

Martin Schrimpf

Al Revolution:
High-Performance
Machine Learning Models

Neural network models achieve human performance in a range of tasks (not all)

Neuroscience Revolution: Increasing Availability of Large-Scale Brain Data

Access to neural data is increasing exponentially

Synergy between science + engineering

Brain and Cognitive Sciences

AI/ML Engineering

System Models
of Natural
Intelligence

Key activity: build models that are aligned to behavioral and neural data

<u>performance per</u> <u>binary categorization</u>

video courtesy of Kailyn Schmidt

Particular models are aligned to vision in the brain

Artificial neural network models

 Trained for computational task, weights optimized via backprop

- Internal processing stages (hidden layers, "deep" learning)
- Accept any new input (pixels)

Particular models are aligned to vision in the brain

What explains the model differences?

What explains the model differences?

Object classification performance (ML goal)

Particular ML language models predict the human language system

The better models can predict the next word, the more brain-like they are

Today's models are not perfect!
But we can make them better

VOneNet: more brain-like → improved robustness

Generalization: more IT-like

→ zero-shot transfer

Dapello*, Marques*, et al. (NeurIPS 2020 Spotlight)
Dapello*, Kar*, et al. (ICLR 2023 Notable Top-5%)
Geiger*, Schrimpf*, et al. (ICLR 2022 Spotlight)
Zhuang et al. (PNAS 2021)
I Gusti Bagus et al. (SVRHM 2023)
Kubilius*, Schrimpf*, et al. (NeurIPS 2019 Oral)

Wiring Up Vision: reduce (supervised) updates

CORnet: shallow recurrent neuroanatomy → predict temporal dynamics

We can use brain-aligned LLMs to noninvasively control neural activity

What else is there to do?

Tuckute et al. (Nature Human Behavior 2023)

See also Bashivan*, Kar*, et al. (Science 2019)

NeuroAl models can control brain activity

Beauchamp et al. (2020) Chen et al. (2021)

Tuckute et al. (2023)

Schrimpf et al. (2024)

Brain-Score ImageNet top-1 performance CORnet-S Area Circuitry BOLD response (mean ± within-participant SE 0.4 Suppress

NeuroAl Lab

1. Understand natural intelligence by discovering relationships between brain alignment and computational objectives.

Brain-Score

2. Build **better** deep network **models** of brain and behavior.

3. Use the best models to **drive new experiments**, invasive and non-invasive, which might lead to future applications.