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Neuroscience and artificial intelligence research
are both undergoing revolutions in scale



Al Revolution:

High-Performance
Machine Learning Models



Neural network models achieve human
oerformance in a range of tasks (not all)

@ Handwriting recognition @ Speech recognition Image recognition @ Reading comprehension

¢ Language understanding ¢ Common sense completion Grade school math ¢ ) Code generation

\b

Human perfomance = 100%

Model performance
relative to humans
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Kiela et al. 2023



Neuroscience

Revolution:

Increasing Availability of
Large-Scale Brain Data




Access to neural data is increasing exponentially
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https://stevenson.lab.uconn.edu/scaling




Synergy between science + engineering

Brain and Al/ML
Cognitive Sciences Engineering

System Models
of Natural
Intelligence

Quantitative Computational
Measurements Hypotheses & Fine-
& Discoveries grain Predictions

Key activity: build models that are
aligned to behavioral and neural data
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Rajalingham?*, Issa*, et al. (JNeuro 2018)
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Rajalingham?*, Issa*, et al. (JNeuro 2018)
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Behavioral data

Rajalingham?*, Issa*, et al. (JNeuro 2018)
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Behavioral benchmark
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Benchmark A

experimental
paradigm
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assess image-level =~
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video courtesy of Kailyn Schmidt




Neural data
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Neural benchmark

4 Benchmark ) g Model |
——
paradigm experiment look_at(stimuli)
. J
* prediction

¥
similarity

neural score
redictivit
\ P y




Particular models are aligned to vision in the brain

Brain
| ! \brain areas behavior
vi . . e
Brain g .
Brain L ol L =
< =3
k a2 [l =N 1] Il =5 )
®e. A A A A A Artificial neural network models
s:: Brain-Score ; : : : ' * Trained for computational task,
Benchmarks v v v weights optimized via backprop
Model
Candidates R -
* Internal processing stages (hldden
layers, “deep” learning)
* Accept any new input (pixels)




Particular models are aligned to vision in the brain
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Schrimpf*, Kubilius*, et al. 2018



https://arxiv.org/abs/1608.06993

What explains the model differences?
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Normative variable

cf. Yamins*, Hong*, et al. 2014
Schrimpf*, Kubilius*, et al. 2018



https://arxiv.org/abs/1608.06993

What explains the model differences?

Not the small-scale circuits

We are far
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https://arxiv.org/abs/1608.06993

Particular ML language models
oredict the human language system
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Schrimpf et al. (PNAS 2021)



https://www.pnas.org/content/118/45/e2105646118
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https://www.pnas.org/content/118/45/e2105646118

VOneNet: more brain-like

—> improved robustness
Today’s models ¢
are not perfect! g~
But we can make £, -
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Generalization: more IT-like
- zero-shot transfer

Pearson r: 0.46
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Dapello*, Marques*, et al. (NeurlPS 2020 Spotlight)
Dapello*, Kar*, et al. (ICLR 2023 Notable Top-5%)
Geiger*, Schrimpf*, et al. (ICLR 2022 Spotlight)
Zhuang et al. (PNAS 2021)

| Gusti Baqus et al.(SVRHM 2023)

Kubilius*, Schrimpf*, et al. (NeurlPS 2019 Oral)
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Wiring Up Vision: reduce
(supervised) updates
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CORnet: shallow recurrent
neuroanatomy —2 predict
temporal dynamics
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CORnet-S Area Circuitry


https://openreview.net/forum?id=g1SzIRLQXMM
https://papers.nips.cc/paper/9441-brain-like-object-recognition-with-high-performing-shallow-recurrent-anns




We can use brain-aligned LLMs to

noninvasively control neural activity

.‘

» o o T

N

Neural alignment to the
human language system
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People on Insta Be Like, “
® Buy sell signals remains a

Turin loves me not, nor wi

\URL right, or report review

Sentences identified to elicit minimal
response in the language network

rWe were sitting on the couch.
That is such a beautiful picture!
They stood there for a moment.
They went up the stairs together.
Inside was a tiny silver sculpture.
They walked out onto the balcony.
Cas gazed up at the sky.

hkWhat else is there to do?

BOLD response (mean + within-participant SE)

0.4 1

0.2 1

0.0-

—-0.2 1

Drive Suppfress Baseline

Tuckute et al. (Nature Human Behavior 2023)
See also Bashivan*, Kar*, et al. (Science 2019)




NeuroAl models can control brain activity

Drive
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Sentences identified to elicit minimal
SV response in the language network
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fWe were sitting on the couch.
That is such a beautiful picture!
They stood there for a moment.
They went up the stairs together.
Inside was a tiny silver sculpture.
They walked out onto the balcony.
Cas gazed up at the sky.

kWhat else is there to do?
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Beauchamp et al. (2020) Chen et al. (2021) Schrimpf et al. (2024)
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$3: Brain-Score

NeuroAl Lab

1. Understand natural intelligence by
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CORnet-S Area Circuitry

TR discovering relationships between brain

alignment and computational objectives.
Brain-Score

2. Build better deep network models of
brain and behavior.

3. Use the best models to drive new
experiments, invasive and non-invasive,
which might lead to future applications.



