on the half-line, Nonlinear Anal. 74 (2011), 4533-4543.
8. (with B. P. Rynne) Second order, multi-point problems with variable coefficients, Nonlinear Anal. 74 (2011), 7269-7284, arXiv_1106.3936.
7. Nonlinear Schrödinger equations on $R$: global bifurcation, orbital stability and nonlinear waveguides, Commun. Appl. Anal. 15 (2011), 395-412.
6. A uniqueness result for $\Delta u – \lambda u + V(|x|) u^p = 0$ on $R^2$, Adv. Nonlinear Stud. 11 (2011), 483-491.
5. A smooth global branch of solutions for a semilinear elliptic equation on $R^N$, Calc. Var. Partial Differential Equations 38 (2010), 207-232.
4. Bifurcation and stability of travelling waves in self-focusing planar waveguides, Adv. Nonlinear Stud. 10 (2010), 357-400.
3. Existence and orbital stability of standing waves for some nonlinear Schrödinger equations, perturbation of a model case, J. Differential Equations 246 (2009), 1921-1943.
2. Existence and stability of high frequency standing waves for a nonlinear Schrödinger equation, Discrete Contin. Dyn. Syst. 25 (2009), 1229-1247.
1. (with C. A. Stuart) Schrödinger equations with a spatially decaying nonlinearity: existence and stability of standing waves, Discrete Contin. Dyn. Syst. 21 (2008),137-186.