

DÉPARTEMENT D'INFORMATIQUE

LIVRET DES COURS

SECTION D'INFORMATIQUE DE L'ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

LIVRET DES COURS ANNÉE ACADÉMIQUE 1994/95

TABLE DES MATIÈRES

	Page
Table des matières des descriptifs de cours (par ordre alphabétique des enseignants)	i
Section d'informatique: introduction	iv
Objectifs de la formation d'ingénieur-informaticien	v
Plan d'études	vi
Tableau des cours pour l'année académique 1994/95	
- 1ère et 2e années	ix
- 3e et 4e années	x
Règlement d'application du contrôle des études pour l'année académique 1994/95	xii
Conditions de passage d'une section à la Section d'Informatique	xv
Ordonnance générale sur le contrôle des études à l'EPFL	xvii
Convention en vue de favoriser la mobilité des étudiants en informatique	xxiii
Descriptifs des enseignements de la Section d'Informatique	
- ler cycle	1 à 37
- 2e cycle	39 à 115
- de service	17 à 147

TABLE DES MATIÈRES DES DESCRIPTIFS DE COURS

Classification par ordre alphabétique des enseignants

•						
Enseignant(s)	Titre du cours	Section(s)	Semestre	C+E+P	Page	
	· .		·, _			
ARBENZ K.	Analyse III		3	3+2+0	5	
ARBENZ K.	Analyse IV		4	2+2+0	. 6	
BACHMANN 0.	Mathématiques (répétition)		1	2+0+0	. 23	
BERTA C.F.	Gestion II	SC	6	2+0+0	123	
BERTA C.F.	Gestion III	SC	7	2+0+0	124	
BEUCHAT R.	Matériel informatique		4	1+0+2	22	
BLAYO F.	Réseaux de neurones artificiels		. 7	2+1+0	. 101	
BONVIN D.	Modélisation et simulation I		5 ou 7	2+0+0	80	
BONVIN D.	Modélisation et simulation II		6 ou 8	2+0+0	81	
BOULIC R.	Infographie II		6	2+0+1	64	
CORAY G.	Programmation I		1	2+2+2	30	
CORAY G.	Programmation II		2	2+2+2	31	
CORAY G.	Reconnaissance des formes		pas donne	é en 1994/95	93	
CORAY G.	Reconnaissance des formes		pas donne	é en 1994/95	94	
CORAY G.	Théorie des langages de program.		5 ou 7	2+1+0	113	
CORAY G.	Théorie des langages de program.		6 ou 8	2+1+0	114	
COSTA D.	Ordon. et conduite des syst. inform.		5 ou 7	2+1+0	84	
COSTA D.	Ordon. et conduite des syst. inform.		6 ou 8	2+1+0	85	
DE COULON F.	Théorie du signal		5 ou 7	2+1+0	115	
DE WERRA D.	Graphes et réseaux I		pas donne	en 1994/95	61	
DE WERRA D.	Graphes et réseaux II	•	pas donne	en 1994/95	62	
DE WERRA D.	Recherche opérationnelle I		3	2+2+0	34	•
DE WERRA D.	Recherche opérationnelle II		4	2+2+0	35	
DECOTIGNIE JD.	Conception de systèmes progr. I	EL	7	1+1+0	120	
DECOTIGNIE JD.	Conception des systèmes progr. II	EL	8	1+1+0	121	
DECOTIGNIE JD.	Informatique du temps réel I	SC	6	2+0+1	126	
DECOTIGNIE JD.	Informatique du temps réel II	SC	7	2+0+1	127	
DELAFONTAINE G.	Environnement informatique	GR	2	1+0+2	122	
DESCLOUX J.	Analyse numérique des éq. aux dérivé		5 ou 7	2+1+0	41	
DESCLOUX J.	Analyse numérique des éq. aux dérivé		6 ou 8	2+1+0	42	
DIVIN A.	Téléinformatique I		7	2+1+0	111	
DIVIN A.	Téléinformatique II		8	2+1+0	112	
DOUCHET J.	Analyse I		ĭ	4+4+0	3	
DOUCHET I.	Analyse II		2	4+4+0	4	
DUPONT Y.	Bases de données	SC	6	1+0+1	118	
DUPONT Y.	Bases de données	SC	7	1+0+1	119	
FALTINGS B.	Intelligence artificielle I	,	, 5 ou 7	2+0+1	70	
FALTINGS B.	Intelligence artificielle II		6 ou 8	2+0+1	71	
FONTANA GENTILE E	Systèmes d'information I		7	2+1+0	105	
FONTOLLIET PG.	Télécommunications I		7	2+1+0	109	
FONTOLLIET PG.	Télécommunications II		8	2+1+0	110	
GALLAND + JOYE	Cours HTE I		5	2+0+2	55	
GALLAND + JOYE	Cours HTE II		7	2+0+2 2+0+2	56	
GALLAND + JOYE et al.	Projet HTE		· ·	0+0+4	92	
GENGLER M.	Parallélisme et systèmes répartis		7	2+1+0	86	
GENNART B.	Programmation II	GM	2	2+0+2	134	
GERMOND A.	Électrotechnique I	-	1	2+0+2 2+1+2	16	
OPERITOR IN	MICCIOCCIUNGUC I			A 1 1 T 4	10	

Enseignant(s)	Titre du cours	Section(s)	Semestre	C+E+P	Page
LIEDCCLI D D	To farman Roman Stadenski dalla	CV.	-	1.0.0	100
HERSCH RD.	Informatique industrielle	GM	5 5 ou 7	1+0+2	129
HERSCH RD.	Périphériques			2+0+1	88
HERSCH RD.	Périphériques	1.0	6ou 8	2+0+1	89
HERSCH RD.	Systèmes périphériques	MI	8	2+0+0	145
HERTZ A.	Bases de l'algorithmique I		3	2+1+0	11
HERTZ A.	Bases de l'algorithmique II		4	2+1+0	12
HERTZ A.	Optimisation		50u7	2+1+0	82
HERTZ A.	Optimisation		6 ou 8	2+1+0	83
KERN K.	Physique générale III		3	4+2+0	26
KERN K.	Physique générale IV		4	2+1+0	27
KUNT M.	Intro. trait. num. signaux et images		6 ou 8	2+1+0	72
LIEBLING Th. M.	Modèles de décision I		5 ou 7	2+0+1	78
LIEBLING Th. M.	Modèles de décision II	•	6 ou 8	2+0+1	79
LONGCHAMP R.	Réglage automatique I		5	2+1+0	95
LONGCHAMP R.	Réglage automatique II		6	2+1+0	96
LONGCHAMP R.	Réglage automatique III		7	2+0+0	97
LONGCHAMP R.	Réglage automatique IV		8	2+0+0	98
MANGE D.	Réseaux cellulaires		5 ou 7	2+1+0	99
MANGE D.	Réseaux cellulaires	•	6 ou 8	2+1+0	100
MANGE D.	Systèmes logiques	EL	1	2+0+1	142
MANGE D.	Systèmes microprogrammés		2	2+0+2	37
MANGE D.	Systèmes microprogrammés	EL	2	2+0+1	144
MANGE D.+HERSCH RD.		GM	1	2+0+3	128
MOINAT JP.	Programmation III	EL	3	2+0+0	138
MOINAT JP.	Programmation IV	EL	4	1+0+0	139
•	Probabilités et statistique I		3	2+2+0	28
MORGENTHALER S.	Probabilités et statistique II		4	2+2+0	29
NICOUD JD.	Microinformatique	MI	5	2+0+2	131
NICOUD JD.	Microinformatique	MI	6	2+0+2	132
NICOUD JD.	Microprocesseurs I		7 .	2+1+0	76
NICOUD JD.	Microprocesseurs II		8	2+1+0	77
NOSER HR.	Langages de programmation		8	2+1+0	75
NUESCH P.	Géométrie		í	2+1+0	18
NUSSBAUMER H.	Informatique industrielle I		5	2+0+1	65
NUSSBAUMER H.	Informatique industrielle II		6	2+0+1	66
NUSSBAUMER+PLEINEVAUX			7	2+0+1	67
NUSSBAUMER+PLEINEVAUX			8	2+0+1	68
PETITPIERRE C.	Programmation I	GM.PH	1	2+0+2	133
PETITPIERRE C.	•	SC	6	2+1+0	146
PETITPIERRE C.	Téléinformatique I Téléinformatique II	SC	. 7	2+0+1	147
PRODON A.		30	. 5 ou 7	2+1+0	39
PRODON A.	Algorithmique		60u8	2+1+0	40
RAPIN Ch.	Algorithmique		5 ou 7	1+0+2	43
RAPIN Ch.	Atelier de compilation			1+0+2	· 44
	Atelier de compilation		6 ou 8		
RAPIN Ch.	Construction de compilateurs I		•	é en 1994/95	53
RAPIN Ch.	Construction de compilateurs II			é en 1994/95	54
RAPIN Ch.	Programmation III		3	2+2+0	32
RAPIN Ch.	Programmation IV		4	2+2+0	33
RAPPAZ J.	Analyse numérique I		3	2+2+0	7
RAPPAZ J.	Analyse numérique II		4	2+2+0	8
SANCHEZ E.	Conception des processeurs		5	2+0+1	51
SANCHEZ E.	Conception des processeurs		6	2+0+1	52
SANCHEZ E.	Systèmes logiques	60 F:	1	2+0+2	36
SANDOZ A.	Systèmes d'exploitation	SC,EL	6	1+0+1	140
SANDOZ A.	Systèmes d'exploitation	SC	7	1+0+1	141
SCHIPER A.	Parallélisme et systèmes répartis		8	2+1+0	87
SCHIPER A.	Programmation I	EL,MI,MA	1	1+0+2	135
SCHIPER A.	Programmation II	EL,MI,MA	2	1+0+2	136

Enseignant(s)	Titre du cours	Section(s)	Semestre	C+E+P	Page
SCHIPER A.	Systèmes d'exploitation I		5	2+1+0	103
SCHIPER A.	Systèmes d'exploitation II		6	2+1+0	104
SMITH I.	Programmation I	CH,GR,GC,M	X 1/3	1+0+2	137.
SPACCAPIETRA S.	Bases de données	GR	5	2+0+1	117
SPACCAPIETRA S.	Bases de données I	,	5	2+1+0	45
SPACCAPIETRA S.	Bases de données II		· 6	2+1+0	46
SPACCAPIETRA S.	Systèmes d'information II		8 .	2+1+0	106
STAUFFER A.	Systèmes logiques	MI	3	1+0+2	143
STROHMEIER A.	Environnements de programmation		4	2+0+1	17
STROHMEIER A.	Génie logiciel		5	2+0+4	57
STROHMEIER A.	Génie logiciel		6	2+0+4	58
STROHMEIER A.	Méthodes de programmation	S C	5	3+0+5	130
THALMANN D.	Infographie I		5	2+0+1	63
THALMANN D.	Informatique avancée	GM,MI	3/7	1+0+2	125
THALMANN D.	Langages de programmation		7	2+1+0	74
THIRAN P.	Réseaux de neurones artificiels		8	2+1+0	102
VACHOUX A.	Conception ass. de circ. intégrés		5 ou 7	3+0+0	49
VACHOUXA.	Conception ass. de circ. intégrés		6 ou 8	3+0+0	50
VILLARD L.	Physique générale I		1	2+1+0	24
VILLARD L.	Physique générale II		2	4+2+0	25
ZAHND I.	Logique élémentaire		1	2+1+0	20
ZAHND J.	Logique élémentaire		2	2+1+0	21
ZAHND Í.	Systèmes formels		pas donn	é en 1994/95	107
ZAHND j.	Systèmes formels		pas donn	é en 1994/95	108
ZWAHLEN B.	Analysis I		'n	4+4+0	9
ZWAHLEN B.	Analysis II		2	4+4+0	10
ZYSMAN E.	Électronique I		2	2+1+2	13
ZYSMAN E.	Électronique II		3	2+1+2	14
ZYSMAN E.	Électronique III		4	0+0+2	15
	Algèbre linéaire I		1	2+1+0	1
	Algèbre linéaire II		2	2+1+0	2
	Combinatorique (hiver)			é en 1994/95	47
	Combinatorique (fitver)		,		48
	Génie logiciel avancé (hiver)			é en 1994/95 é en 1994/95	59
			,		60
	Génie logiciel avancé (été) Instruments de travail		1+2+3+4	é en 1994/95	19
					69
	Instruments de travail		5+6+7+8		73
	Laboratoire de matériel informatique	ue	7 7	0+0+4	73 90
	Projet I			0+0+12	
	Projet II		8	0+0+16	91

INTRODUCTION

Le plan d'études actuel a été mis en vigueur en automne 1984. Au premier cycle sont donnés les enseignements des branches fondamentales sur lesquelles repose l'informatique (mathématiques de base, analyse numérique, statistique, recherche opérationnelle, électrotechnique, électronique, systèmes logiques, physique, mécanique, etc.). Par l'importance accordée à ces branches, le plan d'études vise à former des ingénieurs sachant modéliser des systèmes complexes, traiter ces modèles par des méthodes mathématiques efficaces, interpréter raisonnablement les résultats obtenus et adapter les modèles aux problèmes posés par des utilisateurs qui ne sont souvent pas des informaticiens.

Le second cycle comprend un noyau d'enseignements obligatoires, en plus duquel un choix est offert entre 3 orientations: logiciel d'application, informatique de base et informatique technique.

Le titre décerné est celui d'ingénieur informaticien (ing. info. dipl. EPFL).

Pour plus de renseignements, vous pouvez contacter:

Mme G. RIME Administratrice du Département d'Informatique

Bureau INN 130 Tél. 693.52.05

Secrétariat du Département Bureau INM 168 - Tél. 693.52.08

Prof. J. ZAHND Président de la Commission d'Enseignement du DI

Tél. 693.26.02

Prof. J.-D. NICOUD Chef du Département d'Informatique

Tél. 693.52.01

Prof. D. MANGE Conseiller d'études de la le année

LSL - DI - Tél. 693.26.39

Prof. S. SPACCAPIETRA Conseiller d'études de la 2e année

LBD - DI - Tél. 693.52.10

Prof. A. STROHMEIER Conseiller d'études de la 3e année

LGL - DI - Tél. 693.42.31

Prof. R.-D. HERSCH Conseiller d'études de la 4e année

LSP - DI - Tél. 693.43.57

Prof. Ch. RAPIN Conseiller d'études des diplômants

LCO - DI - Tél. 693.25.82

Adresse du département IN (Ecublens), 1015 Lausanne

OBJECTIFS DE LA FORMATION D'INGÉNIEUR-INFORMATICIEN

APTITUDES

Au cours des études proposées, l'ingénieur informaticien aura l'occasion de développer ses aptitudes:

- à reconnaître les situations concrètes où les techniques de l'informatique sont susceptibles d'être mises en œuvre:
- à formuler en termes précis les problèmes qui lui seront soumis et construire des modèles adéquats;
- à concevoir le système informatique adapté et en formuler le cahier des charges;
- à construire le système (logiciel et/ou matériel) selon les méthodes appropriées et, dans le cadre d'une équipe, exploiter de manière optimale les systèmes et les outils existants.

CONNAISSANCES

De plus, en vue de ses activités professionnelles, le jeune informaticien aura acquis au cours de ses études des connaissances:

- en mathématiques appliquées, en physique, en électronique et en réglage automatique;
- en informatique, en particulier en programmation, systèmes logiques, microinformatique, architecture des ordinateurs et périphériques, systèmes d'exploitation, informatique de gestion, langages et compilation;
- dans un domaine spécifique: conduite de processus en temps réel, conception architecturale de circuits intégrés complexes, systèmes interactifs d'aide à la décision ou à la conception.

ACTIVITÉS

Dans son activité professionnelle, but de la formation proposée, l'ingénieur informaticien sera appelé:

- à collaborer efficacement avec des ingénieurs, gestionnaires, administrateurs et chercheurs de toutes disciplines;
- à diriger l'étude et la réalisation d'un système informatique pouvant comporter des composants logiciels, matériels et techniciels;
- à exploiter des systèmes complexes en tenant compte de facteurs techniques, organisationnels et humains;
- à étendre ses connaissances et développer des outils et des méthodes nouvelles en informatique et dans les domaines annexes tels que l'électronique, le contrôle de processus, la recherche opérationnelle, la statistique, etc.
- à transmettre ses connaissances en informatique à des non spécialistes dans le cadre d'entreprises et d'établissements d'enseignement.

PLAN D'ÉTUDES

PREMIER CYCLE

Pour garantir une bonne formation scientifique, les étudiants en informatique suivent au premier cycle des enseignements portant sur les branches de base (mathématiques, physique, mécanique); l'accent est déjà mis sur l'informatique par l'introduction en 2e année d'un cours de programmation avancé. Une place importante est réservée aux mathématiques appliquées (analyse numérique, probabilité et statistique, recherche opérationnelle).

DEUXIÈME CYCLE

Au deuxième cycle, l'enseignement porte principalement sur l'informatique, avec un tronc commun en ce qui concerne les matières d'intérêt général. Cette formation commune est complétée par des cours obligatoires et à option regroupés pour former trois orientations différentes. L'étudiant pourra choisir l'une des 3 orientations:

- 1) Logiciel d'application (LA): il s'agit d'ingénieurs amenés à mettre en oeuvre les méthodes, concepts et outils de l'informatique pour traiter des applications de nature économique ou scientifique;
- 2) Informatique de base (ou logiciel système) (IB): cette orientation regroupera les ingénieurs qui se concentreront sur l'informatique (algorithmique, complexité, etc.), le développement de langages ou de systèmes.
- 3) Informatique technique (IT): les objectifs seront la formation d'ingénieurs axés sur le matériel informatique, son utilisation dans des applications industrielles, telles les télécommunications ou l'automatisation de processus par exemple.

ENSEIGNEMENTS HTE

Comme pour toutes les sections de l'École, des enseignements HTE sont prévus au plan d'études de la section d'Informatique.

PROJETS

3e année


En 3e année, le cours Génie Logiciel comporte un projet par groupe.

4e année

En 4e année, il y a 2 projets semestriels. Le choix des *Projets I et II* de 4e année peut être fait par l'étudiant selon la disponibilité des sujets de la liste établie chaque semestre par le Département. Le *Projet I* au semestre d'hiver comporte 12 h / semaine, le *Projet II* au semestre d'été 16 h / semaine.

COURS À OPTION

Chaque étudiant a la possibilité de choisir un (seul et unique) cours en dehors du plan d'études de la Section d'Informatique, parmi les autres cours existant au sein de l'École. Il soumettra sa proposition au conseiller d'études de son année pour approbation.

PLAN D'ÉTUDES INFORMATIQUE 1994 - 1995

arrêté par la Direction de l'EPFL le 28 mars 1994

Chef de département

Prof. J.-D. Nicoud

Président de la commission

d'enseignement

Prof. J. Zahnd

Conseillers d'études

lère année

Prof. D. Mange

2ème année 3ème année Prof. S. Spaccapietra

3ème année 4ème année Prof. A. Strohmeier Prof. R.-D. Hersch

diplômants

Prof. Ch. Rapin

Coordinateur HTE

Prof. M. Bassand

Administratrice

Mme G. Rime

INFORMATIOUE

INFORMATIQUE															
SEMESTRE	Les enseignants sont indiqués sous réserve de modification			1			2			3			4		
Matière	Faciananta				Τ.	c	T.				Ι.			1.]
Mathématiques:	Enseignants		c	e	P	e	e	P	c	e	P	c	e	p	\vdash
Analyse I,II (cours en français) ou	Douchet	DMA	4	4	┼	4	4	┼─	┼	+	+-		+-	-	200
	Zwahlen	DMA DMA	4	4	┼	4	4	+	-	+	-	+	 	₩-	200
Analyse I,II (cours en ailemand)	- 			4	\vdash	+*	+4	+	+	+	₩	┾	╆	i —	200
Mathématiques (répétition)	Bachmann	DMA	(2)	١.	┼	₩	┿-	├-	↓	-	-		_	-	+
Géométrie	Nüesch	DMA	2	1	├	1-	+-	├	1	-	┼	₩-		-	45
Algèbre linéaire I,II	vacat	DMA	2	1		2	1	ļ	١_	 -	 	 _	Ļ.		75
Analyse III,IV	Arbenz	DMA		<u> </u>	₩	+	├	↓	3	2	-	2	2	-	115
Probabilité et statistique I+II	vacat+Morgenthaler	DMA		<u> </u>	₩	↓	Ļ _		2	2		2	2		100
Analyse numérique I,II	Rappaz J.	DMA	ļ.,	ļ	<u> </u>	Ь.	<u> </u>		2	2	╙	2	2	_	100
Recherche opérationnelle I,II	de Werra	DMA	-		-	-	├	-	2	2		2	2	<u> </u>	100
Physique:			-	\vdash		 					1	\vdash	┼─	-	
Physique générale I,II	Villard	DP	. 2	1		_4.	. 2		٠			-			105
Physique générale III,IV	Kem	DP			lacksquare				4	2		2	1		120
Electricité:			\vdash		\vdash	-	-		\vdash	\vdash	\vdash	\vdash	+		
Electrotechnique I	Germond	DE	2	1	2	t	\vdash	t -		t	t	t	t	t	75
Electronique I	Zysman	DE	┿	Ť	✝−	2	1	2	†	1	-	+	 	1	50
Electronique II,III	Zysman	DE	 	_	 	 -	┝┺	┝	2	1	2	 	\vdash	2	95
	Lysman	DL					\vdash		-	1	1			_	"
Informatique:															
Programmation I,II	Coray	DI	2	2	2	2	2	2				L	L.		150
Logique élémentaire I,II	Zahnd	DI	2	1	L	2	1			<u> </u>	<u> </u>		<u> </u>		75
Programmation III,IV	Rapin	DI	<u> </u>				<u></u>		2	2		2	2		100
Systèmes logiques	Sanchez	, DI	2		2										60
Systèmes microprogrammés	Mange	Di			<u></u>	2		2					L		40
Bases de l'algorithmique I,II	Hertz	DI				L.,			2	1		2	1		75
Environnements de programmation	Strohmeier	DI	Ţ				L				-	2		1	30
Matériel informatique	Beuchat	DI										1	<u> </u>	2	30
Enseignement non technique:					\vdash		-		-	_					\vdash
Instruments de travail	Divers	UHD	(2)			(2)			(2)			(2)		_	
			-	_			-		-	-			-		
			ļ									_	-		<u> </u>
	-		-							ļ			-	-	
										L					_
				<u> </u>			-				<u> </u>		-		
Totaux : Tronc commun			18	11	6	18	11	6	19	14	2	17	12	5	
Totaux : Par semaine Totaux : Par semestre			1	35 525		İ	35 350			35 525		-	34 340		1
TOTALIA . I AL SCHIESTIE				523		<u> </u>	220			343		L	340		

c = cours e = exercices p = branches pratiques () = cours facultatifs en italique = cours à option

INFORMATIQUE				TRONC COMMUN										
SEMESTRE	Les enseignants sont indiqués sous réserve de modification			5			6			7			8	
Matière	Enseignants		c	e	D	c	e	n		P	n	·	_	p

Cours obligatoires :

Informatique:					П	Γ								Γ	
Bases de données I,II	Spaccapietra	DI	2	1		2	1								75
Génie logiciel	Strohmeier	DI	2		4	2		4							150
Informatique industrielle I,II	Nussbaumer	DI	2		1	2		1							75
Langages de programmation	Thalmann + Noser	DI							2	1		2	1		75
Systèmes d'exploitation I,II	Schiper	DI	2	1		2	1								75
Téléinformatique I,II	Divin	DI							2	1		2	1		75
Travaux pratiques:															
Labo de matériel informatique	Nicoud/Hersch/Sanchez/	DI									4				60
	Decotignie			<u> </u>			ļ								
Projet I	Divers	DI									12				180
Projet II	Divers	DĪ	ļ			Ĺ								16	160
Enseignement non technique:								_							_
Cours HTE I,II	Joye/Galland	DA	2						2						60
Projet HTE *	Galland/Joye/Sousan	DA			2			4			2			4	100
Instruments de travail	Divers	UHD	(2)			(2)			(2)			(2)			

Cours à option :

Algorithmique **	Prodon	DI	2	1		2	1		2	1_		2	1		75
Atelier de compilation **	Rapin	DI	1		2	1		2	1		2	1		2	75
Infographie I+II	Thalmann + Boulic	DI	2		Ī	2		1							75
Informatique industrielle III,IV	Nussbaumer/Pleinevaux	DI						L	2		Ī	2		1	75
Ordonnanc, et cond. de systèmes								L		l					
informatiques **	Costa	DI	2	1		2	1		2	1		2	1		75
Parallélisme et systèmes répartis	Gengler + Schiper	DI						L	2	1		2	1		75
Périphériques	Hersch	DI	2		Ī	2		1	2		1	2		1	75
Réseaux cellulaires	Mange	DI	2	1		2	1		2	I		2	1		75
Réseaux de neurones artificiels	Blayo + Thiran	DI/DE							2	1		2	1		75
			_												
			Ī												
* Les 4 heures de projet peuvent être	effectuées					_ · ·					_				
soit au 6ème, soit au 8ème semestre															
** Donné tous les deux ans															

c = cours e = exercices p = branches pratiques () = cours facultatifs en italique = cours à option

SEMESTRE	INFORMATIQUE	T		+-					ORI	ENI	AII	ON2	т.			4
Enseignants	SEMESTRE	Les enseignants sont indiqués sous réserve de modification			5			6			7			8		1
Graphes et réseaux I, II	Matière			С	e	P	c	e	P	c	e	p	C	e	p	
Modèles de décision I.I	Logiciel d'application (LA)															
Systèmes d'information	Graphes et réseaux I,II *	de Werra	DMA		T	1	1	Γ	T	T			П	Т		T
Systèmes formation	Modèles de décision I,II *	Liebling	DMA	2		1	2		1	2	T	1	2	Ì	1	7
Combinatorique	Systèmes d'information	Fontana/Spaccapietra	DI							2	1		2	1		ľ
Combinatorique	Analyse num, des équations aux dériv	Descloux	DMA	1,	 ,		2	١,	┢	12	1	╁	1 2	1	\vdash	+
Construction de compilateurs I, II				+-	Ť	\vdash	Ť	╁	\vdash	۱Ť	Ť	+	Ť	Ť	\vdash	۲
Génie logiciel avancé				+	+	┼	1-	\vdash	_	+	1	t	H	\vdash	╀	╁
Intelligence artificielle I,II		rapin	 	 	1	┢	1	-	 		 	 	-	╁		╁
Peter Description Peter Description Peter Description Desc			_	2	+	· ,	2	一	7	1 2	+	1	2	\vdash	,	7
Reconnaissance des formes *** Coray DI				- -	٠,	<u> </u>		 ,	ŕ	-	١,	L ´	-	1	+-	17
Systèmes formels			-	1-		\vdash	1	 	┼	+-	+	┢┈	 -	 	-	ť
Théorie des langages de programm. *** Coray Di 2 1 0 0 1 0 0 0 0 0 0		Colay		┼─	├-		1	╁	 	+				\vdash		╁
Total : obligatoire				12	٠,	├	1-	,	┼	1	,	\vdash	1	٠,	-	17
Total : obligatoire bebdomadaire		Colay	- Di	_	_	0	_	_	10	-	<u> </u>	10	-		1.7	+
Politions:				12			10	_	10	10	_		0	_	1/	╀
Sanchez		 -		١.			OUES		els à	ontic			lenv			╁
Conception des processeurs	<u> </u>			pius trois cours annueis a option sur les deux annees							L					
Construction de compilateurs I,II		I Company	DI	-	-	1	1 2	1	-	_	1				-	T=
Théorie des langages de program. I,II						-	-	1	-	<u> </u>	├	 		├—	_	7
Content Cont				-	١.	-	-	 .	 -	-	٠.	-	_	-	<u> </u>	Ł
Content Cont	i neone des langages de program. 1,11	Coray	DI	2	1	⊢	2	1		<u>2</u>	1	<u> </u>	2	1		7
Intelligence artificielle I,II	Génie logiciel avancé ****	vacat	DI													T
Microprocesseurs I,II	Graphes et réseaux I,II ***	de Werra	DMA													Г
Coptimisation Coptimisatio	Intelligence artificielle I,II	Faltings	DI	2		1	2		1	2		1	2		1	7:
Systèmes formels *** Zahnd DI	Microprocesseurs I,II	Nicoud	DI							2	1		2	1		7:
Systèmes d'information Fontana/Spaccapietra DI	Optimisation ***	Hertz	DMA	2	1		2	1		2	1		2	1		7:
Peter Pete	Systèmes formels ***	Zahnd	DI													Г
Total : obligatoire 14 3 8 12 3 10 8 3 18 6 3 16	Systèmes d'information	Fontana/Spaccapietra	DI							2	1		2	1		7:
Potal : obligatoire hebdomadaire 25 25 29 25 25 25 25 25	Télécommunications I,II	Fontolliet	DE							2	1		2	1		7:
Politions: Politions Politicological Politions Politicological Politions Politions Politicological Pol	Total : obligatoire			14	3	8	12	3	10	8	3	18	6	3	16	Γ
Conception des processeurs Sanchez DI 2 1 2 1 1 2 1 3 5	Total : obligatoire hebdomadaire				25			25			29			25		Г
Conception des processeurs	Options:			р	lus tr	ois c	ours :	annu	els à	optio	n sur	les d	leux :	année	es .	Г
Conception des processeurs	Informatique technique (IT)															_
Télécommunications I, II	Conception des processeurs	Sanchez	DI	2		1	2		1							75
Télécommunications I, II	Réglage automatique I,II	Longchamp	DGM	2	1		2	1								7
CAO II,III et VLSI II,III) Nicoud DI 2 1 2 1 7 7 7 7 7 7 7 7 7	Télécommunications I,II		DE							2	1		2	1		7:
CAO II,III et VLSI II,III) Nicoud DI 2 1 2 1 7 7 7 7 7 7 7 7 7	G			_									_			Ļ
Microprocesseurs I,II	· _ · · · · · · · · · · · · · · · · · ·	vachoux	DE	5	-		5		١—-	5	-	\vdash			_	7:
Modélisation et simulation I,II Bonvin DGM 2 2 2 2 5 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		Nia d	D7	-						_	-					<u> </u>
Reconnaissance des formes		 								-	1		_			75
Réglage automatique III,IV Longchamp DGM 2 2 2 5 5 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1										2	_					50
Théorie du signal + Intro au traitement De Coulon+Kunt DE 2 1 2 1 2 1 2 1 7 1 1 1 1 1 1 1 1 1 1 1	ACCOUNTAGES AND TO THE S				\vdash					-	-	-	_	-		50
numérique des signaux et images				-	 ,				-1	_			_	,	_	_
Total : obligatoire		De Coulon+Kunt	DE	4	-					<u> </u>	1					7:
Total: obligatoire hebdomadaire 25 25 29 25 Options: plus trois cours annuels à option sur les deux années		 		1.4	-		12	2	1.0		2	10	_	_	16	\vdash
Options: plus trois cours annuels à option sur les deux années		 		14		0	1.4	_	10	ð		15	0	-	10	\vdash
<u> — — — </u>		 		-		air :			لــــــــــــــــــــــــــــــــــــ			100			_	⊢
	* alternativement tous les deux en								Щ							

alternativement tous les deux ans

alternativement tous les deux ans

^{***} donné tous les deux ans pas donné en 1994/95

p = branches pratiques () = cours facultatifs c = cours e = exercices

en italique = cours à option

RÈGLEMENT D'APPLICATION DU CONTRÔLE DES ÉTUDES DE LA SECTION D'INFORMATIQUE DE L'EPFL

(sessions de printemps, d'été et d'automne 1995)

28 mars 1994

La direction de l'École polytechnique fédérale de Lausanne

vu l'article 26 de l'ordonnance générale du contrôle des études à l'EPFL du 28 iuin 1991

arrête

Article premier - Champ d'application

Le présent règlement est applicable aux examens de la section d'informatique de l'EPFL dans le cadre des études de diplôme.

Examens propédeutiques

Article 2 - Examen propédeutique I

1 L'examen propédeutique I comprend des épreuves dans les branches théoriques suivantes:

	•	coefficient
1.	Analyse I,II (écrit)	2
2.	Algèbre linéaire I,II (écrit)	2
3.	Électrotechnique I et Électronique I (écrit)	2
4.	Physique générale I,II (écrit)	2
5.	Programmation I,II (écrit)	2
6.	Géométrie (écrit)	1
7.	Logique élémentaire I,II (oral)	2

2 Les notes obtenues dans les branches pratiques suivantes entrent dans le calcul des résultats de l'examen:

8.	Programmation I,II (hiver+été)	2
9.	Électrotechnique I et Électronique I.	
	TP (hiver+été)	i
10.	Systèmes logiques et	
	systèmes microprogrammés (hiver+été)	2

- 3 L'examen propédeutique I est réussi lorsque le candidat a obtenu une moyenne égale ou supérieure à 6 dans les branches théoriques d'une part, et une moyenne égale ou supérieure à 6 dans l'ensemble des branches désignées aux alinéas 1 et 2 d'autre part.
- 4 Lorsque les conditions de réussite ne sont pas remplies, la répétition ne porte que sur les branches théoriques si la moyenne des branches pratiques est suffisante.

Art. 3 - Examen propédeutique II

1 L'examen propédeutique II comprend des épreuves dans les branches théoriques suivantes:

		coefficie
1.	Analyse III,IV (écrit)	2
2.	Probabilité et statistique I,II (écrit)	2
3.	Analyse numérique I,II (écrit)	2
4.	Recherche opérationnelle I,II (écrit)	2
5.	Physique générale III,IV (écrit)	2
6.	Programmation III,IV (oral)	2
7.	Bases de l'algorithmique I,II (oral)	2

2 Les notes obtenues dans les branches pratiques suivantes entrent dans le calcul des résultats de l'examen:

8.	Électronique II,III (hiver+été)	2
9.	Environnements de programmation (été)	1
10.	Matériel informatique (été)	1

- 3 L'examen propédeutique II est réussi lorsque le candidat a obtenu une moyenne égale ou supérieure à 6 dans les branches théoriques d'une part, et une moyenne égale ou supérieure à 6 dans l'ensemble des branches désignées aux alinéas 1 et 2 d'autre part.
- 4 Lorsque les conditions de réussite ne sont pas remplies, la répétition ne porte que sur les branches théoriques si la moyenne des branches pratiques est suffisante.

Examens de promotion

Art. 4 - Admission en 3ème année

Les étudiants choisissent l'une des 3 orientations:

- logiciel d'applications (LA) ou
- informatique de base (logiciel système) (IB) ou
- informatique technique (IT)

Art. 5 - Examen de promotion de 3ème année

1 L'examen de promotion de 3ème année comprend des épreuves dans les branches théoriques suivantes:

coefficient

Orientation "Logiciel d'application (LA)"

Session de printemps

262216	on de printemps	
1.	Bases de données I	1
2.	Systèmes d'exploitation I	1
3.	Graphes et réseaux I ou	
	Modèles de décision l	1
Sessio	on d'été	
4.	Bases de données II	1
5.	Systèmes d'exploitation II	1

Graphes et réseaux II ou
 Modèles de décision II

7. Un cours annuel à option (choisi dans la liste

LA ou avec l'accord du Conseiller d'études) 2

Orientations

Orientation "Informatique de base (IB)"

Sessio	on de printemps	
1.	Bases de données I	1
2.	Systèmes d'exploitation I	1
3.	Construction de compilateurs I ou	
	Théorie des langages de programmation I	1
Sessio	on d'été	
4.	Bases de données II	1
5.	Systèmes d'exploitation II	1
6.	Construction de compilateurs II ou	
	Théorie des langages de programmation II	1
7.	Un cours annuel à option (choisi dans la liste	

IB ou avec l'accord du Conseiller d'études)

"Informatique technique (IT)" 1. Projet I (hiver) 2. Labo de Matériel informatique (hiver)

"Informatique de base (IB)" et

-,-
1
1,5
· 1
2

2 L'examen de promotion de 4ème année est réussi lorsque le candidat a obtenu une moyenne égale ou supérieure à 6 dans l'ensemble des branches pratiques.

Orientation "Informatique technique (IT)

Session de printemps 1. Bases de données I

• •	buses de données i	
. 2.	Systèmes d'exploitation I	1
3.	Réglage automatique I	ì
Sessi	on d'été	
4.	Bases de données II	1
5.	Systèmes d'exploitation II	1
6.	Réglage automatique II	1
7.	Un cours annuel à option (choisi dans la liste	

2 Les notes obtenues dans les branches pratiques suivantes entrent dans le calcul des résultats de l'examen pour les trois orientations:

IT ou avec l'accord du Conseiller d'études)

8.	Génie logiciel (hiver+été)	2
9.	Informatique industrielle I (hiver)	1
10.	Informatique industrielle II (été)	ı

- 3 L'examen de promotion de 3ème année est réussi lorsque le candidat a obtenu une moyenne égale ou supérieure à 6 dans l'ensemble des branches désignées aux alinéas 1 et 2.
- 4 Lorsque la condition de réussite n'est pas remplie, la répétition ne porte que sur les branches pratiques si la moyenne des branches théoriques est suffisante, ou sur les branches théoriques si la moyenne des branches pratiques est suffisante.

Art. 6 - Examen de promotion de 4ème année

1 L'examen de promotion de 4ème année porte sur les branches pratiques suivantes:

	COCITICICI
Orientation "Logiciel d'application (LA)"	
1. Projet I (hiver)	1,5
2. Labo de Matériel informatique (hiver)	1
3. Projet II (été)	1,5
4. Projet HTE (hiver+été)	1
 Systèmes d'information (hiver+été) 	2

Examen final de diplôme

Art. 7 - Épreuves de l'examen final (EF)

1 L'examen final de diplôme comprend des épreuves dans les branches suivantes:

coefficient Orientation "Logiciel d'application (LA)"

1

2.	Téléinformatique I,II	1
3.	Graphes et réseaux I,II ou	
	Modèles de décision I,II	1
4.	Un cours annuel à option (choisi dans la liste	
	LA ou avec l'accord du Conseiller d'études)	1
5.	Un cours annuel à option (choisi dans la liste	
	LA ou avec l'accord du Conseiller d'études)	1

Orientation "Informatique de base (IB)"

1. Langages de programmation

1. Langages de programmation	1
2. Téléinformatique I,II	1
3. Construction de compilateurs I,II ou	
Théorie des langages de programmation I,I	1
4. Un cours annuel à option (choisi dans la lis	ite
IB ou avec l'accord du Conseiller d'études)	1
5. Un cours annuel à option (choisi dans la lis	ite
IB ou avec l'accord du Conseiller d'études)	i

Orientation "Informatique technique (IT)"

1.	Langages de programmation	1
2.	Téléinformatique I,II	i
3.	Télécommunications I,II	1
4.	Un cours annuel à option (choisi dans la liste	
	IT ou avec l'accord du Conseiller d'études)	1
5.	Un cours annuel à option (choisi dans la liste	
	IT ou svec l'accord du Conseiller d'études)	1

2 Chaque cours annuel donne lieu à une épreuve orale (même s'il s'agit de 2 cours semestriels regroupés) lors de l'examen final.

Art. 8 - Travail pratique de diplôme (TPD)

- 1 Pour pouvoir entreprendre le TPD, le candidat doit avoir obtenu une moyenne égale ou supérieure à 6 dans les épreuves théoriques mentionnées à l'art. 7.
- 2 Le Conseil du département établit la liste des branches dans lesquelles le travail de diplôme peut être effectué.
- 3 La durée du TPD est de quatre mois.

Dispositions finales

Art. 9 - Abrogation du droit en vigueur

Le règlement d'application du contrôle des études de la section d'Informatique de l'EPFL du 29 mars 1993 est abrogé.

Art. 10 - Entrée en vigueur

Le présent règlement est applicable pour les examens correspondant au plan d'études 1994/95.

28 mars 1994 Au

Au nom de la direction de l'EPFL

Le vice-président et directeur de la formation, D. de Werra
Le directeur des affaires académiques, P.-F. Pittet

CONDITIONS DE PASSAGE D'UNE SECTION À LA SECTION D'INFORMATIQUE

1. Admission en 2e année

- a) Réussite du propédeutique I dans la section d'origine
- b) Rattrapage des cours:
 - Programmation I,II + TP
 - Électrotechnique I et Électronique I
 - Systèmes logiques et systèmes microprogrammés

(l'examen de ces branches est à organiser avec les professeurs concernés)

2. Admission en 3e année

- 2.1 Pour les étudiants de l'École:
 - a) Réussite du propédeutique II dans la section d'origine
 - b) Rattrapage des cours:
 - Programmation III,IV
 - Recherche opérationnelle I,II
 - Électronique I,II

(l'examen de ces branches est à organiser avec les professeurs concernés)

2.2 Pour les étudiants ETS:

Réussite de l'année de raccordement ETS-EPFL

Condition de réussite

Moyenne de rattrapage ≥ 6

En cas d'échec, la(les) branche(s) de rattrapage peut (peuvent) faire l'objet d'un nouvel et dernier examen à la session suivante des propédeutiques.

Ordonnance générale sur le contrôle des études à l'École polytechnique fédérale de Lausanne

du 28 juin 1991, modifiée le 18 mai 1993

Le Conseil des écoles polytechniques fédérales,

vu l'article 7, 1er alinéa, lettre e, de l'ordonnance du 16 novembre 1983 1) sur le CEPF;

vu l'article 28 de l'ordonnance du 16 novembre 1983 2) sur les EPF;

vu l'article 1 de l'Ordonnance transitoire relative au changement d'appellation des membres de la Direction de l'EPFL du 26.1.1994;

vu les directives sur les voies de recours dans le domaine des EPF du 13 juin 1994,

arrête :

Section_1_: Champ_d'application-----

Article premier

- La présente ordonnance fixe les principes et les dispositions applicables à l'organisation des examens de diplôme.
- ² Dans la mesure où le Conseil des écoles polytechniques fédérales (CEPF) n'a pas édicté de directive particulière, les principes fixés aux articles 2 à 9 s'appliquent également:
- a. aux examens d'admission;
- b. aux examens organisés dans le cadre d'études postgrades;
- c. aux examens d'admission au doctorat et aux examens de doctorat:
- d. aux examens en vue d'acquérir le certificat d'enseignement supérieur de mathématiques appliquées ou un certificat analogue.

Section 2 : Dispositions générales relatives aux examens

Art. 2 Organisation des examens

Le directeur des affaires académiques organise les examens. Il fixe notamment les dates des sessions et les modalités d'inscription et établit les horaires des examens, qu'il porte à la connaissance des examinateurs, des experts et des candidats.

Art. 3 Inscription et retrait d'inscription

Le directeur des affaires académiques communique la période d'inscription aux examens ainsi que la date limite pour se retirer.³⁾

Art. 4 Admission

Le directeur des affaires académiques décide de l'admission aux examens. Il notifie par décision aux candidats concernés les refus d'admission aux examens.

RS 414.132.2

¹⁾ RS 414.110.3

²⁾ RS 414.131

³⁾ nouvelle teneur selon le ch. 1 de l'O du CEPF du 18.5.93 en vigueur depuis le 1.6.93

Art. 5 Interruption et absence

Après le début de la session, le candidat ne peut interrompre ses examens qu'en raison de motifs importants tels que la maladie ou un accident. Il doit en aviser le directeur des affaires académiques immédiatement et lui présenter les pièces justificatives nécessaires.

Le directeur des affaires académiques décide de la validité des motivations invoqués.

Les épreuves effectuées avant l'interruption sont prises en compte lors de la reprise des examens.

Le candidat qui, sans motif valable, ne se présente pas à une épreuve reçoit la note zéro.

Le fait de ne pas terminer un examen équivaut à un échec.

Art. 6 Appréciation des travaux

Les travaux suffisants sont notés de 6 à 10, les travaux insuffisants, de 0 à 5,5. Les demi-notes sont admises.

Art. 7 Répétition des examens

Si un candidat a échoué à un examen, il peut s'y présenter une seconde fois, dans le délai d'une année.

Si le candidat est en mesure de faire valoir des motifs d'empêchement importants, le directeur des affaires académiques peut prolonger ce délai à titre exceptionnel.

Art. 8 Consultation des travaux d'examen

Le candidat peut consulter ses travaux écrits auprès de l'examinateur dans les six mois qui suivent l'examen.

La consultation est réglée conformément à l'article 26 de la loi fédérale sur la procédure administrative 1).

Art. 9 Voies de droit

Les décisions prises par le directeur des affaires académiques en vertu de la présente ordonnance peuvent faire l'objet d'un recours auprès du Conseil des EPF dans un délai de 30 jours à compter de leur notification.

Section 3 : Contrôle dans le cadre des études de diplôme

Art. 10 Contrôle continu

Dans les branches théoriques, le contrôle continu durant les semestres (exercices associés à des cours et travaux écrits) sert à vérifier si les étudiants ont assimilé l'enseignement. Les résultats obtenus ne conditionnent pas la promotion en année supérieure.

Art. 11 Série d'examens

Les examens de diplôme comprennent :

- a. deux examens propédeutiques, à la fin des première et deuxième années d'études;
- b. des examens de promotion, en troisième et quatrième années d'études;

c. un examen final de diplôme.

Pour pouvoir se présenter à un examen, l'étudiant doit avoir réussi les examens précédents.

Art. 12 Contenu des examens

Les examens propédeutiques et les examens de promotion comprennent huit épreuves au plus. La moyenne générale prévue à l'article 23 est calculée sur la base des notes obtenues lors de ces épreuves ainsi que sur celles des notes semestrielles ou annuelles obtenues dans les branches pratiques.

L'examen final de diplôme comprend huit épreuves au plus, portant sur des branches enseignées durant

l'année ou les deux années précédant l'examen, ainsi qu'un travail pratique.

¹⁾ RS 172.021

Art. 13 1) Genre des épreuves

¹ Pour les examens propédeutiques, les règlements d'application précisent le genre (écrit ou oral) des épreuves.

Pour les examens de promotion, si les règlements d'application du contrôle des études n'en disposent pas

autrement, le conseil de département, ou à défaut le conseil de section, détermine le genre des épreuves.

Pour l'examen final de diplôme, les épreuves sont orales. A la demande du conseil de département, ou à défaut du conseil de section, le directeur des affaires académiques peut accepter que certaines épreuves soient écrites.

Ces éléments sont communiqués par le directeur des affaires académiques dans les horaires d'examens.

Conditions d'admission aux examens dans des cas particuliers

Sur proposition du chef du département intéressé, le directeur des affaires académiques peut exiger des candidats n'ayant pas fait toutes leurs études dans une EPF qu'ils passent les épreuves dans les branches où ils

n'ont pas été examinés jusque-là.

2 Si un candidat a réussi un examen équivalent dans une autre filière de l'EPFL ou de l'EPFZ, voire dans une autre haute école, le directeur des affaires académiques peut, sur proposition du chef de département intéressé, le dispenser de certaines branches d'examen prescrites dans lesquelles il a passé des épreuves et a obtenu des notes suffisantes. La moyenne exigée pour réussir à l'examen est alors calculée d'après les notes obtenues dans les branches restantes.

Art. 15 Travail pratique de diplôme

Pour pouvoir entreprendre le travail pratique de diplôme, le candidat doit avoir obtenu une moyenne égale ou supérieure à 6 aux épreuves de l'examen final de diplôme.

Le travail pratique de diplôme donne lieu à un mémoire que le candidat présente oralement et dont le sujet est défini par le maître qui en assume la direction.

3 A la demande de

A la demande du candidat, le chef du département concerné, ou à défaut le président du conseil de section, peut confier la direction du travail pratique de diplôme à un maître rattaché à un autre département ou à un collaborateur scientifique.

En cas de présentation formelle insuffisante du mémoire, le maître compétent peut exiger que le candidat y

remédie dans un délai de deux semaines à partir de la présentation orale.

Art. 16 Sessions d'examens

Deux sessions ordinaires sont prévues pour chaque examen propédeutique, en été et en automne. L'étudiant choisit la session à laquelle il désire passer une épreuve donnée; il doit toutefois avoir passé l'ensemble des épreuves à la session d'automne. Lorsque, pour des motifs importants tels que la maladie, un accident ou le service militaire, le candidat est dans l'impossibilité de se présenter à la session d'automne, le Directeur des affaires académiques peut l'autoriser à se présenter à une session extraordinaire organisée au printemps.

Les sessions des examens de promotion ont lieu à la fin de chaque semestre.

Les épreuves théoriques de l'examen final se déroulent à la fin du dernier semestre, en général en automne.

Art. 17 Examinateurs

Les maîtres font passer les épreuves portant sur la branche qu'ils enseignent. S'il est empêché de faire passer une épreuve, le maître demande au directeur des affaires académiques de désigner un autre examinateur.

² Lorsque plusieurs maîtres font passer une épreuve conjointement, ils le font en général au prorata de la

matière qu'ils ont enseignée.

Dans la mesure où la présente ordonnance et les règlements d'application du contrôle des études n'en disposent pas autrement, les examinateurs :

a. choisissent la matière des épreuves;

b. informent les étudiants de la matière et du déroulement des épreuves;

c. formulent les questions des épreuves;

d. mènent l'interrogation;

e. apprécient les prestations des candidats;

proposent la ou les notes à la conférence des notes. Ils conservent pendant six mois les notes manuscrites prises durant les épreuves orales, délai au-delà duquel ils les détruisent.

¹⁾ nouvelle teneur selon le ch. 1 de l'O du CEPF du 18.5.93 en vigueur depuis le 1.6.93

Art. 18 1) Experts

Un expert est désigné par le directeur des affaires académiques sur proposition de l'examinateur et en accord avec le chef du département concerné. Il fait un rapport écrit sur le déroulement de l'épreuve à l'attention de la conférence des notes et, le cas échéant, des autorités de recours.

² Dans le cadre des examens propédeutiques et des examens de promotion, un expert doit être présent aux épreuves orales uniquement. Choisi parmi les membres de l'EPFL, il veille au bon déroulement de l'épreuve et

ioue un rôle d'observateur et de conciliateur.

³ Pour l'examen final de diplôme, un expert, nommé pour chaque épreuve et choisi parmi des personnes externes à l'EPFL, participe à la notation des candidats. Pour les épreuves orales, il veille en outre au bon déroulement de l'épreuve, joue un rôle d'observateur et de conciliateur et peut intervenir dans l'interrogation.

Art. 19 Commissions d'examen

 Des commissions d'examen peuvent être mises sur pied pour évaluer les prestations fournies dans des branches pratiques. Cette évaluation a lieu à l'occasion d'une présentation orale de ses travaux par l'étudiant.
 Outre l'examinateur et l'expert, membre ou non de l'EPFL, ces commissions peuvent comprendre les assis-

tants et les chargés de cours qui ont participé à l'enseignement, ainsi que d'autres professeurs.

Art. 20 Conférence des notes

Pour chaque examen, une conférence des notes fixe les notes définitives attribuées aux candidats pour les branches d'examen présentées, en se fondant sur les notes proposées par les examinateurs. Les membres de la conférence des notes peuvent donner eux-mêmes leur avis ou se faire représenter par un suppléant dûment mandaté et instruit.

² Une première conférence des notes est organisée dans chaque section. Elle est présidée par le président de la commission d'enseignement de la section ou par son suppléant et se compose des examinateurs concernés ou

de leurs suppléants. 1)

3 Une seconde conférence des notes se réunit au niveau de l'École. Elle est présidée par le président de la Commission d'enseignement de l'EPFL et réunit les présidents des commissions d'enseignement de sections ou leurs suppléants. Elle prend ses décisions sur la base des propositions des conférences des notes des sections.
1)

Les sections déterminent les modalités d'organisation de la première conférence des notes. 1)

Art. 21 Communication des résultats des examens

¹ Sur la base du rapport de la seconde conférence des notes, le directeur des affaires académiques communique par décision aux candidats s'ils ont réussi l'examen ou non.

La décision fait mention des notes obtenues.

Art. 22 Admission à des semestres supérieurs

¹ Pour pouvoir s'inscrire au 3e, ou au 5e semestre, l'étudiant doit avoir réussi l'examen propédeutique qui le précède. L'étudiant qui est autorisé à se présenter à la session de printemps en application de l'article 16, ler alinéa, est provisoirement autorisé à suivre l'enseignement du semestre supérieur.

Pour pouvoir s'inscrire au 7e semestre, l'étudiant doit avoir réussi l'examen de promotion le précédant.

3 Les règlements d'application du contrôle des études peuvent en outre prévoir que, pour passer à un semestre supérieur, l'étudiant doit avoir effectué un stage pratique.

Art. 23 Conditions de réussite aux examens

¹ Les examens propédeutiques et les examens de promotion sont réputés réussis lorsque l'étudiant a obtenu une moyenne générale égale ou supérieure à 6, à condition qu'elle ne comprenne aucune note égale à zéro dans les branches pratiques.

² Pour les examens propédeutiques et les examens de promotion, les règlements d'application du contrôle des études peuvent en outre exiger l'obtention d'une moyenne égale ou supérieure à 6, tant dans le groupe des branches théoriques que dans celui des branches pratiques, ou l'obtention d'une moyenne égale ou supérieure à 6 dans l'un de ces groupes.

L'examen final de diplôme est réputé réussi lorsque l'étudiant a obtenu une moyenne égale ou supérieure à 6

dans les branches théoriques et une note égale ou supérieure à 6 pour le travail pratique.

¹⁾ nouvelle teneur selon le ch. 1 de l'O du CEPF du 18.5.93 en vigueur depuis le 1.6.93

Art. 24 Répétition d'examens

1 La répétition porte sur les ensembles de branches dont la moyenne exigée n'est pas atteinte.

² Les règlements d'application du contrôle des études peuvent prévoir qu'une moyenne suffisante dans le groupe des branches théoriques ou dans celui des branches pratiques reste acquise en cas de répétition.

Lorsqu'une note ou une moyenne égale ou supérieure à 6 dans les branches pratiques est une condition de réussite et que celle-ci n'est pas remplie, l'étudiant est tenu de suivre à nouveau les enseignements pratiques en répétant l'année d'études. Le directeur des affaires académiques fixe les modalités en cas de changement de plan d'études.

Art. 25 1) Diplôme

L'étudiant qui a réussi l'examen final de diplôme reçoit, en plus de la décision mentionnée à l'article 21, un diplôme muni du sceau de l'EPFL. Celui-ci contient le nom du diplômé, le titre décerné, une éventuelle orientation particulière, les signatures du président et du vice-président de l'EPFL, ainsi que du chef du département ou du président du conseil de la section concernée.

Section 4: Dispositions finales

Art. 26 Règlements d'application du contrôle des études

La direction de l'EPFL édicte les règlements d'application du contrôle des études. 1)

2 Ceux-ci contiennent en particulier des dispositions concernant:

a. les branches théoriques et pratiques faisant partie de chaque examen, leur répartition en ensemble de branches et les coefficients à affecter aux notes;

b. les moyennes exigées;

c. éventuellement, le genre des épreuves;

d. l'institution de commissions d'examen, leur composition et la manière dont elles fixent les notes;

e. les modalités de répétition en cas d'échec;

 f. un éventuel droit des candidats de proposer le sujet de leur travail de diplôme ainsi que la durée maximale pour l'élaboration de ce travail.

Art. 27 1) Abrogation du droit en vigueur

L'ordonnance du 2 juillet 1980 ²⁾ sur le contrôle des études à l'École polytechnique fédérale de Lausanne est abrogée.

Art. 28 Entrée en vigueur

La présente ordonnance entre en vigueur le 1er juin 1993.

18 mai 1993

Au nom du Conseil des écoles polytechniques fédérales

Le président, Crottaz Le secrétaire général, Fulda

and an exercise to

¹⁾ nouvelle teneur selon le ch. 1 de l'O du CEPF du 18.5.93 en vigueur depuis le 1.6.93

²⁾ RO 1980 1632, 1981 548, 1984 295, 1985 30

				e Lausanne
Eacle	. Dal	. rtaahni assa	Tradamala d	4 I 4aamaa
гахик	: PUI	viecimianie	reactate a	e i ausanne

Département d'Informatique

CONVENTION EN VUE DE FAVORISER LA MOBILITÉ DES ÉTUDIANT(E)S EN INFORMATIQUE

Les établissements universitaires suisses offrant des études en informatique ont décidé de la mise en application d'une convention dont l'objectif est de favoriser la mobilité de leurs étudiant(e)s pendant les études. Elle leur permet notamment de choisir un établissement d'accueil en fonction de spécialisations qui l'orienteront dans sa formation (diplôme, thèse) ou sa carrière professionnelle.

Cette convention concrétise un accord plus général conclu en 1989 entre toutes les universités et hautes écoles de Suisse visant à favoriser la mobilité dans l'ensemble des disciplines.

Elle s'inspire dans ses modalités du projet ECTS (Système européen d'unités capitalisables transférables dans toute la communauté) du programme ERASMUS qui poursuit les mêmes objectifs dans le cadre de la Communauté européenne, et auquel notre pays a adhéré dès l'année académique 1992/1993.

COMMENT FONCTIONNE LA CONVENTION ?

Chaque établissement désigne un coordinateur. Cette personne dispose de toutes les informations nécessaires pour l'application de la convention et elle est à disposition des étudiant(e)s pour les conseiller. Elle possède notamment une brochure de chaque établissement contenant tous les renseignements utiles concernant les études en informatique ainsi que les orientations des recherches.

Le séjour d'études dans un autre établissement peut durer un semestre ou une année; il peut avoir lieu dès la deuxième année d'études et il peut également être utilisé pour effectuer le travail de licence ou de diplôme.

Pendant son séjour, l'étudiant(e) reste immatriculé(e) dans l'établissement d'origine où il/elle continue à payer les taxes semestrielles. Dans l'établissement d'accueil, il/elle acquiert le statut spécial d'étudiant(e) de mobilité.

L'étudiant(e) qui désire profiter de la convention s'adresse au coordinateur, consulte la documentation et choisit l'établissement pour son séjour d'études. Il/elle établit ensuite son programme d'études, compte tenu des enseignements offerts et en fonction des cours qu'il/elle a déjà suivis et de ceux prévus à son retour.

Ce programme doit nécessairement totaliser 60 "crédits" par année d'études, attestant ainsi qu'il s'agit d'études d'une intensité comparable à celles que l'étudiant(e) aurait poursuivies dans son propre établissement. En effet, chaque établissement a décomposé son plan d'études en 60 crédits par an, comme c'est le cas dans le système ECTS.

Le coordinateur doit approuver ce programme; il détermine en outre les cours sur lesquels on demandera aux établissements d'accueil de contrôler et d'attester les connaissances acquises; il fixera ainsi les conditions pour la reconnaissance du séjour d'études dans le cadre du plan d'études de l'établissement d'origine. Il s'occupera par la suite des démarches à entreprendre auprès de l'établissement d'origine et de l'établissement d'accueil. Il joue également le rôle de conseiller pour les étudiant(e)s qui effectuent un séjour d'études dans son établissement.

Le service pour la mobilité de l'université règle toutes les modalités administratives relatives à la mobilité, en particulier l'octroi de bourses de mobilité.

CHANGEMENT DÉFINITIF D'ÉTABLISSEMENT

Dans l'esprit de la convention l'étudiant(e), après son séjour dans un établissement d'accueil, retourne dans son établissement d'origine où il/elle obtiendra son titre final.

Au cas où l'étudiant(e), après un stage de mobilité ou de manière indépendante, souhaite changer définitivement d'établissement, alors le nouvel établissement peut l'astreindre à rattraper des cours ou des examens (art. 8).

RECONNAISSANCE DES DIPLÔMES EN VUE D'UNE THÉSE

Selon la convention entre les établissements universitaires suisses cités plus haut, et s'appliquant à toutes les disciplines, les titres délivrés par un établissement et donnant accès aux études en vue du doctorat, sont reconnus dans le même but par tous les autres établissements. L'étudiant(e) peut donc changer d'établissement entre le diplôme et le doctorat sans autre formalité.

RENSEIGNEMENTS UTILES

Responsable du service de mobilité:

J. Trub, SOC

(021/693.22.81) CM

Coordinateur (informatique):

Prof. Ch. Rapin

Lab. de Compilation Bureau INR 314 / 693.25.82

Liste des titres délivrés / Liste der verliehenen Titel

INFORMATIQUE au sens général / INFORMATIK im allgemeinen

Universität Bern

"Diplom-Informatiker" der Universität Bern Dauer 8 Semester + 1 Semester Diplomarbeit Mobilität möglich ab dem 2. Jahr

Université de Fribourg

"Diplom in Informatik"/"Diplôme en informatique" de l'Université de Fribourg Durée 4 ans y compris le travail de diplôme Mobilité possible à partir de la 2ème année

Universität Basel

" der Universität Basel Dauer 4 Jahre, Diplomarbeit Mobilität:

Université de Neuchâtel

"Diplôme d'informaticien" de l'Université de Neuchâtel
Durée 4 ans + stage + travail de diplôme
Mobilité possible à partir de la 2ème année

Université de Genève

"Licence en informatique" de l'Université de Genève Durée 3 ans + travail de licence Mobilité possible à partir de la 2ème année

"Diplôme d'informaticien" de l'Université de Genève Durée 4 ans + travail de diplôme Mobilité possible à partir de la 2ème année

École Polytechnique Fédérale de Lausanne

"Diplôme d'ingénieur informaticien" de l'École Polytechnique Fédérale de Lausanne Durée 4 ans + travail pratique de diplôme Mobilité possible à partir de la 2ème année

Eidgenössische Technische Hochschule Zürich

"Dipl. Informatik-Ing. ETH" der Eidgenössischen Technischen Hochschule Zürich
Dauer 8 Semester + Diplomarbeit + Industriepraktikum
Mobilität möglich ab 4. Semester

INFORMATIQUE DE GESTION / BETRIEBSINFORMATIK

Universität Bern

"Lic. rer. pol."

Einführungsstudium: 2 Semester

Hauptstudium: min. 6 Semester inkl. Lizentiatsarbeiten

Mobilität ab 3. Semester

(nur Studienschwerpunkt)

Université de Fribourg

"Lic. rer. pol." (direction Informatique de gestion)
Durée 4 ans y compris mémoire de licence
Mobilité possible dès la 3ème année

Université de Neuchâtel

"Diplôme en informatique de gestion" de l'Université de Neuchâtel Durée 2 ans + stage Mobilité possible Le séjour dans l'université d'accueil est limité à un semestre

Université de Genève

"Licence en sciences commerciales et industrielles, mention informatique de gestion" de l'Université de Genève

Durée 3 ans + travail de licence Mobilité possible à partir de la 2ème année

"Diplôme postgrade en système d'informations" Durée 1 année Mobilité: selon conditions d'admission

Université de Lausanne

"Diplôme postgrade en informatique et organisation" de l'Université de Lausanne Durée 1 an + travail de diplôme Mobilité selon conditions d'admission

Universität Zürich

"Diplom in Wirtschaftsinformatik" der Universität Zürich Dauer 8 Semester + Diplomarbeit Mobilität möglich ab 4. Semester

Hochschule St. Gallen

"lic. oec. inform." der Hochschule St. Gallen
Dauer 2 Jahre nach Grundstudium + Praktikum + Diplomarbeit
Mobilität möglich ab 2. Jahr (des Informatikstudiums)

DESCRIPTIFS DES ENSEIGNEMENTS

Les descriptifs des enseignements de la section d'informatique sont classés par cycle et par ordre alphabétique des titres de cours.

1er cycle page 1 à 37

2e cycle page 39 à 115

Cours de service page 117 à 147

Titre: ALGÈBRE LINÉAIRE I							
Enseignant: vacat		*-		·. ·			
Heures totales: 45	Par semaine	: Cours	2	Exercices	1 Pro	tique	
Destinataires et contrôle des étude	s			1	Bran	ches	
Section (s) ÉLECTRICITÉ		Oblig.	Facult.	Option	Théoriques	Pratiques	
INFORMATIQUE		x x			x x		

OBJECTIFS

Apprendre à l'étudiant les techniques du calcul vectoriel et du calcul matriciel.

CONTENU

- Espaces vectoriels. Introduction, vecteurs, combinaisons linéaires, générateurs, dépendance et indépendance linéaires, notions de base et de dimension, produit scalaire.
- 2. Applications linéaires et matrices. Applications linéaires, matrice d'une application linéaire, composée et inverse d'une application linéaire, produit de matrices, matrices inversibles, matrice d'un changement de base, transformation de la matrice d'une application linéaire dans un changement de base.
- 3. Systèmes d'équations linéaires. Réduction d'une matrice à la forme échelonnée, rang d'une matrice, systèmes homogènes, systèmes inhomogènes, solution générale d'un système.
- 4. **Déterminants**. Définition, propriétés, développements suivant une ligne ou une colonne, règle de Cramer, calcul de l'inverse d'une matrice par la méthode des cofacteurs, volume d'un parallélépipède en dimension n.

FORME DE L'ENSEIGNEMENT:

Exposé oral, exercices en salle par groupes.

DOCUMENTATION:

Algèbre linéaire, PPUR.

LIAISON AVEC D'AUTRES COURS

Préalable requis: .
Préparation pour:

Analyse I, II

Crédits annuels: 5

Titre: ALGÈBRE LINÉAIRE	E II				j* *	
Enseignant: vacat					7	
Heures totales: 30	Par semaine :	Cours	2 .	Exercices	1 Pra	tique
Destinataires et contrôle des études					Bran	ches
Section (s) ÉLECTRICITÉINFORMATIQUEETS	Semestre 2 2 2	Oblig. x x x	Facult.	Option	Théoriques x x x	Pratiques

OBJECTIFS

Familiariser l'étudiant avec les outils nécessaires à la résolution des problèmes liés à la diagonalisation des matrices.

CONTENU

- 1. Valeurs propres et vecteurs propres. Définitions et premières propriétés, polynôme caractéristique d'une matrice, diagonalisation d'une matrice, matrices semblables, applications.
- Transformations linéaires dans les espaces éuclidiens. Isométries et matrices orthogonales, déplacements, similitudes, affinités.
- 3. **Réduction des formes quadratiques**. Formes quadratiques, réduction, quadriques et coniques, surfaces de révolution, représentation graphique des quadriques, ellipsoïde d'inertie.

FORME DE L'ENSEIGNEMENT:

Exposé oral, exercices en salle par groupes

DOCUMENTATION:

Algèbre linéaire, PPUR.

LIAISON AVEC D'AUTRES COURS

Préalable requis: Préparation pour: Analyse I, II

Titre: ANALYSE I			. 1					
Enseignant: Jacques DOUCHET, chargé de cours EPFL/DMA								
Heures totales: 120	Par semaine :	Cours	4	Exercices	. 4 <i>Pr</i>	atique		
Destinataires et contrôle des études	·		,	. ,	Bra	nches		
Section (s) INFORMATIQUE	Semestre	Oblig.	Facult.	Option	Théoriques	Pratiques		
MATÉRIAUX	1	x	· 📙	<u> </u>	X			
						. []		

OBJECTIFS

Etude du calcul différentiel et intégral des fonctions d'une variable.

CONTENU

Calcul différentiel et intégral des fonctions d'une variable.

- Corps des nombres réels
- Suites de nombres réels
- Séries numériques
- Introduction aux nombres complexes
- Fonctions d'une variable (limite, continuité et dérivée)
- Développements limités Formule de Taylor
- Comportement local d'une fonction
- Fonctions particulières (logarithme, exponentielle, puissance et hyperboliques)
- Séries entières
- Intégrales
- Intégrales généralisées
- Equations différentielles du premier ordre
- Equations différentielles linéaires du second ordre.

FORME DE L'ENSEIGNEMENT: Cour

Cours ex cathedra, exercices en salle.

DOCUMENTATION:

Calcul différentiel et intégral I et II. J. Douchet et B. Zwahlen,

PPUR, 1990 et 1987.

LIAISON AVEC D'AUTRES COURS

Préalable requis: Préparation pour:

Crédits annuels: 14

Titre: ANALYSE II				,				
Enseignant: Jacques DOUCHET, chargé de cours EPFL/DMA								
Heures totales: 80	Par semaine	: Cours	4	Exercices	4	Pratique		
Destinataires et contrôle des études						Branches		
Section (s) INFORMATIQUE	Semestre 2	Oblig.	Facult.	Option	Théoriq X	ues Pratiques		
MATÉRIAUX	2	x			X			

OBJECTIFS

Etude du calcul différentiel et intégral des fonctions de plusieurs variables.

CONTENU

- Espace IRⁿ
- Fonctions de plusieurs variables
- Dérivées partielles
- Formule de Taylor
- Formes différentielles
- Extrema
- Fonctions implicites
- Extremas liés
- Intégrales multiples.

FORME DE L'ENSEIGNEMENT:

Cours ex cathedra, exercices en salle.

DOCUMENTATION:

Calcul différentiel et intégral II et IV. J. Douchet et B. Zwahlen,

PPUR, 1985 et 1988.

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Analyse I, Algèbre linéaire I.

Préparation pour:

Crédits annuels: voir sem. d'été

Titre: ANALYSI	E III		,			,			
Enseignant: Kurt ARBENZ, Professeur EPFL/DMA									
Heures totales :	75 ·	Par semaine :	Cours	3 .	Exercices	2 Pra	tique		
Destinataires et cont	rôle des études					Bran	ches		
Section (s) ÉLECTRICITÉ		Semestre 3	Oblig.	Facult.	Option	Théoriques x	Pratiques		
MICROTECHNIQU	л Е	. 3	x			X .			
INFORMATIQUE.	••••••••••••••••••••••••••••••••••••	3	x			X			
•••••	***************************************	•	لسا	<u></u> .	. 🗀	L_	, L 1		

OBJECTIFS

Les étudiants seront en mesure d'aborder les disciplines appliquées avec un appareil mathématique suffisant et efficace.

CONTENU

Analyse vectorielle: Algèbre vectorielle; différentiation vectorielle: gradient, divergence et rotationnel; intégration vectorielle, théorème de la divergence, théorème de Stokes et autres théorèmes concernant les intégrales; coordonnées curvilignes; applications.

Séries de Fourier : Fonctions périodiques, séries de Fourier; fonctions paires et impaires, série de Fourier en cosinus ou sinus; notation complexe pour les séries de Fourier; fonctions orthogonales, égalité de Parseval.

Intégrale de Fourier: L'intégrale de Fourier; transformées de Fourier; théorème de la convolution; application.

Calcul opérationnel: Transformée de Laplace unilatérale et bilatérale, théorèmes de transformation; dictionnaire d'images; décomposition en éléments simples d'une fonction rationnelle; exemples de résolution des équations différentielles aux coefficients constants.

FORME DE L'ENSEIGNEMENT:

Ex cathedra. Exercices en salle.

DOCUMENTATION:

Compléments d'analyse, PPUR.

LIAISON AVEC D'AUTRES COURS

Préalable requis: Préparation pour: Analyse I et II.

Analyse IV

Crédits annuels: 8

Titre: ANALYSE IV									
Enseignant: Kurt ARBENZ, Professeur EPFL/DMA									
Heures totales: 40	Par semaine :	Cours	2	Exercices	2 Pro	ıtique			
Destinataires et contrôle des études					Bran	iches			
Section (s) ÉLECTRICITÉ	Semestre 4	Oblig.	Facult.	Option	Théoriques X	Pratiques			
MICROTECHNIQUE	4	x			\mathbf{x}				
INFORMATIQUE	4	x			x				

OBJECTIFS

Les étudiants seront en mesure d'aborder les disciplines appliquées avec un appareil mathématique suffisant et efficace.

CONTENU

Définition de la fonction d'une variable complexe; étude de la fonction homographique; fonction e^z, Inz, zⁿ, cosz, sinz; dérivée d'une fonction; conditions de Riemann-Cauchy, intégrale d'une fonction de la variable complexe le long d'un chemin fermé; formule intégrale de Cauchy; série de Taylor et de Laurent; théorie des résidus; calcul de quelques intégrales; représentation conforme.

FORME DE L'ENSEIGNEMENT: Ex cathedra. Exercices en salle.

DOCUMENTATION: Variables complexes, PPUR.

LIAISON AVEC D'AUTRES COURS

Préalable requis: Analyse I, II, III.

Préparation pour:

Titre: ANALYSE NUMÉRIC	UE I					· · ·
Enseignant: Jacques RAPPAZ	Z, Professeu	, Professeur EPFL/DMA				
Heures totales: 60	Par semaine	: Cours	2	Exercices	2	Pratique
Destinataires et contrôle des études			5 (;		Branches
Section (s) INFORMATIQUE	Semestre 3	Oblig.	Facult.	Option	Théoria	ques Pratiques
MATHÉMATIQUES	3				X 	

OBJECTIFS

L'étudiant apprendra à résoudre numériquement divers problèmes mathématiques d'intérêt pratique et à discuter la valeur des algorithmes proposés.

CONTENU

- Interpolation, intégration et différentiation numériques. Discrétisation par différences finies.
- Méthodes directes pour la résolution de systèmes linéaires. Systèmes linéaires surdéterminés.
- Equations et systèmes d'équations non linéaires.

suite au semestre d'été

FORME DE L'ENSEIGNEMENT:

Ex cathedra. Exercices en salle et sur l'ordinateur.

DOCUMENTATION:

LIAISON AVEC D'AUTRES COURS

Préalable requis: Préparation pour: Analyse I et II. Algèbre linéaire I et II. Informatique I et II.

Crédits annuels: 7

Titre: ANALYSE NUMÉRIQUE II Enseignant: Jacques RAPPAZ, Professeur EPFL/DMA								
Destinataires et contrôle des études	, , .				Bran	ches .		
Section (s)	Semestre	Oblig.	Facult.	Option	Théoriques	Pratiques		
INFORMATIQUE	4	x			\mathbf{x}			
MATHÉMATIQUES	4 .	x.			x			
	-			. 📋				
			. 📋					

OBJECTIFS

L'étudiant apprendra à résoudre numériquement divers problèmes mathématiques d'intérêt pratique et à discuter la valeur des algorithmes proposés.

CONTENU

suite du semestre d'hiver

- Equations et systèmes différentiels.
- Problèmes de valeurs propres.
- Problèmes elliptiques et paraboliques 1D.

FORME DE L'ENSEIGNEMENT:

Ex cathedra. Exercices en salle et sur l'ordinateur.

DOCUMENTATION:

LIAISON AVEC D'AUTRES COURS

Préalable requis: Analyse I. Algèbre linéaire I et II. Informatique I et II. Préparation pour:

Crédits annuels: voir sem. d'été

Titre: ANALYSIS I (EN ALL	EMAND)							
Enseignant: B. ZWAHLEN, Professeur EPFL/DMA								
Heures totales: 120	Par semaine	: Cours	4.	Exercices	4 Pro	tique		
Destinataires et contrôle des études					Bran	ches		
Section (s) MATÉRIAUX GC, GR GM, MI, MA DE, DP, DI	Semestre 1 1 1 1	Oblig. x x x	Facult.	Option	Théoriques X X X	Pratiques		

OBJECTIFS

Etude du calcul différentiel et intégral: notions, méthodes, résultats.

CONTENU

Differential-und Integralrechnung der Funktionen einer Veränderlichen

- Grundbegriffe (reelle und komplexe Zahlen, Grenzwert).
- Funktionen.
- Stetigkeit.
- Ableitungen.
- Lokales Verhalten einer Funktion, Maxima und Minima.
- Die Taylor-Entwicklung, Potenzreihen.
- Spezielle Funktionen.
- Integrale und Stammfunktionen.
- Uneigentliche Integrale.

Lineare Differentialgleichungen.

FORME DE L'ENSEIGNEMENT:

Ex cathedra, exercices en salle.

DOCUMENTATION:

Calcul différentiel et intégral I et III, J. Douchet et B. Zwahlen, PPUR, 1983 et 1987.

Ingenieur Analysis I & II, Christian Blatter, VdF, Zürich,

1989.

LIAISON AVEC D'AUTRES COURS

Préalable requis: Préparation pour:

Crédits annuels: 14

Titre: ANALYSIS II (EN ALI	LEMAND)	-	• •					
Enseignant B. ZWAHLEN, Professeur EPFL/DMA								
Heures totales: 80	Par semaine	: Cours	. 4	Exercices	4 Pro	itique		
Destinataires et contrôle des études					Bran	iches		
Section (s) MATÉRIAUX GC, GR GM, MI, MA DE, DP, DI	Semestre 2 2. 2 2	Oblig. X X X	Facult.	Option	Théoriques X X X	Pratiques		

OBJECTIFS

Etude du calcul différentiel et intégral: notions, méthodes, résultats.

CONTENU

Differential-und Integralrechnung der Funktionen mehrerer Veränderlichen.

- Funktionen mehrerer Veränderlichen.
- Partielle Ableitungen.
- Maxima und Minima, Extrema mit Nebenbedingungen, implizite Funktionen.
- Die Taylor-Entwicklung.
- Mehrfache Integrale.

FORME DE L'ENSEIGNEMENT:

Ex cathedra, exercices en salle.

DOCUMENTATION:

Calcul différentiel et intégral II et IV, J. Douchet et B. Zwahlen,

PPUR, 1985 et 1988.

Ingenieur Analysis I & II, Christian Blatter, VdF, Zürich, 1989.

LIAISON AVEC D'AUTRES COURS

Préalable requis: Préparation pour: Analysis I, Algèbre linéaire I.

Titre: BASES DE L'ALGOR	ITHMIQUE	I		· · · · · ·				
Enseignant: Alain HERTZ, Professeur assistant EPFL/DMA								
Heures totales: 45	Par semaine :	Cours	2	Exercices	1 Pratique			
Destinataires et contrôle des études Section (s) INFORMATIQUE	Semestre 3	Oblig.	Facult.	Option	Branches Théoriques Pratiques X D D D D D D			

Connaître et savoir utiliser les notions de base des mathématiques discrètes; être capable d'en mettre en oeuvre les applications aux sciences de l'ingénieur (notamment en informatique). L'accent sera mis sur les aspects algorithmiques et constructifs des divers concepts introduits. Le cours sera accompagné d'exercices où la programmation aura une place importante.

CONTENU

I. <u>Ensembles</u>
 Relations n-aires, algèbres de relations, partitions

II. Comptages élémentaires

Rappels de combinatoire, techniques d'énumération et de dénombrement, arrangements avec et sans répétition, coefficients binomiaux, nombres de Stirling

III. Récurrence

Relations de récurrence, relations homogènes et non homogènes, équations aux différences finies, tables de différence

IV. Algorithmes célèbres

Algorithmes d'Euclide pour le pgcd, nombres de Fibonacci, multiplication de grands entiers, multiplication et inversion matricielles, calcul du déterminant

V. Tri
Tris par insertion, par sélection, par fusion et par arbre, quicksort, heapsort

FORME DE L'ENSEIGNEMENT:

Cours ex cathedra, exercices en salle

DOCUMENTATION:

Feuilles polycopiées

LIAISON AVEC D'AUTRES COURS

Préalable requis: Préparation pour: Analyse I, II, algèbre linéaire

Cours d'Informatique du 2ème cycle

Cours de Recherche Opérationnelle du 2ème cycle

Titre: BASES DI	E L'ALGO	RITHMIQUE	II		•		,
Enseignant: Alain	HERTZ,	Professeur as	sistant E	PFL/DM	A		
Heures totales :	30	Par semaine :	Cours	2	Exercices	1 Pro	atique`
Destinataires et contr	ôle des étude	s	•			Brai	nches
Section (s) INFORMATIQUE		Semestre 4	Oblig. X Control Facult.	Option	Théoriques X	Pratigues	

OBJECTIFS

Connaître et savoir utiliser les notions de base des mathématiques discrètes; être capable d'en mettre en oeuvre les applications aux sciences de l'ingénieur (notamment en informatique). L'accent sera mis sur les aspects algorithmiques et constructifs des divers concepts introduits. Le cours sera accompagné d'exercices où la programmation aura une place importante.

CONTENU

- Complexité, décidabilité
 Machines de Turing, calculabilité, décidabilité, éléments de la théorie de la complexité
- II. Groupes et codage Groupes symétriques, sous-groupes, groupes cycliques, calculs modulo n, codes binaires, codes de groupe, codes correcteurs, éléments de cryptographie, codages optimaux par des arbres
- III. <u>Dénombrement</u> Dénombrement de configurations, méthode de Polya-

FORME DE L'ENSEIGNEMENT:

Cours ex cathedra, exercices en salle

DOCUMENTATION:

Feuilles polycopiées

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Analyse I, II, algèbre linéaire

Préparation pour:

Cours d'Informatique du 2ème cycle

Cours de Recherche Opérationnelle du 2ème cycle

Titre: ÉLECTRONIQUE I					
Enseignant: Eytan ZYSMAN,	chargé de c	ours EPI	L/DE		1
Heures totales: 50	Par semaine :	Cours	. 2 -	Exercices	1 Pratique 2
Destinataires et contrôle des études Section (s) INFORMATIQUE		Oblig.	<i>Facult.</i>	Option	Branches Théoriques Pratiques X D D

OBJECTIFS

Introduction aux principes fondamentaux de l'électronique, Etre à même de comprendre le fonctionnement des principaux composants et circuits électroniques.

CONTENU

- 1. Introduction générale à l'étude des circuits électroniques.
- 2. Circuits passifs linéaires et non linéaires.
- 3. Le concept d'amplification.
- 4. L'amplificateur opérationnel, ses applications en contre-réaction.
- 5. L'amplificateur opérationnel, ses applications en réaction.

FORME DE L'ENSEIGNEMENT: Ex cathedra, avec exemples et exercices

DOCUMENTATION: Notes polycopiées

LIAISON AVEC D'AUTRES COURS

Préalable requis: Electrotechnique I
Préparation pour: Electronique II

Titre: ÉLECTRONIQUE II				•				
Enseignant: Eytan ZYSMAN, Chargé de cours EPFL/DE								
Heures totales: 75	Par semaine: Cours	. 2	Exercices	1	Pratique 2			
Destinataires et contrôle des études Section (s) INFORMATIQUE	Semestre Oblig.	Facult.	Option	Théor	Branches iques Pratiques X			

OBJECTIES

Suite de l'étude des circuits électroniques fondamentaux. Analyse et synthèse des circuits d'interface nécessaires à l'acquisition puis au traitement de données. Introduction aux circuits intégrés numériques.

CONTENU

- 1. Les bascules.
- 2. Les oscillateurs.
- 3. Les transistors et amplificateurs à transistor.
- 4. Introduction aux amplificateurs de puissance.
- 5. Les filtres actifs du 2ème ordre.
- 6. Les différentes familles de circuits logiques.
- 7. Les circuits d'interface pour traitement de données : convertisseurs A/N et N/A, échantillonneursbloqueurs, multiplexeurs et démultiplexeurs, circuits d'isolation galvanique.
- 8. Introduction aux circuits intégrés numériques en technologie CMOS : technologie, conception et layout.
- 9. Les structures régulières et mémoires intégrées en technologie NMOS et CMOS.

FORME DE L'ENSEIGNEMENT: Ex

Ex cathedra, avec exemples et exercices

DOCUMENTATION:

Notes polycopiées

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Electronique I

Préparation pour:

Electronique III et projets de semestre

			_
Crédi	its an	nuelš:	7

Titre: ÉLECTRONI	QUE III	· · · · · ·					
Enseignant: Eytan Z	YSMAN,	Chargé de o	ours EP	FL/DE			
Heures totales: 20		Par semaine :	Cours		Exercices	Pra	tique 2 .
Destinataires et contrôle	des études	-				Bran	ches
Section (s) INFORMATIQUE		Semestre 4	Oblig. X	Facult.	Option	Théoriques	Pratiques x

Applications pratiques des cours d'électrotechnique et d'électronique I, II. Il s'agit de concevoir et réaliser sous forme de montage de table des petits systèmes électroniques tant analogiques que mixtes analogiques-numériques en utilisant des composants discrets (résistances, capacités,

transistors,...) et divers circuits intégrés.

CONTENU

Les étudiants travailleront par groupes de 2 personnes.

Pendant tout le semestre, ils auront à concevoir, à réaliser et à mesurer 1 à 2 systèmes électroniques.

FORME DE L'ENSEIGNEMENT:

Travaux pratiques en laboratoire.

DOCUMENTATION:

Notes polycopiées d'électrotechnique, d'électronique I et II.

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Electrotechnique, Electronique I et II

Préparation pour:

Projets de semestre

Titre: ÉLECTE	ROTECHN	IQUE I						
Enseignant: Ala	in GERM	OND, Professe	ur EPFL/	Poet 2 Exercices 1 Pratique 2 Facult. Option Théoriques Pratiques X X				
Heures totales :	75	Par semaine	: Cours	2	Exercices	1 Pro	itique 2	
Destinataires et cor	ntrôle des étu	ıdes				Bran	ches	
Section (s)	•	Semestre	Oblig.	Facult.	Option	Théoriques	Pratiques	
INFORMATIQUE								
					<u> </u>			
***************************************		•••		□ .				

OBJECTIFS

L'étudiant sera capable de mettre en équation des circuits linéaires. Il maîtrisera le calcul complexe pour l'analyse des circuits linéaires en régime sinusoïdal, et sera capable de calculer le comportement transitoire de circuits élémentaires. Il sera capable d'utiliser correctement des appareils de mesure électriques.

CONTENU

- <u>Circuits linéaires à constantes concentrées</u>:
 <u>Définitions.</u> Rôle de l'étude des circuits linéaires en régime sinusoïdal dans différents domaines de l'électricité : électronique, automatique et énergie électrique.
- Analyse des circuits linéaires:
 Mise en équations, lois de Kirchhoff. Equivalents de Thévenin et Norton. Principe de superposition.
- Régime sinusoïdal:

 Définitions. Analyse des régimes sinusoïdaux par le calcul complexe. Impédances, admittances.

 Puissances en régime sinusoïdal. Combinaison d'éléments en série, en parallèle. Circuits équivalents.
- Distribution triphasés:
 Définition des systèmes triphasés. Danger des installations électriques. Sécurité des personnes et moyens de protection.
- Réponse fréquentielle d'un circuit :
 Diagrammes polaires d'impédances et d'admittances en fonction de la fréquence. Diagrammes de Bode.

 Bande passante. Quadripôles.
- Régimes transitoires de circuits linéaires : Enclenchement et déclenchement de circuits élémentaires RC, RL, RLC.
- Mesures électriques : Méthodes directes, méthodes de zéro, oscilloscope. Principe et utilisation d'appareils de mesure.
- Introduction aux méthodes numériques d'analyse des circuits:
 Description et utilisation de programmes de simulation au laboratoire d'enseignement assisté par ordinateur (LEAO). Utilisation de tableurs pour l'analyse du comportement fréquentiel et les régimes transitoires.

FORME DE L'ENSEIGNEMENT:

Cours ex cathedra. Exercices et travaux pratiques sur chaque chapitre du cours.

DOCUMENTATION:

Traité d'électricité, volume I + compléments polycopiés.

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Notions de calcul complexe.

Préparation pour:

Electronique, automatique, applications de l'électricité (communications, énergie).

Titre: ENVIRONNEMENTS	DE PROGR	AMMAT	ION					
Enseignant: Alfred STROHMEIER, Professeur EPFL/Dl								
Heures totales: 30	Par semaine :	Cours	. 2	Éxercices	Pra	tique 1		
Destinataires et contrôle des études Section (s) INFORMATIQUE		Oblig.	Facult.	Option	Bran Théoriques	-		

Savoir programmer en Ada (sans le parallélisme) et maîtriser un environnement de programmation. Savoir utiliser le système Unix.

CONTENU

Langage Ada

Notions de type et sous-type. Tableaux non contraints et articles à discriminants. Exceptions. Visibilité et surcharge. Paquetages. Types privés. Unités génériques. Unités de programmes, unités de compilation et compilation séparée. Types de données abstraits et composants logiciels.

Utilisation d'Unix et de l'environnement de programmation

Gestionnaire de fichiers. Langage de commande (shell) et commandes importantes. Quelques utilitaires: mail, News, grep, sccs, make, etc. Compilateur et gestionnaire de bibliothèque.

FORME DE L'ENSEIGNEMENT: Ex cathedra, drills en classe, exercices sur stations.

DOCUMENTATION:

- Manuel de référence du langage de programmation Ada (en anglais ou en français).
- Strohmeier A.; Ada: transparents; vente des polycopiés.
- Kipfer Ph., Strohmeier A.; UNIX: une introduction en bref; vente des polycopiés.
- Kempe M., Strohmeier A.; Ada: Drills; distribué en classe.
- Kempe M., Strohmeier A.; Ada: Exercices de programmation, énoncés et corrigés; distribués par News.

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Programmation I, II, III.

Préparation pour:

Génie Logiciel, Systèmes d'exploitation.

Titre: GÉOMÉTRIE	-				• • • • • • • • • • • • • • • • • • • •	· ·
Enseignant: P. NÜESCH,	Professeur E	PFL/DMA		1,		
Heures totales: 45	Par semaine	: Cours	2	Exercices	1 Pra	tique _
Destinataires et contrôle des étu	des				Bran	ches
Section (s) INFORMATIQUE	Semestre 1	Oblig.	. Facult.	Option	Théoriques X	Pratigues
	···					

OBJECTIFS

Développer la vision spatiale par l'étude de problèmes de géométrie analytique. Traitement des applications géométriques des notions de l'algèbre linéaire et de l'analyse. Initiation à la géométrie différentielle.

CONTENU

Calcul vectoriel. Rappel des notions de longueur, distance, produit scalaire, produit vectoriel, produit mixte.

Géométrie du plan et de l'espace. Nombres complexes, coniques, quadriques.

Eléments de géométrie différentielle. Courbes paramétriques, abscisse curviligne, tangente, courbure, torsion, repère de Frénet, surfaces paramétrées, courbure géodésique.

FORME DE L'ENSEIGNEMENT:

Cours ex cathedra et exercices en classe

DOCUMENTATION:

Cours polycopié

LIAISON AVEC D'AUTRES COURS

Préalable requis: Préparation pour:

Titre: INSTRUMENTS DE T	TRAVAIL			•	•	
Enseignant: DIVERS					. ,	
Heures totales :	Par semaine :	Cours	2	Exercices	Pra	tique
Destinataires et contrôle des études			:	- 7	Bran	ches
Section (s) INFORMATIQUE DIVERS	1+2+3+4	Oblig.	Facult.	Option	Théoriques	Pratiques

Se référer au livret des cours spécial de l'Ecole disponible au Service Académique.

CONTENU

FORME DE L'ENSEIGNEMENT:

-DOCUMENTATION:

LIAISON AVEC D'AUTRES COURS

Préalable requis: Préparation pour:

Titre: LOGIQUE ÉLÉME	NTAIRE I					
Enseignant: Jacques ZAH	ND, Professeu	ır EPFL/D	I			
Heures totales: 45	Par semain	e: Cours	- 2	Exercices	1 Pra	tique
Destinataires et contrôle des étu	des				Bran	ches
Section (s) INFORMATIQUE	Semestre 1	Oblig.	Facult.	Option	Théoriques	Pratiques
,	··· · · · · · · · · · · · · · · · · ·					

OBJECTIES

La pensée déductive, caractéristique des sciences exactes, et des mathématiques en particulier, obéit à des lois dont l'étude est le sujet général de la logique. Comme la pensée s'exprime toujours dans un certain langage, les règles de la déduction sont des règles d'expression, et la logique peut être considérée comme une sorte de "grammaire" du langage scientifique de type mathématique. Le but principal du cours est l'acquisition d'une certaine maîtrise de ce genre de langage, et par suite de ce genre de pensée, grâce à l'étude et l'exercice des règles de la logique. Pour l'informaticien, la logique fournit un langage et des méthodes permettant d'exprimer avec exactitude les spécifications fonctionnelles de systèmes logiciels et/ou matériels, et de démontrer formellement que les systèmes développés satisfont à leurs spécifications. Par ailleurs, le langage de la logique des prédicats peut être pris lui-même comme une forme de langage de programmation (programmation logique, PROLOG).

CONTENU

- 1. INTRODUCTION. Le rôle de la logique et ses aspects essentiels. L'importance du langage. L'ambiguïté du langage naturel. Le concept de langage formalisé. Syntaxe et sémantique. La notion syntaxique de vérité. Le principe de vérification mécanique. Langage mathématique courant et langage complètement formalisé. Quelques repères historiques.
- 2. LANGAGES FORMELS DU PREMIER ORDRE. Construction d'un langage formel. Termes et relations. Langage et métalangage. Syntaxe des termes. Constructions génératrices. Diagrammes syntaxiques. Termes descriptifs construits à partir d'une relation. Syntaxe des relations. Lettres liées, lettres libres. Substitutions.
- 3. THEORIES, THEOREMES, DEMONSTRATIONS. La notion formelle de théorie en tant que cadre de raisonnement. Axiomes d'une théorie. Règles de déduction de base. Théorèmes et démonstrations. Axiomes explicites et schémas d'axiomes. Classification des théories. Logique propositionnelle, logique des prédicats, logique des prédicats avec égalité. Extensions d'une théorie.
- 4. LOGIQUE PROPOSITIONNELLE. Règles de déduction de base et règles dérivées. Règle de l'hypothèse auxiliaire (règle de la déduction). Raisonnements par l'absurde et par disjonction des cas. Conjonction et équivalence. Chaînes d'équivalences. Conditions nécessaires et suffisantes.
- 5. LOGIQUE DES PREDICATS. Quantificateurs universels. Règles de particularisation et de généralisation. Constantes d'une théorie. Substitutivité de l'équivalence. Changements de lettres liées.

FORME DE L'ENSEIGNEMENT: Cours ex cathedra avec exercices.

DOCUMENTATION: Notes polycopiées.

LIAISON AVEC D'AUTRES COURS

Préalable requis: ---

Préparation pour: Toute la partie théorique du plan d'études.

Titre: LOGIQUE ÉLÉMENT	AIRE II	,							
Enseignant: Jacques ZAHND, Professeur EPFL/DI									
Heures totales: 30	Par semaine :	Cours	2	Exercices	1 Pra	tique			
Destinataires et contrôle des études	,	,	•	Bran	ches				
Section (s) INFORMATIQUE	Semestre 2	Oblig.	Facult.	Option	Théoriques x	Pratiques			

L'objectif général du cours est décrit à la page précédente. La logique est un outil dont la maîtrise s'acquiert par l'application. Le domaine d'application choisi dans ce cours est le développement formel d'une partie de la théorie des ensembles, en raison de son rôle fondamental, non seulement comme base des mathématiques, mais encore comme outil de spécification formelle en informatique. Cette application de la logique est traitée en parallèle avec la logique elle-même dès le chapitre 5. Le chapitre 6 lui est entièrement consacré.

CONTENU

5. LOGIQUE DES PREDICATS (suite).

Quantificateurs existentiels. Règles sur les termes descriptifs. Logique des prédicats avec égalité. La règle générale de substitutivité de l'égalité et de l'équivalence. Méthode de la constante auxiliaire. Formes prénexes. Relations univoques et relations fonctionnelles. Quantificateurs typés.

Application à la théorie des ensembles: démonstration formelle des théorèmes sur l'inclusion et l'égalité d'ensembles; la réunion, l'intersection et le complément d'ensembles; les ensembles énumérés; la réunion et l'intersection d'un ensemble d'ensembles quelconque. Méthodes de démonstration ensemblistes standard.

6. THEORIE DES ENSEMBLES.

Ensemble des parties d'un ensemble. Couples et graphes. Le schéma d'axiome de réunion. Produits cartésiens. Projections et graphe réciproque d'un graphe. Le schéma d'axiome de séparation. Graphes composés. Relations collectivisantes. Fonctions.

FORME DE L'ENSEIGNEMENT: Cours ex cathedra avec exercices.

DOCUMENTATION: Notes polycopiées.

LIAISON AVEC D'AUTRES COURS

Préalable requis: ---

Préparation pour: Toute la partie théorique du plan d'études.

Titre: MATÉRIEL INFO	RMATIQUE					·				
Enseignant: René BEUCHAT, Chargé de cours EPFL/DI										
Heures totales: 30	Par semaine	: Cours	1 ,	Exercices	Pṛa	tique 2				
Destinataires et contrôle des étu	des				Bran	ches				
Section (s) INFORMATIQUE	Semestre 4	Oblig.	Facult.	Option	Théoriques	Pratiques x				

OBJECTIFS

Concrétiser les systèmes informatiques en expliquant et démontrant quelques principes de fonctionnement important. Comprendre les liens avec la physique d'une part et la technologie d'autre part.

CONTENU

- 1. Architecture de von Neumann, instruction de base d'un processeur, exécution des instructions
- 2. Représentation des informations en mémoire d'un ordinateur
- 3. Périphériques de sortie et d'entrée
- 4. Phénomènes magnétiques et piezo électriques
- 5. Ecrans
- 6. Disques
- 7. Transferts série
- 8. Réseaux locaux
- 9. Microcontrôleur
- 10. Claviers, souris, scanner

Les travaux pratiques porteront sur les sujets suivants :

- l'écriture de petits programmes en langage machine et assembleurs
- la réalisation d'interfaces simples
- l'étude de phénomènes physiques
- les transferts d'information
- les périphériques (souris, imprimantes)
- initiation à l'utilisation d'un microcontrôleur

FORME DE L'ENSEIGNEMENT : Cours et travaux pratiques

DOCUMENTATION: Notes polycopiées.

LIAISON AVEC D'AUTRES COURS

Préalable requis : Systèmes Logiques

Préparation pour : Labo matériel, Microprocesseurs

Titre: MATHÉMATIO	QUES (répétition))								
Enseignant: Otto BACHMANN, Chargé de cours EPFL/DMA										
Heures totales: 30	Par semain	e: Cours	2	Exercices	Pra	tique [′]				
Destinataires et contrôle de	es études				Bran	ches				
Section (s) TOUTES	Semestre 1	Oblig.	Facult.	Option	Théoriques	Pratiques				

L'étudiant insuffisamment préparé, en particulier le porteur d'une maturité de type A, B, D ou E, raffermira ou acquerra les connaissances mathématiques élémentaires nécessaires.

CONTENU

- Eléments du calcul différentiel et intégral des fonctions d'une variable
- Eléments d'équations différentielles ordinaires
- Algèbre des nombres complexes
- Calcul vectoriel et matriciel
- Utilisation du programme MATHEMATICA.

FORME DE L'ENSEIGNEMENT:

Ex cathedra

DOCUMENTATION:

LIAISON AVEC D'AUTRES COURS

Préalable requis: Préparation pour: Cours de base en mathématiques et physique

Titre: PHYSIQUE GÉNÉRA	LE I		•							
Enseignant: Laurent VILLARD, Professeur-Assistant, EPFL/CRPP										
Heures totales: 45	Par semaine .	Cours	· 2	Exercices	1 Pra	tique				
Destinataires et contrôle des études	, ,				Bran	ches				
Section (s) INFORMATIQUE	Semestre 1	Oblig. x	Facult.	Option	Théoriques X	Pratiques				

OBJECTIFS

Connaître les phénomènes physiques fondamentaux. Connaître, comprendre et savoir utiliser les "lois", formulées en termes mathématiques, qui permettent de décrire et de prédire ces phénomènes. Applications aux phénomènes naturels et aux domaines techniques.

CONTENU

- I. MECANIOUE
- 1. Introduction.
- 2. Cinématique du Point Matériel. Trajectoire, vitesse, accélération.
- 3. Changements de Référentiels. Translation et rotation.
- Dynamique du Point Matériel. Quantité de mouvement. Moment cinétique. Forces. Lois de Newton. Gravitation. Mouvement central. Mouvement vibratoire. Forces de frottement.
- 5. Travail, Puissance et Energie. Energie cinétique, énergie potentielle, énergie mécanique.

FORME DE L'ENSEIGNEMENT:

Ex cathedra, avec expériences en salle, exercices en classe.

DOCUMENTATION:

M. Alonso, E. J. Finn, Physique Générale (Vol.1), InterEditions, Paris, 1986.

LIAISON AVEC D'AUTRES COURS

Préalable requis: Préparation pour: Progressivement Analyse I. Physique Générale II, III, IV.

Titre: PHYSIQUE GÉNÉRA	LE II					1				
Enseignant: Laurent VILLAI	Enseignant: Laurent VILLARD, Professeur-Assistant, EPFL/CRPP									
Heures totales: 60	Par semaine :	Cours	4	Exercices	2 Pro	tique .				
Destinataires et contrôle des études					Bran	ches				
Section (s) INFORMATIQUE	Semestre 2	Oblig. X	Facult.	Option	Théoriques X	Pratiques				

OBJECTIFS

Connaître les phénomènes physiques fondamentaux. Connaître, comprendre et savoir utiliser les "lois", formulées en termes mathématiques, qui permettent de décrire et de prédire ces phénomènes. Applications aux phénomènes naturels et aux domaines techniques.

CONTENU

- I. MECANIQUE (suite)
- 6. Dynamique des Systèmes. Centre de masse. Moment cinétique. Energie. Solide indéformable.
- 7. Relativité Restreinte. Transformation de Lorentz. Quantité de mouvement et énergie relativistes.

II. THERMODYNAMIOUE

- 1. Equilibre thermodynamique. Pression, température et énergie interne. Equation d'état.
- 2. Echanges d'énergie. Travail et chaleur. Premier principe thermodynamique.
- 3. Entropie. Deuxième principe thermodynamique. Cycles. Rendement.

FORME DE L'ENSPICHEMENT.

Ex cathedra, avec expériences en salle, exercices en classe.

DOCUMENTATION:

M. Alonso, E. J. Finn, Physique Générale (Vol.1), InterEditions, Paris, 1986.

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Physique Générale I, Analyse I et progressivement Analyse II.

Préparation pour: Physique Générale III-IV.

Titre: PHYSIQUE GÉNÉRA	LE III					
Enseignant: Klaus KERN, Pi	rofesseur EP	FL/DP				
Heures totales: 90	Par semaine :	Cours	4.	Exercices	2 Pro	atique
Destinataires et contrôle des études				,	Bran	ıches
Section (s) INFORMATIQUE	Semestre 3	Oblig. x	Facult	Option	Théoriques X	Pratiques

OBJECTIFS

Connaissances et compréhension des phénomènes physiques et des lois qui les gouvernent. Savoir utiliser l'outil mathématique pour établir un lien entre le phénomène et sa formulation. Mettre en évidence les applications en science et technique.

CONTENU

- III.1 Champ électrique
- III.2 Champ magnétique
- III.3 Structure magnétique de la matière
- III.4 Induction électromagnétique
- III.5 Phénomènes ondulatoires

FORME DE L'ENSEIGNEMENT:

Ex cathedra, avec expériences en salle, exercices préparés chaque semestre, effectué en classe et à la maison

DOCUMENTATION:

M. Alonso, E. Finn, Physique Générale (Vol. 2), Inter Editions, Paris 1986

LIAISON AVEC D'AUTRES COURS

Préalable requis: Préparation pour: Physique Générale I et II Physique Générale IV

Titre: PHYSIQU	E GÉNÉRA	LE IV					
Enseignant: Klaus	s KERN, P	rofesseur EP	FL/DP				
Heures totales :	30 .	Par semaine :	Cours	2	Exercices	1 Pra	tique
Destinataires et contr	rôle des études	,			,	Bran	ches
Section (s) INFORMATIQUE		Semestre 4	Oblig.	Facult.	Option	Théoriques X	Pratiques

OBJECTIFS

Connaissances et compréhension des phénomènes physiques et des lois qui les gouvernent. Savoir utiliser l'outil mathématique pour établir un lien entre le phénomène et sa formulation. Mettre en évidence les applications en science et technique.

CONTENU

- IV.1 Constitution et caractéristique de la matière
- IV.2 Les atomes
- IV.3 Les molécules
- IV.4 De la physique microscopique à la physique macroscopique
- IV.5 Gaz et liquides
- IV.6 Solides : du désordre à l'ordre
- IV.7 Ordres et chaos

FORME DE L'ENSEIGNEMENT:

Ex cathedra, avec expériences en salle, exercices préparés

chaque semestre, effectué en classe et à la maison

DOCUMENTATION:

M. Alonso, E. Finn, Physique Générale (Vol. 2),

Inter Editions, Paris 1986

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Physique Générale I - III

Préparation pour:

Titre: PROBABILITÉS ET	STATISTIQ	UE I				•
Enseignant: Vacat						
Heures totales: 60	Par semaine :	Cours	2	Exercices	2 Pr	atique
Destinataires et contrôle des études					Bra	nches
Section (s) MATHÉMATIQUES	Semestre 3.	Oblig.	Facult.	Option	Théoriques	Pratiques
INFORMATIQUE	3	X	. 📙		<u>x</u>	
MATH. UNIL	3	x	· 🗌		x	
HEC	3	x			x	

OBJECTIFS

Initier les étudiants au calcul des probabilités, à la modélisation statistique et à l'analyse de données. Au terme du cours, les étudiants devraient connaître l'importance des modèles probabilistes dans le monde moderne et être capables d'appliquer les modèles statistiques courants.

CONTENU

- Axiomes des probabilités. Evénements et ensemble fondamental. Axiomes du calcul des probabilités.
- 2. Analyse combinatoire. Equiprobabilité, éléments fondamentaux.
- 3. Probabilité conditionnelle et indépendance. Formule de Bayes. Indépendance.
- **4.** Variables aléatoires. Définition. Fonction de distribution. V.A. discrètes. Principales lois de V.A. discrètes. Fonction de distribution d'une V.A. transformée.
- 5. Variables aléatoires continues, V.A. uniformes, V.A. normales, Autres lois continues.
- Variables aléatoires simultanées. Définition. Indépendance. Somme de V.A. indépendantes. Distributions conditionnelles. Statistiques d'ordre.
- Espérance mathématique. Définition. Espérance conditionnelle. Moments de V.A. Fonction génératrice.
- 8. Théorèmes limites. Lois des grands nombres. Théorème limite, central.
- 9. Processus stochastiques. Définition. Exemples. Notions de base.

FORME DE L'ENSEIGNEMENT: Cours ex cathedra et exercices en classe

DOCUMENTATION: Livre: Initiation aux probabilités, S.M. Ross

LIAISON AVEC D'AUTRES COURS

Préalable requis: Statistique appliquée, statistique mathématique, probabilités,

Préparation pour: probabilités appliquées, processus stochastiques

Titre: PROBABILITÉS ET STATISTIQUES II										
Enseignant: Stephan MORGENTHALER, Professeur EPFL/DMA										
Heures totales: 40	Par semaine :	Cours	2	Exercices	2 Pra	tique				
Destinataires et contrôle des études Branches										
Section (s) MATHÉMATIQUES INFORMATIQUE MATH. UNIL HEC.	Semestre 4 4 4 4	Oblig. X X X	Facult.	Option	Théoriques x x x x	Pratiques				

Initier les étudiants au calcul des probabilités, à la modélisation statistique et à l'analyse de données. Au terme du cours, les étudiants devraient connaître l'importance des modèles probabilistes dans le monde moderne et être capables d'appliquer les modèles statistiques courants.

CONTENU

- 10. Estimation ponctuelle. Modèles statistiques. Données. Paramètres. Estimateurs. Loi d'échantillonnage. Bootstrap. Méthode des moments. Méthode des moindres carrés. Méthode du maximum de vraisemblance.
- 11. Qualité d'un estimateur. Biais. Efficacité. Carré-moyen de l'erreur. Inégalité de Cramer-Rao. Loi limite de l'estimateur du maximum de vraisemblance.
- 12. Estimation par intervalle. Définitions. Méthode des pivots.
- 13. Tests d'hypothèses. Description du problème. Construction d'un test: théorème de Neyman-Pearson. Tests du rapport de vraisemblance. Tests paramétriques basés sur une loi normale.
- 14. Tests du chi-carré. Adéquation ("goodness of fit"). Indépendance (tableau de contingence).
- 15. Modèle linéaire. Régression linéaire simple et multiple. Inférence statistique: estimations, tests sur les paramètres du modèle (tableau d'analyse de variance). Modèles d'analyse de variance.

FORME DE L'ENSEIGNEMENT: Cours ex cathedra et exercices en classe

DOCUMENTATION:

LIAISON AVEC D'AUTRES COURS

Préalable requis: Préparation pour: Probabilités et statistique I

Statistique appliquée, statistique mathématique, probabilités,

probabilités appliquées, processus stochastiques

Titre: PROGRA	Titre: PROGRAMMATION I										
Enseignant: Giovanni CORAY, Professeur EPFL/DI											
Heures totales :	90	Par semaine	: Cours	2	Exercices	2 Pro	tique 2				
Destinataires et con	trôle des étude	s .				Bran	ches				
Section (s)		Semestre	Oblig.	Facult.	Option	Théoriques	Pratiques				
INFORMATIQUE.		1	x			x	x				
***************************************							· 🔲				
• • • • • • • • • • • • • • • • • • • •	•••••			□.		l ∐ '					
•			- D'			[

OBJECTIFS

L'étudiant saura :

- Utiliser un système informatique pour la mise au point de programmes.
- Coder une solution informatique en Pascal.
- Comprendre et utiliser des algorithmes et modules existants.
- Documenter un programme (analyse, mode d'emploi, codage).

CONTENU

- Matériel et logiciel de base : éditeur, compilateur, bibliothèques et environnement interactif.
- Conception d'applications interactives, entrées et sorties, formats de données, dialogues.
- Décomposition des programmes, procédures et modules, paramètres, interfaces.
- Instructions : sélection de cas, parcours d'intervalles, itérations en Pascal.
- Structures de données : utilisation de tableaux, intervalles et types prédéfinis (y. c.. string), définition de listes bornées et matrices.
- Algorithmes de tri de calcul matriciel et sorties graphiques.
- Méthodes de construction et de documentation des programmes.

FORME DE L'ENSEIGNEMENT:

Ex cathedra. Exercices en classe et par groupes.

DOCUMENTATION:

Cours polycopiés et informations sur ordinateur

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Préparation pour:

Programmation II

Titre: PROGRA	MMA	TION	II			· · · · · · · · · · · · · · · · · · ·				
Enseignant: Giovanni CORAY, Professeur EPFL/DI										
Heures totales :	60	$X^{(2)}$	Par semaine	: Cours	2	Exercices	2 P	ratique 2		
Destinataires et con	es études			-		Bre	anches			
Section (s) INFORMATIQUE			Semestre 2	Oblig.	Facult.	Option	Théorique.	s Pratiques		
·····										

OBJECTIFS

L'étudiant saura :

- Utiliser un système informatique pour la mise au point de programmes.
- Coder une solution informatique en Pascal.
- Comprendre et utiliser des algorithmes et modules existants.
- Documenter un module (analyse, mode d'emploi, tests et restrictions).

CONTENU

- Modules, interfaces, compilation séparée, bibliothèques dans le système Think-Pascal.
- Structures de données
 - . Tables associatives: utilisation et implantation
 - . Fichiers séquentiels et à accès direct, tri par fusion
 - . Listes linéaires (non bornées), piles
 - Arbres binaires et structures de listes.
- Méthodes récursives
 - . Tri Quicksort
 - . Recherche arborescente. labyrinthes
 - . Schéma d'appel de procédure.
- Analyse syntaxique
 - . Expressions arithmétiques et logiques, diagrammes syntaxiques
 - . Utilisation d'un module lexical, symboles
 - . Utilisation descendante récursive

FORME DE L'ENSEIGNEMENT:

Ex cathedra. Exercices en classe et par groupes

DOCUMENTATION:

Cours polycopié. Exemples sur ordinateur.

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Programmation I

Préparation pour:

Programmation III et IV

Titre: PROGRAMMATION	IIÌ				١,	
Enseignant: Charles RAPIN,	Professeur	EPFL/DI				
Heures totales: 60	Par semaine :	Cours	2	Exercices	2 Pro	ntique
Destinataires et contrôle des études				_ ,	Bran	iches
Section (s) INFORMATIQUE + ETS	Semestre 3	Oblig.	Facult.	Option	Théoriques X	Pratiques
MATHÉMATIQUES	5 ou 7			[x]	<u>x</u>	
······································						

OBJECTIFS

L'étudiant apprendra à programmer et à représenter, dans un contexte orienté objet, les principales structures de données et de contrôle et à les utiliser dans diverses applications

CONTENU

- Introduction au langage Newton. Valeurs, variables et repères.
- Objets et classes d'objets. Objets et algorithmes récursifs. Elimination de la récursion terminale.

the state of the s

- Sous-classes et concept d'héritage.
- Arithmétique entière et réelle.
- Rangées.
- Objets procéduraux. Classes protocoles et fonctions génératrices.
- Traitement de texte. Caractères, chaînes et alphabets.
- Coroutines. Générateurs de valeurs.
- Tables associatives. Fonctions de hachage.
- Réalisation d'interprètes.
- Piles, queues et listes.

FORME DE L'ENSEIGNEMENT:

Ex cathedra. Exercices en salle et sur l'ordinateur

DOCUMENTATION:

Cours polycopié "Programmes et objets informatiques"

LIAISON AVEC D'AUTRES COURS

Préalable requis: Préparation pour: Programmation I, II Programmation IV

Titre: PROGRAMMATION	IV					
Enseignant: Charles RAPIN,	Professeur	EPFL/DI				
Heures totales: 40	Par semaine	. Cours	2	Exercices	2 Pra	tique ·
Destinataires et contrôle des études	5				Bran	ches '
Section (s)	Semestre	Oblig.	Facult.	Option	Théoriques	Pratiques
INFORMATIQUE + ETS	4	x	.∐		x	
MATHÉMATIQUES	6 ou 8			x	x	· •
					- 🗍	· 🗍

OBJECTIFS

L'étudiant apprendra à programmer et à représenter, dans un contexte orienté objet, les principales structures de données et de contrôle et à les utiliser dans diverses applications.

CONTENU

- Le retour arrière. Application à des algorithmes d'analyse syntaxique.
- Queues et arbres de priorité.
- Simulation discrète. Echéanciers.
- Tables associatives ordonnées. Arbres de recherche; directoires.
- Parallélisme. Non déterminisme. Accès aux ressources partagées; synchronisation des tâches. Verrous et sémaphores. Moniteurs. Salles d'attente. Rendez-vous. Méthodes et messages.

FORME DE L'ENSEIGNEMENT:

Ex Cathedra. Exercices en salle et sur l'ordinateur.

DOCUMENTATION:

Cours polycopié "Programmes et objets informatiques"

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Programmation III

Préparation pour:

2e cycle de la section d'Informatique.

Titre: RECHERCHE OPÉRATIONNELLE I Enseignant: Dominique de WERRA, Professeur EPFL/DMA									
Destinataires et contrôle des études	,				Bran	ches			
Section (s)	Semestre	Oblig.	Facult.	Option	Théoriques	Pratiques			
MATHÉMATIQUES	3	x			x				
INFORMATIQUE	3	X			_ X				
	. •								

OBJECTIFS

Initiation aux méthodes mathématiques fondamentales de la recherche opérationnelle et leurs applications à des problèmes de décision. Entraînement à la modélisation et à la résolution de problèmes de décision en présence d'éléments stochastiques.

CONTENU

Eléments d'optimisation linéaire: inégalités linéaires, méthode du simplexe, dualité, postoptimisation.

Applications diverses: (affectation de ressources limitées, problèmes de production, de dimensionnement de systèmes techniques, etc.)

Concepts de base de la théorie des graphes: problèmes simples de cheminements optimaux, construction d'arbres, ordonnancement d'opérations, circulation, transmission et transport. Optimisation dans les graphes, méthodes récurrentes.

FORME DE L'ENSEIGNEMENT:

Cours ex cathedra, exercices en salle

DOCUMENTATION:

D. de Werra, Eléments de programmation linéaire avec

application aux graphes, PPUR 1989

LIAISON AVEC D'AUTRES COURS

Préalable requis: Préparation pour: Analyse, algèbre linéaire, informatique, statistique, probabilité Transports et planification, génie de l'environnement, modèles de décision,

graphes et réseaux, combinatorique, optimisation.

Titre: RECHERCHE OPÉRATIONNELLE II										
Enseignant: Dominique de WERRA, Professeur EPFL/DMA										
Heures totales: 40	Par semaine :	Cours	2	Exercices	2 Pro	tique .				
Destinataires et contrôle des études Branches										
	Semestre	Oblig.	Facult.	Option	Théoriques	Pratiques				
MATHÉMATIQUES	4	x			х	î. 🔲				
INFORMATIQUE	4	X		· []	x	· 🗍 🔝				

OBJECTIFS

Initiation aux méthodes mathématiques fondamentales de la recherche opérationnelle et leurs applications à des problèmes de décision. Entraînement à la modélisation et à la résolution de problèmes de décision en présence d'éléments stochastiques.

CONTENU

Optimisation séquentielle :

- programmation dynamique, déterministe et stochastique;
- applications : problèmes de gestion de stock, problème du sac à dos, etc.

Introduction aux processus stochastiques, processus poissoniens.

Chaînes de Markov finies, pripriétés et applications.

Files d'attente, réseaux de files d'attente.

Modèles de gestion de production et de stocks déterministes et stochastiques.

FORME DE L'ENSEIGNEMENT:

Cours ex cathedra, exercices en salle

DOCUMENTATION:

H. Wagner: Principles of Operations Research, Prentice-Hall, cours polycopié

LIAISON AVEC D'AUTRES COURS

Préalable requis: Préparation pour: Analyse, algèbre linéaire, informatique, statistique, probabilité

Transports et planification, génie de l'environnement, modèles de décision,

graphes et réseaux, combinatorique, optimisation.

Titre: SYSTÈMES	Titre: SYSTÈMES LOGIQUES								
Enseignant: Eduardo SANCHEZ, Professeur EPFL/DI									
Heures totales: 6	0	Par semaine :	Cours	2	Exercices	Pra	tique 2		
Destinataires et contrôle	Destinataires et contrôle des études Branches								
Section (s) INFORMATIQUE		Semestre (Oblig.	Facult.	Option	Théoriques	Pratiques x		

OBJECTIFS

Acquisition par les étudiants d'un certain nombre de méthodes systématiques permettant la conception et l'analyse de systèmes électroniques digitaux, ainsi que l'apprentissage d'un certain savoir-faire dans la réalisation pratique, le câblage et le dépannage de ces mêmes systèmes.

CONTENU

- 1. SYSTEMES LOGIQUES COMBINATOIRES. Définition des modèles logiques; variable logique; fonctions logiques d'une et plusieurs variables (ET, OU, NON, NAND, OU-exclusif, Majorité, fonction universelle); modes de représentation des fonctions logiques; algèbre logique (algèbre de Boole).
- 2. SIMPLIFICATION DES SYSTEMES COMBINATOIRES. Réalisation des systèmes combinatoires (multiplexeur, démultiplexeur) et hypothèses relatives à la simplification; simplification par la méthode de la table de Karnaugh; utilisation des portes "OU-exclusif"; systèmes itératifs.
- 3. BASCULES BISTABLES. Notion de système séquentiel; élément de mémoire, définition et modèles des bascules; analyse détaillée d'un cas particulier: la bascule D; modes de représentation des divers types de bascules (bascule JK, diviseur de fréquence).
- 4. COMPTEURS. Définition, représentation par un chronogramme, un graphe ou une table d'états. Méthodes générales de synthèse et d'analyse. Réalisation d'une horloge électronique.
- SYSTEMES SEQUENTIELS SYNCHRONES. Définition, analyse, représentation par un graphe et une table d'états. Applications: compteur réversible, registre à décalage. Méthode générale de synthèse: élaboration de la table d'états, réduction et codage des états, réalisation du système combinatoire. Codage minimal et codage 1 parmi M. Réalisation avec portes NAND, multiplexeurs ou démultiplexeurs. Applications: discriminateur du sens de rotation, détecteur de séquence, serrure électronique.
- CIRCUITS LOGIOUES PROGRAMMABLES. Introduction à la programmation des systèmes logiques combinatoires et séquentiels. Utilisation de différents types de circuits programmables (PAL, EPLD)

FORME DE L'ENSEIGNEMENT : Cours-laboratoire intégré.

DOCUMENTATION:

Volume V du Traité d'Electricité: "Analyse et synthèse des systèmes logiques" (D. Mange). "Travaux pratiques de systèmes logiques'

manuel d'utilisation des logidules (D. Mange, A. Stauffer)

LIAISON AVEC D'AUTRES COURS

Préalable requis :

Préparation pour: systèmes microprogrammés

Titre: SYSTÈMES MICROPROGRAMMÉS										
Enseignant: Daniel MANGE, Professeur EPFL/DI										
Heures totales: 40	Par semaine	: Cours	2	Exercices	Pra	tique 2				
Destinataires et contrôle des éti Section (s) INFORMATIQUE	Semestre	Oblig.	Facult.	Option	Bran Théoriques	ches Pratiques X				
	••••									

OBJECTIFS .

Acquisition par les étudiants d'un certain nombre de *méthodes systématiques* permettant la conception et l'analyse de systèmes électroniques digitaux avec mémoires, ainsi que l'apprentissage d'un certain *savoir-faire* dans la réalisation pratique, le câblage, la programmation et le dépannage de ces mêmes systèmes

CONTENU

- MEMOIRES. Définition et conception des mémoires vives par assemblage de démultiplexeurs, verrous et multiplexeurs. Réalisation des multiplexeurs par passeurs à 3 états. Introduction des bus.
- ARBRES ET DIAGRAMMES DE DECISION BINAIRE. Définition, analyse et synthèse des arbres de décision binaire. Transformation des arbres en diagrammes. Réalisation de ces diagrammes par des réseaux de démultiplexeurs (système logique câblé) ou par une machine de décision binaire (système programmé) à deux types d'instructions: test (IF...THEN...ELSE...) et affectation (DO...).
- 3. SOUS-PROGRAMME ET PROCEDURE. Réalisation programmée de compteurs et mise en évidence d'un sous-programme. Réalisation d'une procédure unique ou de procédures imbriquées par une machine de décision binaire à pile (stack) exécutant quatre types d'instructions: test, affectation, appel de procédure (CALL...) et retour de procédure (RET). Application: horloge électronique simple.
- 4. PROGRAMMES INCREMENTES. Adressage des instructions avec incrémentation. Réalisation des programmes incrémentés par une machine à pile avec compteur de programme, décomposée en un séquenceur et une mémoire.
- PROGRAMMATION STRUCTUREE. Définition des quatre constructions de la programmation structurée: affectation, séquence, test et itération. Conception descendante d'un programme. Application au cas de l'algorithme horloger.
- 6. MIGRATION LOGICIEL-MATERIEL. Décomposition des processeurs en une unité de traitement (système câblé) et une unité de commande (système microprogrammé). Migration du logiciel (modules du microprogramme) vers le matériel (composants de l'unité de traitement). Application: horloge digitale complexe.

FORME DE L'ENSEIGNEMENT : Cours-laboratoire intégré

DOCUMENTATION:

"Systèmes microprogrammés: une introduction au magiciel" (D. Mange)

"Travaux pratiques de systèmes logiques et microprogrammés" (D. Mange,

A. Stauffer)

LIAISON AVEC D'AUTRES COURS

Préalable requis : Systèmes logiques

Préparation pour : Conception des processeurs (à option)

Titre: ALGORITHMIQUE									
Enseignant: Alain PRODON, Chargé de cours EPFL/DMA									
Heures totales: 45	Par semaine :	Cours	2	Exercices	1 Pra	tique.			
Destinataires et contrôle des études Branches									
Section (s) INFORMATIQUE MATHÉMATIQUES	5 ou 7	Oblig.		Option X X	Théoriques x x	Pratiques			

OBJECTIFS

Familiariser les étudiants avec la description et l'analyse d'algorithmes de manipulation de structures géométriques et discrètes; leur apprendre à utiliser des techniques algorithmiques essentielles à tous les domaines où le temps de réponse est primordial : en robotique, pilotage automatique, traitement d'images et reconnaissance de formes, simulation et optimisation combinatoire.

CONTENU

- Notions de base : complexité des problèmes, efficacité des algorithmes, pire des cas ou moyenne, et leur impact sur les performances d'un système.
- Structures de données : structures avancées générales, queues de priorité, arbres équilibrés; structures particulières, coûts amortis.
- Géométrie numérique : intersections de segments, de polygones; enveloppes convexes; quêtes géométriques; pavages de Voronoï et triangulations.
- 4. Calcul formel : manipulation de polynômes, FFT, multiplication de grands entiers et de matrices.

cours bisannuel donné en 1994/95

FORME DE L'ENSEIGNEMENT:

Ex cathedra

DOCUMENTATION:

Notes polycopiées

LIAISON AVEC D'AUTRES COURS

Préalable requis: Préparation pour:

Titre: ALGORITHMIQUE Enseignant: Alain PRODON, Chargé de cours EPFL/DMA									
Destinataires et contrôle des études				Bran	ches				
Section (s) INFORMATIQUE MATHÉMATIQUES	Semestre Oblig. 6 ou 8	Facult.	Option x x	Théoriques x x	Pratiques				

OBJECTIFS

Familiariser les étudiants avec la description et l'analyse d'algorithmes de manipulation de structures géométriques et discrètes; leur apprendre à utiliser des techniques algorithmiques essentielles à tous les domaines où le temps de réponse est primordial : en robotique, pilotage automatique, traitement d'images et reconnaissance de formes, simulation et optimisation combinatoire.

CONTENU

- Exploration de structures finies : dénombrement, récurrences, énumération implicite : sac à dos, arbres de jeux, connexités et planarité de graphes.
- 2. Algorithmes heuristiques pour les problèmes de reconnaissance et d'optimisation.
- 3. Algorithmes probabilistes pour les problèmes de reconnaissance et d'optimisation.

cours bisannuel donné en 1994/95

FORME DE L'ENSEIGNEMENT:

Ex cathedra

DOCUMENTATION:

Notes polycopiées

LIAISON AVEC D'AUTRES COURS

Préalable requis: Préparation pour:

Titre: ANALYSE NUMÉRIQUE DES ÉQUATIONS AUX DÉRIVÉES PARTIELLES									
Enseignant: Jean DESCLOUX, Professeur EPFL/DMA									
Heures totales: 45	Par semaine :	Cours	2	Exercices	1 Pra	tique			
Destinataires et contrôle des études Section (s) MATHÉMATIQUES INFORMATIQUE (LA)	5 ou 7	Oblig.	Facult.	Option X X	Bran Théoriques X X	ches Pratiques			

OBJECTIFS

Le but du cours est de fournir les bases théoriques nécessaires à l'étude mathématique de la méthode des différences finies pour la résolution numérique des équations aux dérivées partielles.

CONTENU

- Notions d'opérateurs aux différences, de consistance et de stabilité.
- Traitement de problèmes elliptiques unidimensionnels.
- Traitement de problèmes elliptiques bidimensionnels.
- Traitement du problème de la chaleur par semi-discrétisation et discrétisation totale.

FORME DE L'ENSEIGNEMENT:

Ex cathedra et exercices en salle.

DOCUMENTATION:

P.A. Raviart, J.M. Thomas: Introduction à l'analyse numérique des équations aux dérivées partielles.

Masson, Paris, 1983.

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Algèbre linéaire I et II. Analyse I, II, III, IV.

Préparation pour:

Calcul scientifique, simulation numérique.

Titre: ANALYSE NUMÉRIQUE DES ÉQUATIONS AUX DÉRIVÉES PARTIELLES									
Enseignant: Jean DESCLOUX, Professeur EPFL/DMA									
Heures totales: 30	Par semaine :	Cours	. 2	Exercices	1 Pro	tique			
Destinataires et contrôle des études					Bran	ches			
Section (s) MATHÉMATIQUES	Semestre 6 ou 8	Oblig.	Facult.	Option x	Théoriques	Pratigues			
INFORMATIQUE (LA)	6 ou 8			x	X				
		ļ.	. 🗖	. 🗖 ؍					

OBJECTIES

Le but du cours est de fournir les bases théoriques nécessaires à l'étude mathématique de la méthode des différences finies pour la résolution numérique des équations aux dérivées partielles.

CONTENU

- Résolution numérique de problèmes hyperboliques linéaires d'ordre 1 et 2.
- Etude théorique et numérique d'équations hyperboliques non linéaires.

FORME DE L'ENSEIGNEMENT:

Ex cathedra et exercices en salle.

DOCUMENTATION:

P.A. Raviart, J.M. Thomas: Introduction à l'analyse

numérique des équations aux dérivées partielles.

Masson, Paris, 1983.

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Algèbre linéaire I et II. Analyse I, II, III, IV.

Préparation pour:

Calcul scientifique, simulation numérique.

Titre: ATELIER DE COMPILATION									
Enseignant: Charles RAPIN, Professeur EPFL/DI									
Heures totales: 45	Par semaine :	Cours	1	Exercices	Pra	tique , 2			
Destinataires et contrôle des études Section (s) INFORMATIQUE	Semestre	Oblig.	Facult.	Option X	Bran Théoriques X	*			
······································		<u> </u>	· [_]			L L			

OBJECTIFS

L'étudiant apprendra certaines techniques de compilation par la réalisation de projets concrets.

CONTENU

Dans une première phase, il sera défini un (ou éventuellement plusieurs) projet(s) de compilation que les étudiants seront amenés à réaliser par groupes. Un projet pourra consister en l'adjonction d'une extension à un compilateur existant (par exemple définition et implémentation d'un concept de classe en Pascal-S) ou en l'implantation complète d'un petit langage de programmation (par exemple définition et implantation d'un petit langage fonctionnel).

Au cours de la réalisation de son projet, l'étudiant apprendra à distinguer les principales fonctions d'un compilateur (analyse lexicale, analyse syntaxique, analyse sémantique, génération de code, table des symboles, traitement des erreurs). Il sera également fait un rappel des principales catégories de langages de programmation, ainsi que des problèmes liés à leur implantation : langages impératifs (Pascal), fonctionnels (Scheme), logiques (Prolog), par objets (Eiffel).

> cours bisannuel donné en 1994/95

FORME DE L'ENSEIGNEMENT:

Explications ex-cathedra, travail de laboratoire

DOCUMENTATION:

LIAISON AVEC D'AUTRES COURS

Préalable reauis: Programmation I, II, III, IV

Préparation pour:

Titre: ATELIER DE COMPILATION									
Enseignant: Charles RAPIN, Professeur EPFL/DI									
Heures totales: 30	Par semaine	: Cours	1	Exercices	Pra	tique 2			
Destinataires et contrôle de	es études				Bran	ches			
Section (s) INFORMATIQUE	Semestre 6 ou 8	Oblig.	Facult.	Option X	Théoriques x	Pratiques			

OBJECTIFS

L'étudiant apprendra certaines techniques de compilation par la réalisation de projets concrets

CONTENU

Les groupes poursuivront le projet du semestre d'hiver ou, si ce dernier est achevé, effectueront un nouveau projet susceptible d'être complété en semestre d'été.

Chaque projet donnera lieu à un rapport que l'étudiant présentera à l'examen

cours bisannuel donné en 1994/95

FORME DE L'ENSEIGNEMENT:

Explications ex-cathedra, travail de laboratoire

DOCUMENTATION:

LIAISON AVEC D'AUTRES COURS

Préalable requis: Atelier de compilation I Préparation pour:

Titre: BASES DE DONNÉES I Enseignant: Stefano SPACCAPIETRA, Professeur EPFL/DI									
Destinataires et contr Section (s) INFORMATIQUE		Semestre 5	Oblig.	Facult.	Option	Bran Théoriques X	ches Pratiques		
MATHÉMATIQUES		5 ou 7			X	X 			

Apprendre à :

- analyser une application pour déterminer ses besoins en information,
- concevoir une base de données qui soit le reflet de ces besoins,
- implanter la base de données sur un système de gestion de bases de données (SGBD),
- utiliser la base au travérs des langages de manipulations offerts par le SGBD.

CONTENU

1. Généralités

- Nature et objectifs de l'approche base de données;
- Architecture d'un système de gestion de bases de données;
- Cycle de vie d'une base de données.

2. Conception d'une base de données

- Approche entité-association;
- Règles de vérification et de validation.

3. Modèle et langages relationnels

- Modèle et ses formes normales : méthode(s) de conception;
- Bases théoriques : algèbre relationnelle, calculs relationnels;
- Langages utilisateurs : SQL, QUEL, QBE;
- Passage de la conception (entité-association) à la mise en œuvre relationnelle.

4. L'approche CODASYL

- Modèle CODASYL et sa philosophie;
- Langage de manipulation.

FORME DE L'ENSEIGNEMENT:

Ex cathedra; exercices en classe; travaux pratiques sur ordinateur.

DOCUMENTATION:

Notes de cours et ouvrages en bibliothèque.

LIAISON AVEC D'AUTRES COURS

Préalable requis: Préparation pour:

Bases de données II. Systèmes d'informations

Titre: BASES DE DONNÉES II Enseignant: Stefano SPACCAPIETRA, Professeur EPFL/DI									
Destinataires et contrôle des études Section (s) INFORMATIQUE MATHÉMATIQUES	Semestre Ob. 6 6 6 ou 8		Option X	Bran Théoriques X X					

OBJECTIFS

- Connaître les principes du fonctionnement interne d'un système de gestion de bases de données.
- Maîtriser les facteurs d'optimisation des performances.
- Acquérir une ouverture sur les avancées significatives en cours dans le domaine.

CONTENU

- 1. Fonctionnement d'un SGBD
 - Adaptation et filtrage : les vues externes; confidentialité;
 - Traitement des requêtes utilisateurs;
 - Partage de données et accès concurrents, fiabilité;
 - Stockage des données;
 - Evolution : gestion du schéma.
- 2. Bases de données réparties et fédérées
- 3. Bases de données orientées objets
- 4. Bases de données déductives
- 5. Interfaces utilisateurs

FORME DE L'ENSEIGNEMENT:

Ex cathedra; exercices en classe; travaux pratiques sur ordinateur.

DOCUMENTATION:

Notes de cours et ouvrages en bibliothèque.

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Bases de données I

Préparation pour:

Systèmes d'informations

Titre: COMBINATORIQUE	2			,	
Enseignant:					* *
Heures totales: 45	Par semaine: Cour.	s · 2	Exercices	1 Prati	ique
Destinataires et contrôle des étude Section (s) MATHÉMATIQUES INFORMATIQUE (LA) PHYSIQUE	Semestre Oblig. 5 ou 7	Facult.	Option x x	Branc Théoriques X X	

OBJECTIFS

Familiarisation avec l'optimisation combinatoire: étude de ses fondements théoriques, d'algorithmes et d'applications. Mise en oeuvre de ses méthodes dans la modélisation et la résolution de problèmes de décision provenant des sciences de l'ingénieur et de la gestion.

CONTENU

- 1. Formulation de problèmes, modélisation
- 2. Théorie des polyèdres appliquée à l'optimisation combinatoire
- 3. Structure de matroïdes, fonctions sous-modulaires
- Structure de couplage
- 5. Complexité d'algorithmes et de problèmes.

Dans ces divers chapitres seront traitées des applications de

- routage et placement en VLSI,
- découpage,
- réseaux de neurones, verres de spin,
- conception de réseaux,
- localisation,
- ordonnancement.

cours bisannuel pas donné en 1994/95

FORME DE L'ENSEIGNEMENT:

Ex cathedra, exercices en classe et sur l'ordinateur

DOCUMENTATION:

Notes polycopiées

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Algèbre linéaire, recherche opérationnelle

Préparation pour:

Titre: COMBINATORIQUE						
Enseignant :						
Heures totales: 30	Par semaine :	Cours	2	Exercices	1 Pra	tique
Destinataires et contrôle des études					Bran	ches
Section (s) MATHÉMATIQUES INFORMATIQUE (LA) PHYSIQUE	6 ou 8	Oblig.	Facult []	Option X X	Théoriques X X X	Pratiques

OBJECTIFS

Familiarisation avec l'optimisation combinatoire: étude de ses fondements théoriques, d'algorithmes et d'applications. Mise en oeuvre de ses méthodes dans la modélisation et la résolution de problèmes de décision. L'accent portera sur les problèmes provenant des sciences de l'ingénieur et de la gestion.

CONTENU

- 6. Matrices totalement unimodulaires, équilibrées
- 7. Systèmes t.d.i.
- 8. Dénombrement, enumération, récurrences, systèmes d'équations aux différences
- 9. Heuristiques.

Dans ces divers chapitres seront traitées des applications de

- routage et placement en VLSI,
- découpage,
- réseaux de neurones, verres de spin,
- conception de réseaux,
- localisation,
- ordonnancement.

cours bisannuel pas donné en 1994/95

FORME DE L'ENSEIGNEMENT:

Ex cathedra, exercices en classe et sur l'ordinateur

DOCUMENTATION:

Notes polycopiées .

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Algèbre linéaire, recherche opérationnelle

Titre: CONCEPTION ASSISTÉE DE CIRCUITS INTÉGRÉS									
Enseignant: Alain VACHOUX, Chargé de cours EPFL/DE									
Heures totales: 45	Par semaine :	Cours	3	Exercices	Pra	tique			
Destinataires et contrôle des études Section (s) INFORMATIQUE (IT)	,	Oblig.	Facult.	Option x	Bran Théoriques X	ches Pratiqués			

- Identifier les problèmes relatifs au développement de circuits intégrés et déterminer comment ceux-ci peuvent être résolus par des outils de conception assistée par ordinateur.
- Comprendre les implications de l'utilisation d'outils CAO sur la méthodologie de conception.
- Identifier les composants principaux d'un environnement CAO intégré.
- Identifier les différents types d'outils disponibles dans un environnement CAO pour le développement de circuits intégrés.

CONTENU

Introduction:

But et définitions

Domaines d'applications

Caractéristiques de la CAO pour circuits intégrés

Représentation des données: niveaux d'abstraction, domaines de description

Langages

Procédure typique de conception

Etude d'un environnement CAO intégré:

Structure générale

Outils disponibles

Caractéristiques

Modélisation de haut niveau avec un langage de description de matériel

Edition de schémas et de layouts

Simulation multi-niveaux et en mode mixte

Générateurs automatiques de layout, compilation de silicium

Placement et routage de cellules et de blocs

Synthèse logique

FORME DE L'ENSEIGNEMENT : Ex cathedra. Illustration des outils sur stations de travail.

Notes polycopiées, extraits d'articles, guide d'utilisation de programmes. DOCUMENTATION :

LIAISON AVEC D'AUTRES COURS

Préalable requis : Electronique (recommandé).

Conception assistée de CI II. Préparation pour :

Titre: CONCEPTION ASSISTÉE DE CIRCUITS INTÉGRÉS Enseignant: Alain VACHOUX, Chargé de cours EPFL/DE									
Destinataires et con Section (s) INFORMATIQUE	(IT)	Semestre	Oblig.	Facult.	Option X	Bran Théoriques X			
			, []						

OBJECTIFS

Evaluer et comparer les principaux algorithmes implantés dans les outils CAO existants pour la conception de circuits intégrés, à la fois du point de vue de l'utilisateur et du point de vue du développeur.

CONTENU

Langages de description de systèmes matériels:

Description de systèmes logiques (VHDL) et analogiques (VHDL-A) Simulation

Synthèse:

Synthèse de haut niveau Synthèse logique Synthèse de cellules de base, de structures régulières

Analyse:

Analyse statique: extraction de paramètres, comparaison de réseaux, ERC, DRC, vérification (chemin critique)

Analyse dynamique: analyse électrique, logique, mode mixte et multi-niveaux

Test:

Simulation de fautes Génération des vecteurs de test Synthèse automatique orientée test

FORME DE L'ENSEIGNEMENT : Ex cathedra. Illustration des outils sur stations de travail.

DOCUMENTATION: Notes polycopiées, extraits d'articles, guide d'utilisation de programmes.

LIAISON AVEC D'AUTRES COURS

Préalable requis: Conception assistée de CI I.
Préparation pour:

Titre: CONCEPTION DES PROCESSEURS Enseignant: Eduardo SANCHEZ, Professeur EPFL/DI									
Destinataires et contrôle des études Section (s) INFORMATIQUE (IB, IT)		Oblig.	Facult.	Option	Brand Théoriques	ches Pratiques X			

OBJECTIFS

A l'issue de ce cours, l'étudiant sera capable:

- d'effectuer la construction matérielle et logicielle d'un ordinateur classique;
- d'utiliser, pour cette construction, des outils matériels et logiciels;
- d'analyser les diverses catégories d'architectures non conventionnelles;
- de maîtriser les différentes interactions entre le matériel et le logiciel d'un ordinateur.

CONTENU

- INTRODUCTION PRATIQUE. Réalisation d'un processeur exécutant directement un répertoire d'instructions avec des structures de contrôle de haut niveau (langage "MICROPASCAL").
- 2. INTRODUCTION THÉORIQUE. Concepts de base: définition, décomposition d'un processeur, types de processeur, langages de description.
- 3. UNITÉ DE CONTROLE. Microprogrammation, outils d'aide (micro-assembleur, etc...)
- 4. UNITÉ DE TRAITEMENT. Répertoires d'instructions, arithmétique, processeurs CISC et RISC.
- STRUCTURES DE DONNÉES ET STRUCTURES DE MÉMOIRE. Modes d'adressage, passage des paramètres, processeur à registres, processeur à pile, processeur à tas, mémoire virtuelle, mémoire cache.

FORME DE L'ENSEIGNEMENT : Cours-laboratoire intégré

DOCUMENTATION: Notes polycopiées

LIAISON AVEC D'AUTRES COURS

Préalable requis: "Systèmes logiques" et "Systèmes microprogrammés"; "Programmation 1 et 2" Préparation pour:

Titre: CONCEPTION DES PROCESSEURS Enseignant: Eduardo SANCHEZ, Professeur EPFL/DI									
Destinataires et con	trôle des étude	s				Bran	ches		
Section (s) INFORMATIQUE	(IB, IT)	Semestre 6	Oblig.	Facult.	Option	Théoriques	Pratiques x		

OBJECTIFS

- A l'issue de ce cours, l'étudiant sera capable:
- d'effectuer la construction matérielle et logicielle d'un ordinateur classique;
- d'utiliser, pour cette construction, des outils matériels et logiciels;
- d'analyser les diverses catégories d'architectures non conventionnelles;
- de maîtriser les différentes interactions entre le matériel et le logiciel d'un ordinateur.

CONTENU

- 6. ENTRÉES/SORTIES. Gestion, interruption, accès direct en mémoire.
- RAPPORTS AVEC LE SYSTÈME D'EXPLOITATION. Gestion des processus parallèles, protection de mémoire.
- 8. ARCHITECTURES PARALLÈLES. Processeur vectoriel, processeur à flux de données.
- 9. PROCESSEURS A EXÉCUTION DIRECTE DES LANGAGES DE HAUT NIVEAU.
- ÉTUDES DE CAS.

FORME DE L'ENSEIGNEMENT : Cours-laboratoire intégré

DOCUMENTATION: Notes polycopiées

LIAISON AVEC D'AUTRES COURS

Préalable requis: "Systèmes logiques" et "Systèmes microprogrammés"; "Programmation 1 et 2'
Préparation pour:

Titre: CONSTRUCTION DE COMPILATEURS I									
Enseignant: Charles RAPIN, Professeur EPFL/DI									
Heures totales: 45	Par semaine :	Cours	2	Exercices	1 Prai	tique			
Destinataires et contrôle des études Branches									
Section (s) MATHÉMATIQUESINFORMATIQUE (LA)	5 ou 7 5 ou 7	Oblig.	Facult.	Option X X	Théoriques X X	Pratiques			
INFORMATIQUE (IB)	5 ou 7	<u>x</u>		- 📙	X				

OBJECTIFS

L'étudiant apprendra les principales méthodes et les principaux algorithmes permettant la traduction d'un langage de programmation en vue de son exécution sur un ordinateur.

CONTENU

Terminologie et notations utilisées.

Analyse lexicale. Analyse syntaxique. Systèmes d'aide au développement de compilateurs.

Gestion de la table des symboles; langages à structure déclarative statique, à structure de bloc, à structure modulaire. Compilation séparée.

Environnement d'exécution. Types implantables statiquement. Sous-programmes; transmission de paramètres. Récursivité; implantation de langages avec une pile. Gestion d'un tas de mémoire; objets libérés explicitement et implicitement; ramassage de miettes. Implantation des paradigmes objet, fonctionnel et parallèle.

cours bisannuel pas donné en 1994/95

FORME DE L'ENSEIGNEMENT:

Cours Ex cathedra. Exercices en salle et sur l'ordinateur

DOCUMENTATION:

Cours ou notes polycopiées

LIAISON AVEC D'AUTRES COURS

Préalable requis: Programmation I, II, III, IV Construction de Compilateurs 2

Titre: CONSTRUCTION D	E COMPILA	TEURS I	I						
Enseignant: Charles RAPIN	Enseignant: Charles RAPIN, Professeur EPFL/DI								
Heures totales: 30	Par semaine :	Cours	2	Exercices	1 Pra	tique			
Destinataires et contrôle des étude	s				Bran	ches			
Section (s) MATHÉMATIQUESINFORMATIQUE (LA)		Oblig.	Facult.	Option x x	Théoriques X X	Pratigues			
INFORMATIQUE (IB)	, 6 ou 8	<u>x</u>			x x				

OBJECTIFS

L'étudiant apprendra les principales méthodes et les principaux algorithmes permettant la traduction d'un langage de programmation en vue de son exécution sur un ordinateur.

CONTENU

Choix du langage objet. Compilation des instructions structurées. Analyse sémantique des expressions. Traduction des expressions sous forme postfixée. Triplets et Quadruplets. Optimisation du programme objet.

N.B. Une révision de ce cours étant prévue, la liste des sujets traités et l'ordre dans lequel ils seront abordés sont donnés à titre indicatif.

cours bisannuel pas donné en 1994/95

FORME DE L'ENSEIGNEMENT:

Cours Ex cathedra. Exercices en salle et sur l'ordinateur

DOCUMENTATION:

Cours ou notes polycopiées

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Construction de Compilateurs 1

Préparation pour:

Titre: COURS HTE I		·								
Enseignant: Blaise GALLAND, Dominique JOYE, chargés de cours EPFL										
Heures totales: 60	Par semaine	: Cours	2	Exercices	Pra	tique 2				
Destinataires et contrôle des étud	es			,	Bran	ches .				
Section (s) INFORMATIQUE	Semestre 5	Oblig.	Facult.	Option	Théoriques	Pratiques				
	••		· 📋 _	· 🗓		. 🗍				

OBJECTIFS .

L'objectif de ce cours-séminaire est de préparer et d'encadrer les étudiants dans la réalisation de leur mémoire HTE. A cette fin, il doit sensibiliser les étudiants aux principales méthodes de recherche propres aux sciences humaines. D'autre part, il doit permettre à l'étudiant d'arrêter, durant le 5ème semestre, le sujet de son mémoire HTE et de se familiariser avec l'expression orale en présentant, par un bref exposé, le sujet de son choix.

CONTENU

Cours: introduction au programme Homme Technique et Environnement, recherche bibliographique, comment choisir un sujet HTE et faire un mémoire, comment faire une enquête, comment mener des entretiens.

Conférences: sur le thème "informatique et société". Celles-ci ont pour but de stimuler le choix d'un sujet de recherche pour le mémoire.

<u>Séminaires</u>: Exposés des étudiants sur le thème de recherche retenu pour leur mémoire, discussion et critique par les enseignants et les étudiants.

FORME DE L'ENSEIGNEMENT:

Cours ex cathedra, conférences et séminaires, tous les 15 jours

DOCUMENTATION:

LIAISON AVEC D'AUTRES COURS

Préalable requis: Préparation pour:

Homme-Technique-Environnement II et projet HTE

Titre: COURS HTE II									
Enseignant: Blaise GALLAND, Dominique JOYE, chargés de cours EPFL									
Heures totales: 60	Par semaine	: Cours	2	Exercices	Pra	tique 2			
Destinataires et contrôle des étude	s		٠.		Bran	ches			
Section (s) INFORMATIQUE	Semestre 7	Oblig.	Facult.	Option	Théoriques	Pratiques			

OBJECTIFS

L'objectif de ce cours-séminaire est de préparer et d'encadrer les étudiants dans la réalisation de leur mémoire HTE. A cette fin, il doit sensibiliser les étudiants aux principales méthodes de recherche élaborées par les sciences humaines, ainsi qu'aux développements sur le thème "informatique et société". D'autre part, il doit permettre à l'étudiant d'approfondir le sujet de son mémoire HTE et de se familiariser avec l'expression orale en présentant, par un bref exposé, le sujet de son choix, la méthode utilisée, les problèmes rencontrés, les résultats, etc., ainsi qu'en participant activement à la critique des sujets présentés par ses collègues.

CONTENU

Cours: introduction au programme Homme Technique et Environnement, recherche bibliographique, comment choisir un sujet HTE et faire un mémoire, comment faire une enquête, comment mener des entretiens.

Conférences: sur le thème "informatique et société". Celles-ci ont pour but de stimuler le choix d'un sujet de recherche pour le mémoire.

Séminaires: Exposés des étudiants sur le thème de recherche retenu pour leur mémoire, discussion et critique par les enseignants et les étudiants.

FORME DE L'ENSEIGNEMENT:

Cours ex cathedra, conférences et séminaires, tous les 15 jours

DOCUMENTATION:

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Homme-Technique-Environnement I

Préparation pour:

Projet HTE

Titre: GÉNIE LOGICIEL	•		·						
Enseignant: Alfred STROHMEIER, Professeur EPFL/DI									
Heures totales : 90	Par semaine :	Cours	2	Exercices	Prai	tique 4			
Destinataires et contrôle des études				*	Bran	ches			
Section (s) INFORMATIQUE	Semestre 5	Oblig. X	Facult.	Option	Théoriques	Pratiques X			

OBJECTIFS

Vivre l'expérience d'un travail d'équipe. Maîtriser le développement d'une application logicielle de complexité moyenne. Connaître une méthode de développement par objets.

CONTENU

Théorie

Notions de cycle de développement d'un logiciel. Etapes d'un projet. Organisation du travail. Documentation. Problèmes de maintenance. Standards.

Mise en oeuvre de la méthode de développement par objets: analyse des besoins, conceptions générale et détaillée, construction, tests. Implémentation de types de données abstraits et de composants logiciels en Ada.

Projet

Réalisation d'un projet logiciel par des groupes d'étudiants, la programmation se faisant en Ada.

FORME DE L'ENSEIGNEMENT: Ex cathedra. Projet sur stations en Ada

DOCUMENTATION:

- Polycopié sur la méthode de développement.
- Strohmeier A. (ed.); Ada Software Components; vente des polycopiés.

LIAISON AVEC D'AUTRES COURS

Préalable requis: Préparation pour: Environnements de programmation Génie Logiciel (semestre d'été)

Titre: GÉNIE LOGICIEL				: 1			
Enseignant: Alfred STROHMEIER, Professeur EPFL/DI							
Heures totales: 60	Par semaine .	Cours	2	Exercices	Pro	tique 4	
Destinataires et contrôle des études					Bran	ches :	
Section (s) INFORMATIQUE	Semestre 6	Oblig.	Facult.	Option	Théoriques	Pratigues X	
	•					. 📙	

OBJECTIFS

Vivre l'expérience d'un travail d'équipe. Maîtriser le développement d'une application logicielle de complexité moyenne. Connaître une méthode de développement par objets.

CONTENU

Théorie

Méthodes de revue de code et de test du logiciel. Maintenance.

Proje

Suite et fin des travaux commencés au semestre d'hiver. Sous forme de travaux pratiques: test et revue de composants logiciels.

FORME DE L'ENSEIGNEMENT: Ex cathedra. Projet sur stations en Ada.

DOCUMENTATION:

- · Comme au semestre d'hiver, ainsi que
- Strohmeier A.; Test du logiciel; vente des polycopiés.

LIAISON AVEC D'AUTRES COURS

Préalable requis: Préparation pour: Génie Logiciel (semestre d'hiver)

Travaux de semestre et de diplôme en informatique

Titre: GÉNIE LOGICIEL AVANCÉ				٠.	:'		
Enseignant:							
Heures totales :	45	Par semaine :	Cours	. 2 .	Exercices	1 Pro	ıtique
Destinataires et contro	ôle des études	,				Brai	nches -
Section.(s) INFORMATIQUE (I	LA + IB)	Semestre 7	Oblig.	Facult.	Option X	Théoriques X	Pratiques

OBJECTIFS

Connaître les méthodes et techniques qui permettent de développer et de maintenir de façon économique des systèmes logiciels de qualité.

CONTENU

Modèles du cycle de vie du logiciel: Développement de systèmes hybrides; Cycle de développement en cascade; Cycle de développement en spirale; Développement incrémental; Prototypage; Maintenance.

Formalismes et notations: Diagrammes de flux de données; Diagrammes de transitions d'état; Réseaux de Pétri; Diagrammes entités-associations; Réseaux sémantiques; Notations EBNF; Systèmes de classes et d'objets (interfaces, héritages, instanciation, client-fournisseur, composition); Diagrammes hiérarchiques; Diagrammes de Buhr; Pseudo-code.

Méthodes: Concepts (abstraction, cachement d'information, structuration, décomposition, modularité); Techniques descendantes: Assemblage à partir de composants; Structuration par niveaux d'abstraction (couches ou machines abstraites); Approches fonctionnelles, par les données, par objets et classes; Revue de quelques méthodes classiques: SADT, PSL/PSA, SRM, SA/SD, Jackson, etc.; Spécification formelle de types abstraits.

pas donné en 1994/9

FORME DE'L'ENSEIGNEMENT: ex cathedra.

DOCUMENTATION:

Liste fournie au début du cours

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Génie Logiciel

Titre: GÉNIE LOGICIEL AVANCÉ									
Enseignant:	•		•						
Heures totales: 30	Par semaine	: Cours	2	Exercices	1 Pra	tique			
Destinataires et contrôle des études			,		Bran	ches			
Section (s)	Semestre	Oblig.	Facult.	Option	Théoriques	Pratiques			
INFORMATIQUE (LA + IB)	8		. 🗌	X	x				
					, 📗 .	. 🔲			
						_			
		_ ·							

OBJECTIFS

Connaître les méthodes et techniques qui permettent de développer et de maintenir de façon économique des systèmes logiciels de qualité.

CONTENU

Activités de développement: Analyse des besoins; Interface d'utilisateur; Conception générale; Conception détaillée; Programmation; Tests.

Gestion de projets: Planification temporelle; Estimation des coûts et délais; Organisation du travail; Suivi et contrôle.

Assurance de qualité: Validation et vérification; Technique de revue et d'audit; Mesures de complexité et de fiabilité; Documentation; Gestion de configurations.

Ateliers de génie logiciel et outils: Gestionnaire d'objets complexes; Mécanismes de communication entre outils; Analyseurs statiques et dynamiques; Aides de mise au point; Editeurs de structures et de diagrammes; Langages de 4ème génération et générateurs d'applications.

pas donné en 1994/95

DOCUMENTATION:

Liste fournie au début du cours

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Génie Logiciel I et II

Titre: GRAPHES ET RÉSEAUX I Enseignant: Dominique de WERRA, Professeur EPFL/DMA										
Destinataires et contrôle des études				٠.	Bran	ches				
Section (s) MATHÉMATIQUES INFORMATIQUE (LA) INFORMATIQUE (IB)	5 ou 7 5 ou 7	Oblig.	Facult.	Option X X	Théoriques x x x	Pratiques				

OBJECTIFS

Familiariser l'étudiant avec l'utilisation des graphes et des algorithmes principaux comme instrument de modélisation dans les sciences de l'ingénieur, en informatique et en gestion.

CONTENU

Concepts de base de la théorie des graphes, représentations informatiques diverses, étude d'algorithmes et de leur complexité.

Flots et potentiels: applications combinatoires, ordonnancement de travaux ou de jobs, affectation optimale de ressources, placement en VLSI, problèmes de distributique.

Colorations: applications aux problèmes d'horaire, d'emploi du temps, de carrés latins (planification d'expériences), d'utilisation de registres et de mémoires, etc.

cours bisannuel pas donné en 1994/95

FORME DE L'ENSEIGNEMENT: Ex cathedra, exercices en salle et avec l'ordinateur

DOCUMENTATION: M. Gondran, M. Minoux: Graphes et Algorithmes, Eyrolles,

cours polycopié (transparents)

LIAISON AVEC D'AUTRES COURS

Préalable requis: Préparation pour:

algèbre linéaire, recherche opérationnelle, probabilité et statistique modélisation de systèmes dans les sciences de l'ingénieur

Titre: GRAPHES ET RÉSE	Titre: GRAPHES ET RÉSEAUX II										
Enseignant: Dominique de WERRA, Professeur EPFL/DMA											
Heures totales: 30	Par semaine :	Cours	2	Exercices	1 Pra	tique					
Destinataires et contrôle des études					Bran	ches					
Section (s) MATHÉMATIQUES INFORMATIQUE (LA) INFORMATIQUE (IB)	Semestre 6 ou 8 6 ou 8 6 ou 8	Oblig. x	Facult.	Option x x	Théoriques X X X	Pratiques					

OBJECTIFS

Familiariser l'étudiant avec l'utilisation des graphes et des algorithmes principaux comme instrument de modélisation dans les sciences de l'ingénieur, en informatique et en gestion.

CONTENU:

Construction de réseaux à performances optimales (arbres, arborescences de coût minimum, tournées optimales, etc.).

Quelques classes importantes de graphes (application à la régulation de la circulation, au codage, etc.); algorithmes de reconnaissance.

Modélisation de préférences individuelles (application aux problèmes de décisions multicritères, méthode Electre, etc.).

cours bisannuel pas donné en 1994/95

FORME DE L'ENSEIGNEMENT: Ex cathedra, exercices en salle et avec l'ordinateur

DOCUMENTATION:

M. Gondran, M. Minoux: Graphes et Algorithmes, Eyrolles,

cours polycopié (transparents)

LIAISON AVEC D'AUTRES COURS

Préalable requis: Préparation pour: algèbre linéaire, recherche opérationnelle, probabilité et statistique

modélisation de systèmes dans les sciences de l'ingénieur

Titre: INFOGRA	APHIE I								
Enseignant: Daniel THALMANN, Professeur EPFL/DI									
Heures totales :	45	Par semaine :	Cours	. 2	Exercices	Pra	tique 1		
Destinataires et cont	rôle des études					Bran	ches		
Section (s) INFORMATIQUE MATHÉMATIQUI		Semestre 5 5 ou 7	Oblig.	Facult.	Option X X	Théoriques x x	Pratiques		

OBJECTIFS

Ce cours s'adresse à tous les futurs ingénieurs qui devront un jour visualiser graphiquement des objets, des mécanismes, des circuits, des constructions, des matériaux, des phénomènes physiques, chimiques, biomédicaux, électriques, météorologiques etc... Le cours leur permettra de comprendre comment sont fabriqués les logiciels permettant de telles visualisations, ils devraient être capables à la fin du cours de réaliser eux-mêmes un tel logiciel.

CONTENU

- 1. Historique de l'infographie et matériel graphique
- 2. Les modèles graphiques: interne, externe, d'affichage et la programmation graphique d'objets
- 3. Les transformations visuelles et le découpage
- 4. Les transformations d'images
- 5. L'interaction graphique 2D et 3D, la réalité virtuelle
- 6. Les algorithmes de traçage et de remplissage; l'antialiasing
- 7. Les courbes et les surfaces
- 8. La couleur
- 9. La visibilité des surfaces
- 10. La lumière synthétique et l'ombre
- 11. La transparence simple et la réfraction
- 12. Le lancer de rayons
- 13. La texture et les fractales
- 14. Les phénomènes naturels

FORME DE L'ENSEIGNEMENT:

Ex-cathédra, films, vidéo, diapositives, exercices sur stations

graphiques

DOCUMENTATION:

Notes de cours, Image Synthesis: Theory and Practice, Springer-Verlag

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Préparation pour: Infographie II

Titre: INFOGRAPHIE II									
Enseignant: Ronan BOULIC, Chargé de cours EPFL/DI									
Heures totales: 30	Par semaine	: Cours	2	Exercices	Pra	tique 1			
Destinataires et contrôle des études					Bran	ches			
Section (s)	Semestre	Oblig.	Facult.	Option	Théoriques	Pratiques			
INFORMATIQUE	6			x	x				
MATHÉMATIQUES	6 ou 8			x	x				
	, `								

OBJECTIFS

Ce cours complète le cours. "Infographie I" par l'étude des techniques d'animation par ordinateur et de simulation graphique. Il montre comment on peut tenir compte de l'évolution des formes au cours du temps. Avec l'arrivée de stations graphiques de plus en plus performantes, l'animation est de plus en plus utilisée pour représenter des phénomènes dynamiques: animation de bras de robots, simulation du mouvement humain, simulation de flux, simulation du coeur, etc... A la fin du cours, les étudiants seront capables de réaliser de telles animations sur une station graphique.

CONTENU

- 1. Principes de l'animation
- 2. L'animation par dessins-clés
- 3. L'animation par interpolation paramétrique
- 4. L'animation procédurale
- 5. L'animation de corps articulés
- 6. L'animation basée sur la cinématique et la dynamique
- 7. L'animation par tâches
- 8. L'animation comportementale

FORME DE L'ENSEIGNEMENT:

Ex-cathédra, films, vidéo, diapositives, exercices sur stations graphiques

DOCUMENTATION:

Notes de cours, Computer Animation: Theory and Practice, Springer-Verlag

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Infographie I

Titre: INFORMATIQUE: INI	Titre: INFORMATIQUE INDUSTRIELLE I									
Enseignant: Henri NUSSBAUMER, Professeur EPFL/DI										
Heures totales: 45	Par semaine :	Cours	,2	Exercices	Pra	tique 1				
Destinataires et contrôle des études			,		Bran	cheś				
Section (s) INFORMATIQUE ÉLECTRICITÉ GE+IN	Semestre 5 5	Oblig. x x	Facult.	Option	Théoriques	Pratiques x x				

OBJECTIFS

Apprendre les principes de base de la structure et de la programmation des mini et microordinateurs. Apprentissage d'un langage assembleur de microprocesseur et introduction aux problèmes du temps réel.

CONTENU

Structure des systèmes d'informatique industrielle

Représentation de l'information et opérations élémentaires

Structure et fonctionnement des ordinateurs

- organisation générale d'un ordinateur
- jeu d'instructions
- mode d'adressage
- gestion mémoire.

Le logiciel

- organisation générale du logiciel système
- les problèmes du temps réel
- langages assembleur
- traitement du temps réel avec MODULA-2
- exemple d'un noyau temps réel.

FORME DE L'ENSEIGNEMENT:

Cours ex cathedra + laboratoire utilisant des stations Macintosh IIcx et des équipements de démonstration spécialisés.

DOCUMENTATION:

Livres "Informatique Industrielle I et II" H. NUSSBAUMER

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Préparation pour:

Informatique Industrielle II

Titre: INFORMATIQUE IN	DUSTRIELL	E II		, •	:			
Enseignant: Henri NUSSBAUMER, Professeur EPFL/DI								
Heures totales: 30	Par semaine :	Cours	2	Exercices	Pra	tique 1		
Destinataires et contrôle des études				:	Bran	ches		
Section (s) INFORMATIQUE ÉLECTRICITÉ GE+IN Pilier 4	Semestre 6 6	Oblig.	Facult.	Option x	Théoriques	Pratiques x x		

OBJECTIFS

Acquérir les connaissances de base en commande d'automatisation et conduite de processus industriels en temps réel. Conception et réalisation des systèmes industriels au niveau du matériel et du logiciel. Travaux pratiques d'automatisation et de conduite de processus.

CONTENU

Grafcet et réseaux de Pétri.

Entrées-sorties et interfaces de processus

- organisation générale des entrées-sorties
- bus du microprocesseur MC-68000
- bus normalisés pour microprocesseurs
- adaptateurs d'interface
- interfaces de processus.

FORME DE L'ENSEIGNEMENT:

Cours ex cathedra + laboratoire utilisant des stations Macintosh IIcx et des équipements spécialisés.

DOCUMENTATION:

Livres "Informatique Industrielle II" H. NUSSBAUMER

LIAISON AVEC D'AUTRES COURS

Préalable requis: Préparation pour: Informatique Industrielle II

Titre: INFORMATIQUE IN	DUSTRIELL	E III				·
Enseignant: Henri NUSSBAU Patrick PLEINE	JMER, Prof VAUX, char	esseur E gé de coi	PFL/DI urs EPFI	./DI	;	
Heures totales: 45	Par semaine :	Cours	2	Exercices	Pra	tique i
Destinataires et contrôle des études					Bran	ches
Section (s)	Semestre	Oblig.	Facult.	Option	Théoriques	Pratiques
INFORMATIQUE	7			х	<u>x</u> .	· · · []
ELECTRICITÉ IN-Pilier 4	7			x	x	· · [] · ·

OBJECTIFS

Acquérir un complément de formation en informatique du temps réel. Connaître et appliquer les principaux composants de l'informatique industrielle.

CONTENU

Sécurité, sûreté, fiabilité

Bases théoriques. Prévention. Technique de tolérance aux pannes. Dépistage précoce. Maintenance. Fiabilité du logiciel. Sécurité des systèmes de contrôle commande.

Automates programmables

Organisation générale. Langages à relais. Exemples d'automates.

Commande numérique des machines

Systèmes à commande numérique. Interpolation. Programmation des commandes numériques. Exemples de commandes numériques.

FORME DE L'ENSEIGNEMENT:

Cours ex cathedra. Travaux laboratoire

DOCUMENTATION:

Livres "Informatique Industrielle III et IV" H. NUSSBAUMER

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Informatique Industrielle I et II

Préparation pour:

· Informatique Industrielle IV

Titre: INFORMATIQUE IN	DUSTRIELI	E IV				· · · · · · · · · · · · · · · · · · ·	
Enseignant: Henri NUSSBAUMER, professeur EPFL/DI Patrick PLEINEVAUX, chargé de cours EPFL/DI							
Heures totales: 30	Par semaine .	Cours	. 2	Exercices	Pra	tique 1	
Destinataires et contrôle des études		01.11		10.	Bran		
Section (s) INFORMATIQUE	Semestre 8	Oblig.	Facult.	Option	Théoriques x	Pratiques	
ELECTRICITÉ IN-Pilier 4	8			x	<u>x</u>		

OBJECTIFS

Acquérir les bases indispensables pour assurer l'interconnexion et l'interfonctionnement d'équipements électroniques ou informatiques en milieu industriel.

CONTENU

Rappels sur le modèle OSI

Protocoles de liaison de données et de réseau

Réseaux locaux. Architecture. Protocoles.

Réseaux d'usine et d'atelier

- MAP
- Mini-MAP
- Messagerie industrielle MMS

Réseaux de terrain

FORME DE L'ENSEIGNEMENT:

Ex cathedra. Travaux laboratoire

DOCUMENTATION:

Livres "Informatique Industrielle IV" H. NUSSBAUMER

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Informatique Industrielle I, II et III

Titre: INSTRUMENTS DE	TRAVAIL					
Enseignant: DIVERS						-
Heures totales:	Par semaine: Cours		2	Exercices	Pratique	
Destinataires et contrôle des études	<u> </u>				Bran	ches
Section (s) INFORMATIQUE	Semestre 5+6+7+8	Oblig.	Facult.	Option	Théoriques	Pratiques
DIVERS	5+6+7+8		X			
•••••						. 📙 .

Se référer au livret des cours spécial de l'Ecole disponible au Service Académique.

CONTENU

FORME DE L'ENSEIGNEMENT:

DOCUMENTATION:

LIAISON AVEC D'AUTRES COURS

Préalable requis: Préparation pour:

Titre: INTELLIGENCE ART	TIFICIELLE	I				
Enseignant: Boi FALTINGS,	Professeur	EPFL/DI	. ;			
Heures totales: 45	Par semaine :	Cours	2	Exercices	Pra	tique 1
Destinataires et contrôle des études Section (s) INFORMATIQUE (LA+IB) MATHÉMATIQUES	Semestre 5 ou 7	Oblig.	Facult.	Option X X	Bran Théoriques X X	ches Pratiques

OBJECTIFS

Connaissances des techniques de raisonnement et modélisation symbolique et leur programmation en LISP.

CONTENU

- 1. Introduction à l'Intelligence Artificielle
- 2. Programmation en LISP
- 3. Représentations logiques
- 4. Techniques d'inférence et de raisonnement
- 5. Satisfaction de contraintes
- 6. Formalismes de modélisation et raisonnement avancés

Les sujets du cours seront complétés par des exercices de programmation de systèmes exemples en LISP.

FORME DE L'ENSEIGNEMENT : Cours avec exercices sur stations SUN du DI

DOCUMENTATION: Winston & Horn.: LISP, Adison Wesley, 1989

Polycopié Intelligence Artificielle I Portable AI Laboratory Users Guide

LIAISON AVEC D'AUTRES COURS

Préalable requis :

Préparation pour: Connaissance de base en informatique Intelligence Artificielle II

Titre: INTELLIGENCE ART	TIFICIELLE I	II				
Enseignant: Boi FALTINGS,	Professeur E	PFL/DI		:	/	
Heures totales: 30	Par semaine :	Cours	2	Exercices	Pratique	ı
Destinataires et contrôle des études Section (s) INFORMATIQUE (LA+IB) MATHÉMATIQUES		0blig. 1	Facult.	Option X X	Branches Théoriques Prat X [X [iques

Connaissances de théories d'Intelligence Artificielle au-delà du raisonnement automatique.

CONTENU

1. Traitement de langue naturelle

Systèmes d'apprentissage automatique

3. Vision par ordinateur

4. Sujets avancés

Exercices sur stations de travail.

FORME DE L'ENSEIGNEMENT : Cours avec exercices sur stations SUN du DI.

DOCUMENTATION: Shank & Riesbeck: Inside Computer Understanding, Lawrence Earlbaum

Associates, 1981

Copies d'articles
Portable Al Laboratory Users Guide

La documentation est en général écrite en anglais

LIAISON AVEC D'AUTRES COURS.

Préalable requis: Intelligence Artificielle I

Aptitude à lire la documentation en anglais

Préparation pour Diplôme

Crédits an	nuels:	6
------------	--------	---

avec Théorie du Signal

Titre: INTROD	UCTION AU	TRAITEM	MENT NU	MÉRIQU	E DES SIC	SNAUX E	T IMAGES	
Enseignant: Murat KUNT, Professeur EPFL/DE								
Heures totales :	20, 30*	Par semaine	e: , Cours	· 2	Exercices	1*	Pratique .	
Destinataires et con	trôle des études		<u> </u>			В	ranches	
Section (s) ÉLECTRICITÉ IN SYST. DE COMM INFORMATIQUE	UNIC. *	Semestre 6 6 6 ou 8	Oblig. x	Facult.	Option x x	Théorique x x x x	es Pratiques	

OBJECTIFS

Les étudiants seront capables d'appliquer les principales méthodes de traitement numérique des signaux telles que l'analyse spectrale, le filtrage et les transformations rapides dans le cas de signaux réels.

CONTENU

Introduction

Signaux numériques. Transformée de Fourier des signaux numériques. Corrélation numérique. Systèmes numériques. Systèmes numériques linéaires. Convolution numérique. Echantillonnage et reconstitution des signaux analogiques.

La transformation en z

Transformations en z directe et inverse. Principales propriétés. Relations avec les transformations de Fourier et de Laplace. Représentation des signaux par leurs pôles et leurs zéros. Fonction de transfert. Applications aux systèmes numériques.

La transformation de Fourier discrète

Transformation directe et inverse. Principales propriétés. Corrélation et convolution sectionnées. Transformée des signaux numériques à durée illimitée. Fonctions fenêtre. Approximation de la transformation intégrale de Fourier.

FORME DE L'ENSEIGNEMENT:

Ex cathedra avec exercices en classe et sur ordinateur

DOCUMENTATION:

Vol. XX du Traité d'électricité

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Théorie du signal

Titre: LABORATOIRE DE MATÉRIEL INFORMATIQUE									
Enseignant: JD. Decotignie, RD. Hersch, JD. Nicoud, E. Sanchez, Prof. EPFL/DI									
Heures totales :	60	Par semaine :	Cours		Exercices	Pra	tique 4		
Destinataires et con Section (s)		Semestre	Oblig.	Facult.	Option	Bran Théoriques	ches Pratiques		
INFORMATIQUE		. 7 ,					X 		

Compléter la formation de base des informaticiens dans le domaine du matériel par des travaux pratiques de conception, réalisation, programmation et test de systèmes matériels numériques complexes. L'étudiant sera confronté à des problèmes d'interaction entre matériel et logiciel. Il aura l'occasion de se familiariser avec des méthodes, des composants et des outils utilisés dans l'industrie

CONTENU

Robot mobile piloté par microcontrôleur Conception d'un système digital complexe Développement d'une carte à microprocesseur Système multiprocesseur à transputers

FORME DE L'ENSEIGNEMENT:

projets de groupes

DOCUMENTATION:

Données de projets, documentation technique

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Cours de base

Préparation pour:

Projet de 8e semestre, travail pratique de diplôme

Titre: LANGAGES DE PROGRAMMATION Enseignant: Daniel THALMANN, Professeur EPFL/DI								
Destinataires et contrôle des études					Brān	ches		
Section (s) INFORMATIQUE	Semestre 7		Facult.	Option	Théoriques x	Pratiques		

OBJECTIFS

Etude des mécanismes, des langages et des systèmes de réécriture.

CONTENU

- langages impératifs (C)
- langages orientés-objets (C++ et Eiffel)
- langages déclaratifs, en particulier les langages fonctionnels (LISP, SCHEME, ML) et les langages de programmation logique (PROLOG)
- langages de quatrième génération (SETL)
- langages spécialisés, en particulier les langages graphiques (LOGO), les langages de simulation (SIMULA) et les langages d'animation (ASAS, CINEMIRA).

FORME DE L'ENSEIGNEMENT: Ex-cathédra, exercices en salle et sur ordinateur

DOCUMENTATION: Notes de cours

LIAISON AVEC D'AUTRES COURS

Préalable requis: Programmation I à IV Préparation pour:

Titre: LANGAGES DE PRO	GRAMMATION			v.'	
Enseignant: Hansruedi NOSE	R, Chargé de co	urs EPFL/DI			
Heures totales: 30	Par semaine: Co	urs 2	Exercices	1 Pra	tique
Destinataires et contrôle des études Section (s) INFORMATIQUE	Semestre Oblig 8 x	Facult.	Option	Bran Théoriques X	ches Pratigues

Etude des mécanismes, des langages et des systèmes de réécriture.

CONTENU

- rappel des grammaires formelles de Chomsky
- fractales
- **Iterated Function Systems**
- L-systèmes
- automates cellulaires
- programmation génétique

Ex-cathédra, exercices en salle et sur ordinateur FORME DE L'ENSEIGNEMENT:

Notes de cours DOCUMENTATION:

LIAISON AVEC D'AUTRES COURS

Programmation I à IV Préalable requis:

Titre: MICROPROCESSEURS I Enseignant: Jean-Daniel NICOUD, Professeur EPFL/DI								
Destinataires et contrôle des études Section (s) INFORMATIQUE (IB, IT) MICROTECHNIQUE		Oblig.	Facult.	Option X X	Bran Théoriques X X	Pratiques		

OBJECTIFS

L'étudiant devra avoir compris les principes à la base des systèmes microinformatiques et les caractéristiques principales des microprocesseurs et interfaces programmables disponibles. Il devra être capable de lire la documentation et mettre en oeuvre, du point de vue matériel et logiciel, un microprocesseur ou interface programmable 8/16/32 bits.

CONTENU

- 1. Fonctionnalité des processeurs 8, 16, 32 bits et analyse d'un processeur simple, le 8085.
- Structure des interfaces programmables; analyse détaillée d'exemples de circuits "timer", parallèle, série et contrôleur d'interruption.
- Etude d'un ordinateur monolithique type : le 6801; Caractéristiques principales de la famille 8048-8051.
- Analyse détaillée des processeurs 68000 et 68020/30 : signaux de commande, séquencement et interfaçage, exceptions, répertoire d'instructions.
- 5. Principes de bus parallèles, Analyse de quelques bus normalisés.

Les travaux pratiques porteront sur les sujets suivants :

- Mise en oeuvre d'un processeur 8085 et analyse de ses mécanismes d'interruption
- Test des interfaces programmables 8255 et 8254
- Mise en oeuvre d'un processeur 68HC11
- Observation à l'oscilloscope des signaux sur un système 68030
- Programmation de routines graphiques sur 68000

FORME DE L'ENSEIGNEMENT : Alternance de cours Ex Cathedra et de travaux pratiques

DOCUMENTATION: Microprocesseurs 8 et 16 bits (99 pages), Interfaces programmables

et microcontrôleurs (93 pages), Microprocesseurs I compléments

(201 pages), Laboratoires Microprocesseurs (78 pages + annexes)

LIAISON AVEC D'AUTRES COURS

Préalable requis: Microinformatique ou Informatique industrielle

Préparation pour: Microprocesseurs II

Titre: MICROPROCESSEURS II									
Enseignant: Jean-Daniel NICOUD, Professeur EPFL/DI									
Heures totales: 30	Par semaine :	Cours	2	Exercices	1 Pra	tique			
Destinataires et contrôle des études	:	_			Bran	ches			
Section (s)		Oblig.	Facult.	Option	Théoriques	Pratiques			
INFORMATIQUE (IB, IT)	6 ou 8			x	_ <u> x</u>	. 📙 📗			
MICROTECHNIQUE	6 ou 8		. 🗆	x	x				
	•			· .					

OBJECTIFS

L'étudiant devra se sentir à l'aise face à de nouveaux circuits intégrés complexes (processeurs, interfaces programmables, circuits annexes) dont les spécifications sont le plus souvent en anglais. Il devra comprendre les concepts associés aux nouvelles architectures distribuées et être capable de développer une carte mono ou multiprocesseur avec les programmes de test de la mémoire et des interfaces.

CONTENU

Microprocesseurs 32 bits et coprocesseurs : Familles 68030,68040, i386, i 486, Transputer.

Mémoire cache, gestion mémoire, processeurs RISC.

Architectures multiprocesseurs.

Processeurs de traitement de signaux (DSP).

Architectures d'écrans graphiques noir et blanc et couleur, coprocesseurs graphiques.

Bus pour systèmes microprocesseur. VME, SCSI.

Technologie des réseaux locaux.

FORME DE L'ENSEIGNEMENT : Ex cathedra

DOCUMENTATION: Microprocesseurs II, (288 pages)

LIAISON AVEC D'AUTRES COURS

Préalable requis: Microprocesseurs I

Préparation pour: Diplôme

Titre: MODÈLES DE DÉCISION I									
Enseignant: Thomas M. LIEBLING, Professeur EPFL/DMA									
Par semaine :	Cours	· 2	Exercices	Prai	rique 1				
s		i	,	Brane	ches				
	Oblig.	Facult.	Option x	Théoriques	Pratiques				
	x			X					
					∐·				
	Par semaine: Semestre 5 ou 7	Par semaine: Cours Semestre Oblig. 5 ou 7	BLING, Professeur EPFL/DM Par semaine: Cours 2 s Semestre Oblig. Facult. 5 ou 7	BLING, Professeur EPFL/DMA Par semaine: Cours 2 Exercices s Semestre Oblig. Facult. Option 5 ou 7	BLING, Professeur EPFL/DMA Par semaine: Cours 2 Exercices Praises Semestre Oblig. Facult. Option Théoriques 5 ou 7				

OBJECTIES

Rendre capable l'étudiant de formuler et implanter des modèles pour analyser, simuler ou optimiser des systèmes stochastiques rencontrés dans la nature, dans la technique et dans la gestion.

CONTENU **

1. Simulation stochastique

Techniques de simulation, modélisation, génération et validation de nombres pseudo-aléatoires. Génération de variables aléatoires uni- et multidimensionnelles, simulation de systèmes décrits par des processus stochastiques linéaires, des équations aux différences linéaires, chaînes de Markov. Convergence des processus simulés, processus régénératifs, estimation de paramètres. Simulation de systèmes à événements discrets, concepts et langages (type Onap). Simulation de

Simulation de systèmes à événements discrets, concepts et langages (type Qnap). Simulation de processus industriels.

Méthode de Monte Carlo: solution de problèmes numériques (intégration, optimisation: recuit simulé, tabou, méthodes génétiques).

2. Applications diverses

Applications diverses Réseaux de files d'attente, productique, gestion de stocks, modélisation de réseaux de communication (synthèse, routage, fiabilité), simulation de systèmes stochastiques de la nature, modèles biologiques.

** Il est possible que l'enseignant procède à quelques changements de matière entre les deux semestres:

cours bisannuel donné en 1994/95

FORME DE L'ENSEIGNEMENT:

Ex cathedra avec exercices théoriques et pratiques

DOCUMENTATION:

Notes polycopiées

LIAISON AVEC D'AUTRES COURS

Recherche Opérationnelle

Préalable requis: Préparation pour: Probabilité et Statistique

Titre: MODÈLES DE DÉCIS	SION II		· ·					
Enseignant: Thomas M. LIEBLING, Professeur EPFL/DMA								
Heures totales: 30	Par semaine: Cours	2	Exercices	Pratique 1				
Destinataires et contrôle des études Section (s) MATHÉMATIQUES INFORMATIQUE (LA)	Semestre Oblig. 6 ou 8	Facult.	Option X	Branches Théoriques Pratiques				

OBJECTIFS

Rendre capable l'étudiant de formuler et implanter des modèles pour analyser, simuler ou optimiser des systèmes stochastiques rencontrés dans la nature, dans la technique et dans la gestion.

CONTENU **

3. Systèmes stochastiques spéciaux

Processus markoviens et semi-markoviens de décision, optimisation dynamique stochastique: algorithme de Howard, applications à l'entretien de systèmes.

Fiabilité des systèmes cohérents.

Modèles de prévision (filtres de Wiener discrets, méthode de Box & Jenkins, lissage exponentiel).

** Il est possible que l'enseignant procède à quelques changements de matière entre les deux semestres.

cours bisannuel donné en 1994/95

FORME DE L'ENSEIGNEMENT:

Ex cathedra avec exercices théoriques et pratiques

DOCUMENTATION:

Notes polycopiées

LIAISON AVEC D'AUTRES COURS Recherche Opérationnelle

Préalable réquis:

Probabilité et Statistique

Titre: MODÉLISATION ET SIMULATION I									
Enseignant: Dominique BONVIN, Professeur EPFL/DGM									
Heures totales: 30 Par semaine: Cours 2 Exercices Pratique									
Destinataires et contrôle des études					Bran	ches			
Section (s)	Semestre	Oblig.	Facult.	Option	Théoriques	Pratiques			
INFORMATIQUE (IT)	5 ou 7			x	x				
ÉLECTRICITÉ GE-Pilier 3	7			x	X				
GÉNIE MÉCANIQUE	7			x	X				
MICROTECHNIQUE	7			\mathbf{x}	X	□.			
PHYSIQUE	7	П	П	X	x	. 🗆			

OBJECTIES

L'étudiant sera capable de modéliser et de simuler sur ordinateur une large classe de systèmes dynamiques. Il sera en mesure d'élaborer la structure, d'identifier les paramètres et d'étudier le comportement de systèmes linéaires et non linéaires. Il maîtrisera les possibilités offertes par certains logiciels modernes d'analyse (MATLAB) et de simulation numérique (SIMULINK).

CONTENU

Modélisation: Processus, systèmes et modèles. Types de modèles. Méthodes de représentation. Systèmes continus et discrets. Exemples.

Modèles de représentation non paramétriques : Réponse indicielle et impulsionnelle. Méthode de corrélation. Analyse fréquentielle. Analyse spectrale.

Modèles de représentation paramétriques : Choix structurels. Identification des paramètres. Modèles du bruit. Aspects pratiques de l'identification. Validation du modèle. Identification en boucle fermée.

FORME DE L'ENSEIGNEMENT:

Cours avec exemples et exercices intégrés. Utilisation de logiciels

modernes d'analyse et de simulation numérique.

DOCUMENTATION:

Cours polycopié édité par l'Institut d'automatique

LIAISON AVEC D'AUTRES COURS

Préalable requis: Préparation pour: Réglage Automatique I et II Modélisation et Simulation II

Titre: MODÉLISATION ET SIMULATION II								
Enseignant: Dominique BONVIN, Professeur EPFL/DGM								
Heures totales: 20/25*	Par semaine :	Cours	2	Exercices	0,5* Pro	tique		
Destinataires et contrôle des études	Destinataires et contrôle des études Branches							
Section (s)	Semestre	Oblig.	Facult.	Option	Théoriques	Pratiques		
INFORMATIQUE (IT)	6 ou 8			X	x			
ÉLECTRICITÉ GE-Pilier 3*	. 8			x	X	. 🗆 .		
GÉNIE MÉCANIQUE	8	_ ·		X	X			
MICROTECHNIQUE	8			X	X			
PHYSIQUE	8	Π.		\mathbf{x}	X			

L'étudiant sera capable de modéliser et de simuler sur ordinateur une large classe de systèmes dynamiques. Il sera en mesure d'élaborer la structure, d'identifier les paramètres et d'étudier le comportement de systèmes linéaires et non linéaires. Il maîtrisera les possibilités offertes par certains logiciels modernes d'analyse (MATLAB) et de simulation numérique (SIMULINK).

CONTENU

Modèles de connaissance : Procédure de modélisation. Exemples mécaniques, électriques, électromécaniques, hydrauliques, thermiques et chimiques. Identification des paramètres. Etude de sensibilité. Linéarisation.

Modèles d'état linéaires: Solution des équations dynamiques. Gouvernabilité, observabilité et stabilité. Théorie de la réalisation. Réduction d'ordre. Systèmes multivariables, interaction et découplage.

Simulation numérique: Objectifs de la simulation. Phases et organisation logicielle de la simulation. Vérification et validation.

FORME DE L'ENSEIGNEMENT

Cours avec exemples et exercices intégrés. Utilisation de logiciels modernes d'analyse et de simulation numérique.

DOCUMENTATION

Cours polycopié édité par l'Institut d'automatique

LIAISON AVEC D'AUTRES COURS

Préalable requis: Modélisation et Simulation I

Titre: OPTIMISATION	,	-						
Enseignant: Alain HERTZ, Professeur assistant EPFL/DMA								
Heures totales: 45	Par semaine: Cours	2	Exercices	1 Pra	tique			
Destinataires et contrôle des études Section (s) MATHÉMATIQUES INFORMATIQUE (LA + IB) PHYSIQUE	Semestre Oblig. 5 ou 7	Facult.	Option X X	Bran Théoriques X X X				

L'objectif du cours est de donner aux étudiants la pratique d'outils d'optimisation mathématique applicables à la résolution de problèmes lies aux sciences de l'ingénieur. Ce cours présentera les concepts de base de l'optimisation discrète et continue ainsi que les principales méthodes permettant de traiter les problèmes les plus courants en mathématiques appliquées et en informatique.

CONTENU

Optimisation continue

- Propriété des problèmes convexes.
- Critères d'optimalité et dualité de Lagrange.
- Optimisation sans contraintes (analyse de convergence, gradients conjugués, algorithmes de type newtonien, etc.).
- Optimisation sous contraintes
 - programmation linéaire
 - programmation quadratique
 - méthodes de plan sécant, fonctions barrière et pénalités.
- Applications à divers problèmes liés aux sciences de l'ingénieur; optimisation de la configuration de réseaux de neurones artificiels.

cours bisannuel donné en 1994/95

FORME DE L'ENSEIGNEMENT:

Ex cathedra, exercices en salle.

DOCUMENTATION:

Éléments de programmation linéaire (PPUR), compléments

distribués au cours.

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Analyse, analyse numérique, algèbre linéaire, informatique.

Préparation pour:

Modèles de décision, graphes et réseaux, combinatorique, recherche

opérationnelle

Titre: OPTIMIS	SATION						
Enseignant: Alain HERTZ, Professeur assistant EPFL/DMA							
Heures totales :	30	Par semaine :	Cours	2.	Exercices	1 Pra	tique .
Destinataires et contrôle des études						Branches	
Section (s) MATHÉMATIQUE INFORMATIQUE PHYSIQUE	(LA + IB)	6 ou 8 6 ou 8	Oblig.	Facult.	Option X X	Théoriques x x x x	Pratiques

L'objectif du cours est de donner aux étudiants la pratique d'outils d'optimisation mathématique applicables à la résolution de problèmes liés aux sciences de l'ingénieur. Ce cours présentera les concepts de base de l'optimisation discrète et continue ainsi que les principales méthodes permettant de traiter les problèmes les plus courants en mathématiques appliquées et en informatique.

CONTENU

Optimisation discrète

- Programmation linéaire en nombres entiers; matrices totalement unimodulaires; coupes de Gomory.
- Relaxation Lagrangienne et décompositions de Benders.
- Méthodes de recherche arborescentes: techniques de séparation et d'évaluation; explorations en profondeur et en largeur.
- Méthodes de recherche itératives: recuit simulé, méthodes de type tabou, algorithmes génétiques.
- Applications à des problèmes standard d'optimisation combinatoire: problème du voyageur de commerce, d'affectation, du sac à dos, etc.).

cours bisannuel donné en 1994/95

FORME DE L'ENSEIGNEMENT:

Ex cathedra, exercices en salle.

DOCUMENTATION:

Éléments de programmation linéaire (PPUR), compléments distribués au cours.

.

LIAISON AVEC D'AUTRES COURS

Préalable requis: Préparation pour: Analyse, analyse numérique, algèbre linéaire, informatique.

Modèles de décision, graphes et réseaux, combinatorique, recherche opérationnelle

Titre: ORDONNANCEMENT ET CONDUITE DE SYSTÈMES INFORMATIQUES									
Enseignant: Daniel COSTA, Chargé de cours EPFL/DMA									
Heures totales: 45	Par semaine	: Cours	2	Exercices	1 Pra	tique .			
Destinataires et contrôle des études		,			Bran	ches			
Section (s)	Semestre	Oblig.	Facult.	Option	Théoriques	Pratiques			
MATHÉMATIQUES	5 ou 7			X	<u> </u>				
INFORMATIQUE	5 ou 7			X	x				
	. ,	. 🗌							
		- 🗍							

OBJECTIFS

Connaître les modèles mathématiques les plus courants qui permettent d'évaluer et d'optimiser les performances de systèmes informatiques complexes et de savoir les utiliser, les modifier et les appliquer à des cas réels.

CONTENU

- Modèles déterministes d'ordonnancement. Prise en compte de contraintes de ressources (temps, nombre de processeurs, contraintes de succession,...). Ordonnancement de tâches sur des processeurs parallèles (modèles avec et sans préemptions).
- II. Développement de méthodes heuristiques pour l'ordonnancement (élaboration et évaluation), combinaisons d'heuristiques, complexité. Application à la gestion automatisée de systèmes de production, à la conduite d'un système de processeurs.
- III Analyse de performance de systèmes (règles de priorité statiques et dynamiques pour l'ordonnancement, étude de systèmes centralisés et répartis, phénomènes de blocage,...).

cours bisannuel donné en 1994/95

FORME DE L'ENSEIGNEMENT:

Ex cathedra, exercices en salle

DOCUMENTATION:

K. Baker, Introduction to Sequencing and Scheduling, Wiley, 1974

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Algèbre linéaire, Recherche opérationnelle, Probabilités et statistique

Préparation pour:

Systèmes d'exploitation, Simulation, Graphes et réseaux

Titre: ORDONNANCEMENT ET CONDUITE DE SYSTÈMES INFORMATIQUES Enseignant: Daniel COSTA, chargé de cours EPFL/DMA								
Destinataires et contrôle des études Section (s) MATHÉMATIQUESINFORMATIQUE	Semestre 6 ou 8	Oblig.	Facult.	Option X X	Bran Théoriques X X	ches Pratiques		
		·						

OBJECTIFS

Connaître les modèles mathématiques les plus courants qui permettent d'évaluer et d'optimiser les performances de systèmes informatiques complexes et de savoir les utiliser, les modifier et les appliquer à des cas réels.

CONTENU

- Modèles stochastiques : réseaux de files d'attente, régimes permanents et transitoires. Méthodes de calcul des performances.
- II. Application à la conception et au dimensionnement de systèmes informatiques et de systèmes flexibles de production (ateliers flexibles). Exemples d'heuristiques.
- III Méthodes adaptatives, modèles de conduite avec apprentissate, application de systèmes experts à la gestion en temps réel.

cours bisannuel donné en 1994/95

FORME DE L'ENSEIGNEMENT:

Ex cathedra, exercices en salle

DOCUMENTATION:

E. Gelenbe, G. Pujolle, Introduction aux réseaux de files d'attente,

Eyrolles, 1987

LIAISON AVEC D'AUTRES COURS

Préalable requis: Préparation pour: Algèbre linéaire, Recherche opérationnelle, Probabilités et statistique Systèmes d'exploitation, Simulation, Informatique industrielle

Titre: PARALLÉLISME ET SYSTÈMES RÉPARTIS Enseignant: Marc GENGLER, Chargé de cours EPFL/DI										
Destinataires et contrôle des études Section (s) INFORMATIQUE	Semestre 7	Oblig.	Facult.	Option x	Bran Théoriques	Pratiques				

OBJECTIFS

Notions fondamentales de calcul parallèle, connaissance de modèles et d'algorithmes.

CONTENU

- Machines:
 - Mémoire partagée, mémoire distribuée, tendances actuelles.
- Modèles de parallélismes :
 - Vectorisation, parallélisme de données, parallélisme de contrôle, parallélisme de flux.
- Modèles de programmation :
- Mémoire partagée vs. distribuée, langages.
- · Algorithmes:
 - Performances, granularité, études de cas.

FORME DE L'ENSEIGNEMENT:

Ex cathedra.

DOCUMENTATION:

Notes polycopiées.

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Systèmes d'exploitation

Titre: PARALLÉLISME ET SYSTÈMES RÉPARTIS Enseignant: André SCHIPER, Professeur EPFL/DI										
Destinataires et contrôle d	es études				Bran	ches				
Section (s) INFORMATIQUE	Semestre 8	Oblig.	Facult.	Option x	Théoriques	Pratiques				
•••••			<u>. </u>							

OBJECTIFS

L'étudiant apprendra les concepts fondamentaux-liés à la programmation d'applications réparties, apprendra à utiliser les outils courants (sockets, RPC) et sera capable de développer une application répartie résistante aux fautes (ISIS).

CONTENU

Systèmes répartis:

- · Etats globaux cohérents: concepts fondamentaux et mécanismes
- Tolérance aux défaillances par duplication (consensus, modèle virtuellement synchrone, diffusion atomique, diffusion ordonnée)
- · Transactions
- · Protection et sécurité
- OSF/DCE
- Exercices: sockets, RPC, ISIS

FORME DE L'ENSEIGNEMENT:

Ex cathedra

DOCUMENTATION:

Notes polycopiées

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Systèmes d'exploitation

Titre: PÉRIPHÉRIQUES									
Enseignant: Roger-D. HERSCH, Professeur EPFL/DI									
Heures totales: 45	Par semaine :	Cours	2	Exercices	Pra	tique 1			
Destinataires et contrôle des études					Bran	ches'			
Section (s) INFORMATIQUE	Semestre 5 ou 7	Oblig.	Facult.	Option X	Théoriques x	Pratiques			

OBJECTIFS

Maîtrise des architectures, algorithmes et traitements pour la gestion des périphériques (dispositifs de visualisation et de stockage d'informations).

CONTENU

La gestion des périphériques d'ordinateurs fait partie de leur système d'exploitation. Les périphériques incorporent divers types de circuits et processeurs spécialisés. Des algorithmes appropriés doivent assurer une utilisation efficace de l'architecture matérielle disponible. Le cours permet aux participants de comprendre le fonctionnement des dispositifs de stockage d'information, d'affichage et d'impression couleur faisant partie des systèmes informatiques modernes.

Les laboratoires offrent aux étudiants la possibilité de concevoir des éléments de commande de périphériques (programmation d'un contrôleur d'écran, gestion de blocs sur interface SCSI, gestion de fichiers, programmation d'algorithmes de tracé).

Microprocesseurs modernes (bref aperçu)

Hiérarchie des mémoires, gestion de mémoire cache, architecture superscalaire, rapidité d'exécution, coprocesseurs.

Périphériques de stockage d'information

Stockage de données sur support magnétique, organisation des données sur disque, circuits contrôleur de disque, bus périphérique SCSI, disques magnéto-optiques, disques CD-ROM et stockage de données multimédia, technologies d'archivage (bandes magnétiques).

Périphériques graphiques

Architecture d'écrans graphiques, processeurs graphiques, gestion de fenêtres, algorithmes de tracé élémentaires, opérations sur plans de bits, architecture d'écrans couleur.

FORME DE L'ENSEIGNEMENT:

Cours, laboratoires

DOCUMENTATION:

Notes de cours

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Préparation pour: Périphériques II

Titre: PÉRIPHÉRIQUES										
Enseignant: Roger-D. HERSCH, Professeur EPFL/DI										
Heures totales: 30	Par semain	e: Cours	2	Exercices	Pra	tique [
Destinataires et contrôle des études					Bran	ches				
Section (s) INFORMATIQUE	Semestre 6 ou 8	Oblig.	Facult.	Option X	Théoriques x	Pratiques				

OBJECTIFS

Maîtrise d'architectures, algorithmes et traitements pour la gestion des périphériques.

CONTENU

Les périphériques incorporent fréquemment des systèmes microinformatiques dotés d'une puissance de calcul importante. Des algorithmes appropriés doivent assurer une utilisation efficace de l'architecture matérielle disponible. Le cours permet aux participants de comprendre le fonctionnement des dispositifs de stockage d'information, d'affichage et d'impression couleur faisant partie des systèmes informatiques modernes.

Les laboratoires offrent aux étudiants la possibilité de concevoir des éléments de commande de périphériques (programmation d'algorithmes de conversion ponctuelle et de remplissage, génération de courbes en mémoire image, programmation PostScript, étude des problèmes de calibration couleur pour écrans et imprimantes, algorithmes de génération d'images tramées).

Algorithmes de tracé

Tracé de contours et remplissage de formes, représentation et génération de courbes (splines), génération de caractères typographiques, langage PostScript

Périphériques couleur

Introduction à la colorimétrie, systèmes colorimétriques (CIE XYZ, L*a*b*, RGB, YIQ, CMYK), écrans couleur, impression couleur, calibration d'une chaîne de reproduction (scanner, imprimante), algorithmes de génération d'images tramées (halftoning).

FORME DE L'ENSEIGNEMENT:

Cours, laboratoires

DOCUMENTATION:

Notes de cours

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Périphériques I ou Microinformatique II

Titre: PROJET I			,				
Enseignant: divers	professeu	rs			٠	: :	
Heures totales:	180	Par semaine .	Cours		Exercices	Pra	tique 12
Destinataires et contrô	le des études			-	-3	Bran	ches
Section (s) INFORMATIQUE		Semestre 7		Facult.	Option	Théoriques	Pratiques x
•••••	•••••					LJ .	\sqcup

OBJECTIFS

Former les étudiants à la résolution de problèmes informatiques de manière autonome et présenter les résultats de leur recherche sous forme de mémoire et de défense orale.

CONTENU

Travaux de recherche individuelle à effectuer pendant le semestre d'hiver, selon directives d'un professeur. Sujet du travail à choisir parmi la liste des sujets de travail de semestre établie par le département.

FORME DE L'ENSEIGNEMENT:

DOCUMENTATION:

LIAISON AVEC D'AUTRES COURS

Titre: PROJET II				`			. :
Enseignant: divers professeurs							
Heures totales: 1	160	Par semaine	: Cours		Exercices	Pra	tique 16
Destinataires et contrôl	le des études	٠.			. :	Bran	ches
Section (s) INFORMATIQUE	······································	Semestre 8			Option	Théoriques	Pratiques X

OBJECTIFS

Former les étudiants à la résolution de problèmes informatiques de manière autonome et présenter les résultats de leur recherche sous forme de mémoire et de défense orale.

CONTENU

Travaux de recherche individuelle à effectuer pendant le semestre d'été, selon directives d'un professeur. Sujet du travail à choisir parmi la liste des sujets de travail de semestre établie par le département.

FORME DE L'ENSEIGNEMENT:

DOCUMENTATION:

LIAISON AVEC D'AUTRES COURS

Titre: PROJET HTE										
Enseignant: B. GALLAND, D. JOYE, A. SOUSAN, Chargés de cours EPFL										
Heures totales: 40	Par semain	e: Cours		Exercices	Pra	tique 4				
Destinataires et contrôle des étud	es				Bran	ches				
Section (s) INFORMATIQUE	Semestre . 6 ou 8	Oblig.	Facult.	Option	Théoriques	Pratiques x				
	• •			. 📙						

OBJECTIFS

Les projets de recherche HTE donnent à l'étudiant l'occasion de se familiariser, par la pratique, avec des méthodes en provenance des différentes disciplines des sciences humaines. Il s'agit d'approfondir une réflexion sur les rapports que la technique informatique entretient avec son environnement social, culturel et économique.

CONTENU

Chaque étudiant devra effectuer un travail personnel de l'ordre d'importance d'un projet de semestre. Le travail peut être effectué à l'occasion d'un travail pratique. Il peut alors se présenter sous la forme d'un rapport de stage circonstancié, à condition de comprendre une étude sur un aspect HTE préalablement défini avec un des enseignants HTE.

Chaque étudiant recevra un règlement HTE et contactera un enseignant responsable pour définir son travail de recherche.

FORME DE L'ENSEIGNEMENT:

Travail pratique sur rendez-vous

DOCUMENTATION:

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Homme-Technique-Environnement I et II

Préparation pour:

Projet HTE

DES FOR	MES				
Y, Profess	eur EPFL/	DI .			
Par semain	e: Cours	2 .	Exercices	1 Pra	tique
es .				Bran	ches
Semestre	Oblig.	Facult.	Option	Théoriques	Pratiques
. 5 ou 7			x	x	
•					
			. 🗇		
	AY, Professor	Par semaine: Cours s Semestre Oblig.	AY, Professeur EPFL/DI Par semaine: Cours 2 s Semestre Oblig. Facult.	AY, Professeur EPFL/DI Par semaine: Cours 2 Exercices s Semestre Oblig. Facult. Option	AY, Professeur EPFL/DI Par semaine: Cours 2 Exercices 1 Practices Semestre Oblig. Facult. Option Théoriques 5 ou 7 \text{X}

OBJECTIFS

L'étudiant pourra identifier le type de problème en reconnaissance des formes et saura mettre en oeuvre les méthodes adéquates de prétraitement, représentation et apprentissage.

CONTENU

Classification des formes

- Prétraitement, extraction de traits numériques, et discrimination
- Classification de Bayes et estimation
- Apprentissage et regroupement

Images bidimensionnelles

- Prétraitement et amélioration d'images
- Extraction de traits géométriques
- Segmentation, régions et contours
- Morphologie mathématique et représentation relationnelle

cours bisannuel
pas donné en 1994/95

FORME DE L'ENSEIGNEMENT:

Ex cathedra avec exercices pratiques

DOCUMENTATION:

Polycopiés, bibliographie

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Préparation pour: Semestre d'été

Titre: RECONNAISSANCE DES FORMES Enseignant: Giovanni CORAY, Professeur EPFL/DI									
Destinataires et contrôle des études				Bran	ches '				
Section (s) INFORMATIQUE (LA + IT)	Semestre Oblig. 6 ou 8	<i>Facult.</i>	Option X	Théoriques x	Pratiques				

OBJECTIFS

L'étudiant pourra identifier le type de problème en reconnaissance des formes et saura mettre en oeuvre les méthodes adéquates de prétraitement, représentation et apprentissage.

CONTENU

Analyse structurelle

- Grammaires, analyseurs types 2 et 3
- Inférence grammaticale
- Application aux formes géométriques

Modélisation tridimensionnelle

- Scènes visuelles 2D et 3D
- Modélisation de l'espace
- Propagation de contraintes et unification
- Représentation stéréométriques

cours bisannuel pas donné en 1994/95

FORME DE L'ENSEIGNEMENT:

Ex cathedra avec exercices pratiques

DOCUMENTATION:

Polycopié, Bibliographie

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Semestre d'hiver

Titre: RÉGLAGE AUTOMA	TIQUE I			:					
Enseignant: Roland LONGCHAMP, Professeur EPFL/DGM									
Heures totales: 45	Par semaine :	Cours	2	Exercices	1	Pratique			
Destinataires et contrôle des études					В	ranches			
Section (s) ÉLECTRICITÉ (GE+IN)	Semestre 5	Oblig. x	Facult:	Option	Théoriqu X	es Pratiques			
INFORMATIQUE (IT)	5	x			x	. <u> </u>			
MICROTECHNIQUE	5	x			х	1			
GÉNIE MÉCANIQUE MATHÉMATIQUES	5	x			X	🖺			

OBJECTIFS

L'étudiant maîtrisera les méthodes classiques d'analyse et de synthèse des régulateurs automatiques. Il sera capable de modéliser les systèmes discrets en vue de leur commande par odinateur.

CONTENU

Introduction au réglage automatique: Qu'est-ce que l'automatique? Approche systémique. Définitions. Propriétés d'un montage à rétroaction. Régulateur tout-ou-rien. Régulateur proportionnel intégral dérivateur.

Réglages par calculateur de processus: Rôles de l'ordinateur en automatique. Principes du réglage numérique. Nécessité d'une théorie des systèmes échantillonnés.

Échantillonnage et reconstruction: Échantillonnage. Théorème de l'échantillonnage. Filtre de garde. Reconstruction. Sélection de la période d'échantillonnage.

Systèmes discrets: Systèmes discrets au repos, linéaires, causaux et stationnaires. Systèmes représentés par des équations aux différences. Opérateurs avance et retard.

Transformée en z: Définitions. Propriétés de la transformée en z. Calcul de la transformée en z inverse. Fonction de transfert.

Fonction de transfert discrète du système bouclé: Échantillonnage du système à régler. Modèle de l'algorithme de réglage. Fonctions de transfert discrètes du système bouclé.

Réponse harmonique: Fonction de transfert harmonique discrète. Réponse harmonique en boucle ouverte.

FORME DE L'ENSEIGNEMENT:

Ex cathedra, Démonstrations en salle, Exercices en salle et au

LEAO.

DOCUMENTATION:

Analyse et synthèse des systèmes automatiques (chapitre 1). Réglage

numérique (1ère partie). Réglage numérique (2ème partie).

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Variables complexes, signaux et systèmes.

Préparation pour:

Réglage automatique II, III, IV.

Modélisation et simulation I et II.

Titre: RÉGLAGE AUTOMATIQUE II										
Enseignant: Roland LONGCHAMP, Professeur EPFL/DGM										
Heures totales : 30	Par semaine	: Cours	2	Exercices	1 Pra	tique				
Destinataires et contrôle des études Branches					ches ·					
Section (s)	Semestre	Oblig.	Facult.	Option	Théoriques	Pratiques				
ÉLECTRICITÉ (GE)	6	x			x					
INFORMATIQUE (IT)	6	X			x					
MICROTECHNIQUE	. 6	х			x					
GÉNIE MÉCANIQUE	6 .	x			x					
MATHÉMATIQUES	6			x	X.	·				

OBJECTIFS

L'étudiant maîtrisera les méthodes d'analyse et de synthèse des régulateurs numériques.

CONTENU

Stabilité: Stabilité BIBO. Critères algébriques. Critère de Nyquist discret. Marges de gain et de phase. Erreurs permanentes.

Numérisation: Numérisation d'un régulateur analogique. Régulateur proportionnel intégral dérivateur numérique.

Synthèse discrète: Réponse à des signaux standard. Erreurs permanentes. Marges de gain et de phase. Amortissement du régime transitoire. Sensibilité. Fonction de transfert harmonique en boucle fermée. Synthèse du régulateur dans le lieu des pôles. Synthèse du régulateur dans les diagrammes de Bode. Prédicteur de Smith.

FORME DE L'ENSEIGNEMENT:

Ex cathedra. Démonstrations en salle. Exercices en salle et au LEAO.

DOCUMENTATION:

Réglage numérique (2ème partie).

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Réglage automatique I

Préparation pour: Réglage automatique III, IV.

Modélisation et simulation I et Π.

Titre: RÉGLAG	E AUTOMA	TIQUE III				-				
Enseignant: Roland LONGCHAMP, Professeur EPFL/DGM										
Heures totales :	30/37,7*	Par semaine :	Cours	2	Exercices	0,5*	Pratique			
Destinataires et contrôle des études Branches										
Section (s) ÉLECTRICITÉ GE	- PILIER 3*.	Semestre 7	Oblig.	Facult.	Option	Théoriqu x	es Pratiques			
INFORMATIQUE	(IT)	7			x	x	□.			
MICROTECHNIQU	UE	7			. x	x				
GÉNIE MÉCANIQ	UE	7			x	x	🗍.			
MATHÉMATIQUE	S	7	П		x	. [x]	1 .			

OBJECTIFS

L'étudiant sera en mesure de synthétiser des régulateurs polynomiaux. Il maîtrisera des algorithmes d'identification de systèmes dynamiques et pourra réaliser des algorithmes de commande adaptive. Il sera capable d'implanter des régulateurs fondés sur la logique floue (fuzzy logic).

CONTENU

Régulateur RST: Définitions. Synthèse du régulateur RST. Effets d'un intégrateur. Amplitudes de la grandeur de réglage. Commande a priori.

Identification: Régression linéaire. Application à l'identification des systèmes dynamiques. Méthode des moindres carrés. Méthode des moindres carrés pondérés. Méthode des moindres carrés récurrents. Méthode des moindres carrés pondérés récurrents.

Commande adaptive: Commande adaptive par placement des pôles. Auto-ajustement d'un régulateur RST. Auto-ajustement d'un régulateur PID. Régulateur à gains programmés.

Ex cathedra. Démonstrations en salle. Exercices en salle et au

LEAO.

DOCUMENTATION:

Réglage numérique (3ème partie). Cours polycopié édité par l'Institut

d'automatique.

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Réglage automatique I et II

Préparation pour:

Réglage automatique IV.

Titre: RÉGLAG	Titre: RÉGLAGE AUTOMATIQUE IV										
Enseignant: Roland LONGCHAMP, Professeur EPFL/DGM											
Heures totales :	20/25*	Par semaine	: Cours	2	Exercices	0,5* Pra	tique				
Destinataires et con	trôle des études	3	,			Bran	ches				
Section (s) ÉLECTRICITÉ GE	DII IED 2*	Semestre	Oblig.	Facult.	Option	Théoriques	Pratiques				
INFORMATIQUE		8	H		x	x					
MICROTECHNIC		8			х	x					
GÉNIE MÉCANIQ	UE	8			x	x					
MATHÉMATIQUE	S	.8			x	x					

OBJECTIFS

L'étudiant sera capable d'analyser et de dimensionner des régulateurs fondés sur la logique floue.

CONTENU

Introduction à la logique floue: Théorie des ensembles flous. Propriétés des ensembles flous. Opérations sur les ensembles flous. Relations floues.

Régulateurs flous: Variables floues. Règles floues. Mémoire associative floue. Défuzzification. Exemples. Problèmes numériques.

Exemples d'application: Machine à laver. Auto focus d'un appareil photographique. Réglage de température. Réglage de force.

Apprentissage des règles linguistiques: Identification des règles à partir d'essais expérimentaux. Application au problème de parcage. Prévision de séries temporelles.

Régulateurs PID flous: Règles linguistiques pour des régulateurs de type P, PI, PD et PID. Equivalence entre des régulateurs PID et flous.

Analyse de stabilité: Rappels. Critère de Popov. Critère du cercle. Application aux régulateurs flous.

FORME DE L'ENSEIGNEMENT:

Ex cathedra. Démonstrations en salle. Exercices en salle et au

DOCUMENTATION:

Cours polycopié édité par l'Institut d'automatique.

LEAO.

LIAISON AVEC D'AUTRES COURS

Préalable requis: Réglage automatique I, II et III.

Titre: RÉSEAUX CÉLLULA						
Enseignant: Daniel MANGE,	Professeur	EPFL/DI				
Heures totales: 45	Par semaine :	Cours	2 .	Exercices	1 Pra	tique
Destinataires et contrôle des études Section (s) INFORMATIQUE		Oblig.	Facult.	Option x	Bran Théoriques X	ches Pratiques

OBJECTIFS

Acquisition par les étudiants d'un certain nombre de *méthodes systématiques* et d'un certain *savoir-faire* permettant la conception et l'utilisation de réseaux cellulaires programmables, d'algorithmes d'optimisation basés sur la sélection naturelle (algorithmes génétiques), de machines spécialisées vouées à la détection du génome.

CONTENU

1. RÉALISATION CELLULAIRE DES SYSTÈMES LOGIQUES

Représentation des systèmes combinatoires et séquentiels par des arbres et des diagrammes de décision binaire. Développement d'une cellule à grain fin à l'aide de multiplexeurs ou de démultiplexeurs. Programmation du réseau.

2. RÉSEAUX CELLULAIRES AVEC AUTO-RÉPARATION

Notions de test en ligne. Méthodes d'auto-reconfiguration: décalage, saut de lignes et/ou colonnes, déformation locale du réseau. Auto-réparation.

3. RÉSEAUX CELLULAIRES AUTO-REPRODUCTEURS

Introduction au concept de génome. Description du génome par un arbre de décision binaire et interprétation par un séquenceur ad hoc. Comparaison avec les automates auto-reproducteurs de Von Neumann et Langton.

FORME DE L'ENSEIGNEMENT :

Cours avec exercices.

DOCUMENTATION:

Documents polycopiés.

LIAISON AVEC D'AUTRES COURS

Préalable requis :

Systèmes logiques et systèmes microprogrammés

Titre: RÉSEAUX CÉLLUL	AIRES	*				
Enseignant: Daniel MANGE,	Professeur	EPFL/DI				
Heures totales: 30	Par semaine :	Cours	2	Exercices	1 P	ratique
Destinataires et contrôle des études	1				Bro	inches
Section (s) INFORMATIQUE		Oblig.	Facult.	Option x	Théoriques	s Pratiques

OBJECTIFS

Acquisition par les étudiants d'un certain nombre de *méthodes systématiques* et d'un certain *savoir-faire* permettant la conception et l'utilisation de réseaux cellulaires programmables, d'algorithmes d'optimisation basés sur la sélection naturelle (algorithmes génétiques), de machines spécialisées vouées à la détection du génome.

CONTENU

4. ALGORITHMES GÉNÉTIQUES

Réseaux cellulaires et comportements émergents. Croisement des génomes, mutations et facteur de fitness. Algorithmes et programmation génétiques.

5. DÉCODAGE DU GÉNOME

Syntaxe génomique. Algoritmes et machines spécialisées pour la détection automatique des gènes.

FORME DE L'ENSEIGNEMENT : Cours avec exercices.

DOCUMENTATION: Documer

Documents polycopiés.

LIAISON AVEC D'AUTRES COURS

Préalable requis :

Systèmes logiques et systèmes microprogrammés

Titre: RÉSEAUX DE NEURONES ARTIFICIELS										
Enseignant: François BLAYO, Chargé de cours EPFL/DI										
Heures totales: 45	Par semaine :	Cours	2	Exercices	1 Pra	tique				
Destinataires et contrôle des études					Bran	ches				
Section (s) INFORMATIQUE	Semestre 7	Oblig.	Facult.	Option x	Théoriques x	Pratiques				

OBJECTIFS

Présenter les principes de base des réseaux de neurones artificiels. Le cours portera en alternance sur les aspects théoriques et pratiques. La relation avec des méthodes classiques de traitement de l'information sera clairement mise en évidence.

CONTENU

Introduction:

- Principes directeurs
- Le neurone et la synapse
- Modèle de MacCulloch & Pitts
- Règle de Hebb

Modèles pour la classification:

- k-Means, Nearest Neighbour, quantification vectorielle
- LVQ1, LVQ2
- Radial Basis Function, Estimation de performances

Modèles auto-organisés:

- Principe de l'auto-organisation
- Réseau de Kohonen. Relations avec les méthodes d'analyse de données (Analyse et Composantes Principales)
- Relations avec le système visuel des vertébrés
- Réseau Adaptive Resonance Theory (ART)

Modèles à structure évolutive

- Réseau Restricted Coulomb Energy (RCE)
- Relations avec les méthodes de classifications de données (méthode de Bayes)

Applications pratiques des modèles et simulations sur SUN avec le simulateur SOMA

FORME DE L'ENSEIGNEMENT:

Ex cathedra

DOCUMENTATION:

Cours polycopié "Réseaux neuronaux"

LIAISON AVEC D'AUTRES COURS

Titre: RÉSEAUX DE N	Titre: RÉSEAUX DE NEURONES ARTIFICIELS											
Enseignant: Patrick THIRAN, Chargé de cours EPFL/DE												
Heures totales: 30	Par semaine	: Cours	2	Exercices	1 Pro	ntique						
Destinataires et contrôle des é	tudes				Bran	ches						
Section (s)	Semestre	Oblig.	Facult.	Option	Théoriques	Pratiques						
INFORMATIQUE	8			x	x							
	••••											

OBJECTIFS

Présenter les principes de base des réseaux de neurones artificiels. Le cours portera en alternance sur les aspects théoriques et pratiques. La relation avec des méthodes classiques de traitement de l'information sera clairement mise en évidence.

CONTENU

Réseaux mono-couche:

- Modèle du perceptron et séparabilité linéaire
- Règles du perceptron, du delta et de la projection

Réseaux multi-couches:

- Limites des réseaux mono-couche et possibilités des réseaux multi-couches
- Méthode de rétropropagation du gradient et ses principales variantes
- Algorithmes constructifs
- Eléments de la théorie de la généralisation

Réseaux récurrents:

- Modèle de Hopfield pour la mémoire associative et l'optimisation
- Modèle à connexions latérales fixes
- Réseaux de neurones cellulaires
- Dynamique
- Modèle de Hopfield pour la mémoire associative et l'optimisation
- Règle de la projection

Quelques applications

FORME DE L'ENSEIGNEMENT: Ex Cathedra et exercices en salles. Séminaires

DOCUMENTATION: Cours polycopié "Réseaux neuronaux", compléments

distribués au cours

LIAISON AVEC D'AUTRES COURS

Préalable requis: Réseaux de ne

Réseaux de neurones artificiels I

Titre: SYSTÈMES D'EXPLO						
Enseignant: André SCHIPER	, Professeur	EPFL/D	I .		•	
Heures totales: 45	Par semaine :	Cours	2	Exercices	1. Pra	tique
Destinataires et contrôle des études Section (s) INFORMATIQUE MATHÉMATIQUES	Semestre 5 5 ou 7	Oblig.	Facult.	Option X	Bran Théoriques X X	ches Pratiques

OBJECTIFS

L'étudiant apprendra à concevoir un programme concurrent. Il comprendra également le rôle et le fonctionnement d'un système d'exploitation, ainsi qu'à en tirer judicieusement profit.

CONTENU

Introduction.

Fonctions d'un système d'exploitation.

Evolution historique des systèmes d'exploitation et terminologie :

spooling, multiprogrammation, systèmes batch, temps partagé, temps réel.

Concept de micro-noyau: Chorus, Mach, Windows NT.

Programmation concurrente

Notion de processus.

Noyau de système.

Exclusion mutuelle et synchronisation.

Evénements, sémaphores, moniteurs, rendez-vous.

Aspects concurrents des langages Modula-2 et Ada.

Implémentation d'un noyau.

FORME DE L'ENSEIGNEMENT: Ex cathedra. Exercices en salle et sur ordinateur.

DOCUMENTATION: Programmation. concurrente (PPUR).

LIAISON AVEC D'AUTRES COURS Informatique 1 et 2 ou Programmation I et II.

Titre: SYSTÈMES D'EXPLO	DITATION	l I				
Enseignant: André SCHIPER	, Professeui	EPFL/D	I			
Heures totales : 30	Par semaine :	Cours	2	Exercices	1 Pra	tique .
Destinataires et contrôle des études					Bran	iches
Section (s)	Semestre	Oblig.	Facult.	Option	Théoriques	Pratiques
INFORMATIQUE	. 6	х		. 📙	х	, Ц
MATHÉMATIQUES	6 ou 8			x	x	
				. 🗍		

OBJECTIFS.

L'étudiant apprendra à concevoir un programme concurrent. Il comprendra également le rôle et le fonctionnement d'un système d'exploitation, ainsi qu'à en tirer judicieusement profit.

CONTENU

Gestion des ressources

Gestion du processeur.

Gestion de la mémoire principale : gestion par zones, gestion par pages (mémoire virtuelle).

Gestion des ressources non préemptibles : le problème de l'interblocage.

Concept de machine virtuelle.

Systèmes VAX/VMS et Unix

Allocation du processeur et gestion de la mémoire.

Appels au système.

Gestion de l'information

Les programmes utilitaires : le chargeur, l'éditeur de liens.

Le système de fichiers, structure logique et organisation physique d'un fichier, contrôle des accès concurrents.

Concept de transaction.

Partage et protection de l'information: matrice des droits, limitation de l'adressage à 1 dimension, adressage segmenté (exemple du système Multics), adressage par capacités (exemple de l'iAPX 432).

FORME DE L'ENSEIGNEMENT:

Ex cathedra. Exercices en salle et sur ordinateur.

DOCUMENTATION:

Notes polycopiées.

LIAISON AVEC D'AUTRES COURS Systèmes d'exploitation I.

Titre: SYSTÈMES D'INFOR	MATION I										
Enseignant: Edi FONTANA GENTILE, Chargée de cours EPFL/DI											
Heures totales: 45	Par semaine :	Cours	2	Exercices	1 P	ratique					
Destinataires et contrôle des études		٠	· Bro	ınches							
Section (s) INFORMATIQUE (LA) INFORMATIQUE (IB)	Semestre 7 7	Oblig.	Facult.	Option x	Théorique.	x Pratiques x					

OBJECTIFS

Apprendre à concevoir et à réaliser un système d'information pour les besoins d'applications complexes.

CONTENU

- Qu'est-ce qu'un système d'information (SI) ?
- Principes des méthodes de conception
- Etude détaillée d'une méthode de conception: Merise
- Etude comparative d'autres méthodes de conception: Object Modelling Technique, Object Oriented Information Engineering, ...
- Modélisation d'une application avec l'outil MEGA

FORME DE L'ENSEIGNEMENT:

Cours ex cathedra; exercices en classe, travaux pratiques sur ordinateur

DOCUMENTATION:

Liste d'ouvrages recommandés

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Bases de données I, II

Titre: SYSTÈME	S D'INFOR	RMATION 1	ii ,			. • .			
Enseignant: Stefan	o SPACCA	PIETRA, 1	Professeu	r EPFL/D	ī				
Heures totales :	30	Par semaine	: Cours	, 2	Exercices	1 Pra	tique		
Destinataires et contrôle des études Branches									
Section (s) INFORMATIQUE (L INFORMATIQUE (II	A)	Semestre 8 8		Facult.	Option X	Théoriques	Pratiques x		

OBJECTIFS

Former les étudiants aux concepts et techniques avancés des bases de données.

CONTENU

- Evaluation de l'approche orientée-objets pour les bases de données et les systèmes d'information.
- Conception du système d'information dans les systèmes coopératifs et bases de données fédérées.
- Modélisation et raisonnement dans les systèmes déductifs.
- Systèmes d'information à références spatiales ou temporelles.
- Les interfaces utilisateurs.

FORME DE L'ENSEIGNEMENT:

Cours ex cathedra; exercices en classe, travaux pratiques sur

ordinateur

DOCUMENTATION:

Liste d'ouvrages recommandés

LIAISON AVEC D'AUTRES COURS

Préalable requis: Préparation pour: Bases de données I, II, Systèmes d'information I

Titre: SYSTÈME	S FORMEI	LS				-		
Enseignant: Jacqu	es ZAHND	, Professeur	EPFL/D	I			- ,	
Heures totales:	45	Par semaine :	Cours	2	Exercices	1	Prati	que
Destinataires et contro	Branches							
Section (s) MATHÉMATIQUES INFORMATIQUE (I		Semestre 5 ou 7 5 ou 7	Oblig.	Facult.	Option x x	Théoi	<u>x</u>	Pratiques

OBJECTIFS

Apprendre à raisonner sur les programmes afin de les vérifier formellement. Etudier les bases théoriques de cette technique; logique mathématique, fonctions récursives.

CONTENU

La construction de programmes est dans la pratique actuelle une activité essentiellement heuristique, procédant par essais successifs et corrections d'erreurs répétées, et se terminant par des tests réussis mais forcément incomplets, qui laissent souvent un bon nombre de fautes insoupçonnées. A l'opposé de cette démarche, la méthode scientifique idéale consiste à développer au fur et à mesure de la construction d'un programme une démonstration mathématique de ses propriétés, prouvant qu'il satisfait à ses spécifications.

Le but principal du cours SYSTEMES FORMELS est d'étudier les bases de cette vérification formelle des programmes, et de l'appliquer à des exemples simples.

cours bisannuel pas donné en 1994/95

FORME DE L'ENSEIGNEMENT: Cours ex cathedra, avec exercices.

DOCUMENTATION: Notes polycopiées.

LIAISON AVEC D'AUTRES COURS

Titre: SYSTÈMES FORME	LS .				
Enseignant: Jacques ZAHND	, Professeur EPFL/D	I	!	, , , , ,	
Heures totales: 30	Par semaine: Cours	2	Exercices	1 Pra	tique
Destinataires et contrôle des études Section (s) MATHÉMATIQUES INFORMATIQUE (LA + IB)	Semestre Oblig. 6 ou 8	Facult.	Option x x	Bran Théoriques X X	Pratiques

OBJECTIFS

Apprendre à raisonner sur les programmes afin de les vérifier formellement. Etudier les bases théoriques de cette technique: logique mathématique, fonctions récursives.

CONTENU

La construction de programmes est dans la pratique actuelle une activité essentiellement heuristique, procédant par essais successifs et corrections d'erreurs répétées, et se terminant par des tests réussis mais forcément incomplets, qui laissent souvent un bon nombre de fautes insoupçonnées. A l'opposé de cette démarche, la méthode scientifique idéale consiste à développer au fur et à mesure de la construction d'un programme une démonstration mathématique de ses propriétés, prouvant qu'il satisfait à ses spécifications.

Le but principal du cours SYSTEMES FORMELS est d'étudier les bases de cette vérification formelle des programmes, et de l'appliquer à des exemples simples.

cours bisannuel pas donné en 1994/95

FORME DE L'ENSEIGNEMENT: Cours ex cathedra, avec exercices.

DOCUMENTATION: Notes polycopiées.

LIAISON AVEC D'AUTRES COURS

Titre: TÉLÉCOMMUNICA	TIONS I			-					
Enseignant: Pierre-Gérard FONTOLLIET, Professeur EPFL/DE									
Heures totales: 45	Par semaine :	Cours	2	Exercices	1 Pro	tique			
Destinataires et contrôle des études Branches									
Section (s) INFORMATIQUE (IT)INFORMATIQUE (IB)		Oblig.	Facult.	Option X	Théoriques X X	Pratiques			
				, []					

OBJECTIFS

Etre capable de :

- Situer qualitativement et quantitativement la communication d'informations dans son contexte technique et humain.
- Caractériser les signaux, les canaux et les milieux de transmission dans le domaine temporel et fréquentiel.
- Dimensionner une transmission numérique (probabilité d'erreurs) ou analogique (bilan de bruit).
- Evaluer et comparer les principales modulaitons numériques.

CONTENU

- 1. Introduction aux télécommunications: objectifs, transmission et commutation, aperçu historique, impact social et humain (TE XVIII, chap. 1).
- Signaux et information : signaux périodiques et aléatoires; représentation complexe, puissance, spectre. Quantité d'information et de décision, débits, moments (polycopié).
- Canaux: réponse impulsionnelle, indicielle et fonction de transfert. Affaiblissement, niveaux. Distorsions, intermodulation, diaphonie et bruit 2, fils/4-fils. Codage de source et de canal. Capacité selon Shannon (polycopié).
- Milieux de transmission: théorie élémentaire des lignes et des ondes. Lignes symétriques et coaxiales. Fibres optiques. Ondes. Leurs propriétés pratiques comparées (chap. 3).
- Transmission numérique : m-aire et bimaire. Régénération, interférences entre moments, probabilité d'erreur (chap. 5).
- 6. Transmission analogique : répéteurs, bilan de bruit (chap. 6).
- Echantillonnage: principe, spectre, théorème de l'échantillonnage, repliement, maintien (sect. 4.3.).
- Modulations numériques : quantification uniforme et non uniforme. PCM, ΔM, DPCM, ADM (chap. 7).

FORME DE L'ENSEIGNEMENT:

Ex cathedra avec exemples et démonstrations. Exercices discutés en groupes. Possibilité de travaux pratiques en laboratoire.

DOCUMENTATION:

Vol. XVIII du Traité d'Electricité complété par des notes polycopiées ad hoc.

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Série et transformation de Fourier, probabilités et statistique.

Préparation pour:

Télécommunications II.

Titre: TÉLÉCON	MUNICAT	TIONS II								
Enseignant: Pierre-Gérard FONTOLLIET, Professeur EPFL/DE										
Heures totales:	30	Par semaine :	Cours	2	Exercices	1 Pra	tique			
Destinataires et contrôle des études Branches										
Section (s) INFORMATIQUE (I INFORMATIQUE (I		Semestre 8 8	Oblig.	Facult.	Option X	Théoriques x x	Pratiques			

OBJECTIFS

Etre capable de :

- Evaluer et comparer les principales modulations analogiques.
- Identifier les critères qui déterminent la planification d'un système de télécommunications.
- Prendre conscience des critères économiques et des problèmes de planification et d'exploitation liés aux systèmes de télécommunications,

CONTENU

- Modulations analogiques: spectres, largeur de bande et effet de perturbations comparés en AM, SSB, FM et φM. Modulations d'impulsions PAM, PDM, PFM, PPM. Propriétés et applications (chap. 8).
- Systèmes de transmission numériques : multiplexage temporel, trame, verrouillage, signalisation. Hiérarchie synchrone SDH (chap. 9).
- 11. Transmission de données : données en bande de base, modes, égalisation, synchronisation, embrouillage. Modulations discrètés (OOK, FSK, PSK, QAM). Modems (polycopié).
- 12. Faisceaux hertziens et satellites: conditions de propagation, planification, accès multiple (chap. 12+13).
- 13. Communications optiques : planification de systèmes optiques numériques ou analogiques. Réseaux optiques passifs (chap. 14 + polycopié).
- 14. Réseaux : topologie comparée, principes de commutation et de télétrafic. Réseaux numériques, RNIS, réseau intégré à large bande (chap. 15).

FORME DE L'ENSEIGNEMENT:

Ex cathedra avec exemples et démonstrations. Exercices discutés en groupes. Possibilité de travaux pratiques en laboratoire.

DOCUMENTATION:

Vol. XVIII du Traité d'Electricité complété par des notes polycopiées ad hoc.

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Série et transformation de Fourier, probabilités et statistique.

Titre: TÉLÉINFORMATIQU	JE I			-	- · · ·	• .
Enseignant: A. Divin, chargé	de cours E	PFL/DI			-	
Heures totales: 45	Par semaine	Cours	2	Exercices	1. Pra	tique
Destinataires et contrôle des études Section (s) INFORMATIQUE	Semestre 7	Oblig.	Facult.	Option	Bran Théoriques X 	ches Pratiques

OBJECTIFS

Etre à même de programmer une application nécessitant des communications entre ordinateurs.

Connaître quelques protocoles standards de transmission de données entre ordinateurs.

CONTENU

Introduction

- Eléments des protocoles
- modèle OSI
- X.25

Introduction aux langages adaptés aux protocoles

- Environnement multitâche, gestion des variables, réentrance, rendez-vous, introduction à C++ et à UNIX
- TCP/IP, FTP, serveur-clients sur UNIX

Problèmes de base résolus par les protocoles de communication (enseignés au moyen de laboratoires)

 transmission fiable, acquittements (positifs, négatifs), contrôle de flux, multiplexage, mécanisme de fenêtre coulissante, routage, diffusion, maintien de l'ordre, temporisateurs, adressage (SAP, CEP), Modèle OSI (couches primitives), automates, circuits-paquets, fragmentation, éclatement

Théorie des protocoles

- Calcul des systèmes communiquants

FORME DE L'ENSEIGNEMENT: Exercices à résoudre sur ordinateurs

DOCUMENTATION: Cours polycopié "Protocoles de communication"

LIAISON AVEC D'AUTRES COURS

Titre: TÉLÉINFORMATIQU	JE II					
Enseignant: A. Divin, chargé	de cours l	EPFL/DI			× *	
Heures totales: 30	Par semaine	: Cours	2	Exercices	1 Pro	tique
Destinataires et contrôle des études					Bran	ches
Section (s) INFORMATIQUE	Semestre 8	Oblig.	Facult.	Option	Théoriques X	Pratiques

OBJECTIFS

Connaître le fonctionnement des réseaux locaux d'ordinateurs.

Etre à même de calculer une probabilité d'erreur de transmission résiduelle d'un code de correction d'erreurs et d'en construire un

CONTENU

Réseaux locaux d'ordinateurs

- Etoile, bus, anneau, adressage dans la couche physique, gestion des collisions, jeton, pont-passerelle
- Ethernet, Anneau à jeton, réseaux à haute vitesse, RNIS à large bande

Codes de détection d'erreurs

- Probabilité d'erreur ou de non détection d'erreurs dans différentes situations
- Conditions de détection et de correction d'erreurs, distances de Hamming
- Codes de parité, de Hamming, polynômiaux, algorithme de Viterbi

Analyse des performances

- Diagramme des temps
- Aloha, Ethernet
- Concentrateur (M/M/1)

FORME DE L'ENSEIGNEMENT:

Exercices à résoudre sur ordinateur

DOCUMENTATION:

Cours polycopié "Protocoles de communication"

LIAISON AVEC D'AUTRES COURS

Titre: THÉORIE DES LAN	GAGES DE	PROGRA	MMATI	ON I	· v	
Enseignant: Giovanni CORA	Y, Professe	ur EPFL/	DI :	•		
Heures totales: 45	Par semaine	: Cours	2	Exercices	. 1 Pro	tique
Destinataires et contrôle des étude.		Bran	ches			
Section (s) INFORMATIQUE (LA)INFORMATIQUE (IB)		Oblig.	Facult.	Option X	Théoriques X	Pratiques
MATHÉMATIQUES				x .	X	

OBJECTIFS

Décrire formellement la syntaxe et la sémantique d'un langage.

CONTENU

- la description de la syntaxe, grammaires et algorithmes d'analyse,
- le modèle de Turing, systèmes de Post, machines à piles,
- calculabilité, la récursivité et la technique du point fixe,

- le λ-calcul : syntaxe et formes normales.

cours bisannuel donné en 1994/95

FORME DE L'ENSEIGNEMENT:

Ex cathedra. Exercices en salle et sur ordinateur

DOCUMENTATION:

Notes polycopiées et fiches distribuées.

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Programmation I à IV

Préparation pour:

Théorie des langages de programmation II

Titre: THÉORII	E DES LA	NGAGES DE P	ROGRA	MMATIC	ON II		
Enseignant: Giov	anni CO	RAY, Professeur	r EPFL/I	DI			,
Heures totales :	30	Par semaine :	Cours	. 2	Exercices	1 Pro	tique
Destinataires et cont	rôle des étu	des	-		-	Bran	ches
Section (s) INFORMATIQUE (INFORMATIQUE (MATHÉMATIQUE	(IB)	6 ou 8 6 ou 8	Oblig.	Facult.	Option X X	Théoriques X X X	Pratiques

OBJECTIFS

Spécifier la sémantique mathématique d'un langage de programmation. Connaître les limites des formalismes utilisés.

CONTENU

- Sémantique des langages à structure de bloc.
- Sémantique(s) du λ-calcul et application aux langages fonctionnels.
- Universalité du λ-calcul et incomplétude de Gödel.

cours bisannuel donné en 1994/95

FORME DE L'ENSEIGNEMENT:

Ex cathedra. Exercices en salle et sur ordinateur.

DOCUMENTATION:

Notes polycopiées et fiches distribuées.

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Théorie des langages de programmation I

Titre: THÉORIE DU SIG	NAL					····
Enseignant: Frédéric DE (COULON, Pro	fesseur E	PFL/DE-	DI		
Heures totales: 45	Par semaine	: Cours	2	Exercices	1 Pra	tique
Destinataires et contrôle des études Branches						
Section (s) ÉLECTRICITÉ (GE+IN) SYSTÈMES DE COMMUNICATION INFORMATIQUE (IT)	5	Oblig.	Facult.	Option	Théoriques X X X	Pratigues

OBJECTIFS

Maîtriser les modèles de signaux déterministes et aléatoires, ainsi que ceux des opérations fondamentales de traitement des signaux comme le filtrage, l'analyse spectrale, la modulation, la conversion analogique-numérique. A la fin du cours, les étudiants sauront établir et analyser le schéma-bloc d'un système de traitement des signaux. Ils seront capables d'analyser un signal. Ils disposeront de bases scientifiques pour dresser le cahier des charges de systèmes d'acquisition, de transmission et d'interprétation d'information.

CONTENU

Introduction

Signal et information: modèles et mesure de signaux, notations particulières.

Classification des signaux : phénoménologique, énergétique, morphologique, et spectrale.

Module 1 : Analyse et synthèse des signaux déterministes

Représentation vectorielle des signaux : espace de signaux, approximation au sens des moindres carrés, développements en série de fonctions orthogonales.

Signaux déterministes: spectres et corrélations des signaux à énergie finie et à puissance finie, cas particulier des signaux périodiques, représentations spectrales bilatérales et unilatérales.

Module 2 : Analyse des signaux aléatoires

Signaux aléatoires: processus aléatoires, corrélation et densité spectrale, somme et produit de signaux aléatoires, processus gaussiens et de Poisson, exemples.

Module 3: Traitement des signaux

Opérateurs fonctionnels : opérateurs linéaires, paramétriques et non linéaires.

Echantillonnage des signaux : modèles de signaux échantillonnés, théorèmes d'échantillonnage, reconstitution par interpolation ou extrapolation.

Numérisation des signaux : conversion A/N et N/A, cadence limite, quantification et codage.

Module 4 : Signaux modulés

Signal analytique et enveloppe complexe: transformée de Hilbert, enveloppe réelle et phase instantanée d'un signal, enveloppe complexe et représentation des signaux à spectre passebande.

Modulation: modulations et démodulations d'amplitude, de fréquence et de phase.

FORME DE L'ENSEIGNEMENT: Ex cathedra avec exemples et démonstrations. Exercices théoriques et travaux pratiques sur micro-ordinateurs

or davada pradques sur miero oraniasears

DOCUMENTATION: Vol. VI du Traité d'électricité de l'EPFL, logiciels spéciaux pour PC-

compatible et Macintosh II.

LIAISON AVEC D'AUTRES COURS

Préalable requis: Analyse III, Probabilités et statistique, Circuits et systèmes I (recommandé)

Préparation pour: Transmission, Traitement des signaux.

Titre: BASES DE DONNÉES											
Enseignant: Stefano SPACCAPIETRA, Professeur EPFL/DI											
Heures totales: 45	Par semaine :	Cours	2	Exercices	Pra	tique 1					
Destinataires et contrôle des études					Bran	ches					
Section (s)	Semestre	Oblig.	Facult.	Option '	Théoriques	Pratiques					
GR (spéc. Mensuration)	5	x				X					
		ĬΠ.	П	. [

OBJECTIFS

Apprendre à :

- analyser une application pour déterminer ses besoins en information,
- concevoir une base de données qui soit le reflet de ces besoins,
- implanter la base de données sur un système de gestion de bases de données (SGBD),
- utiliser la base au travers des langages de manipulations offerts par le SGBD.

CONTENU

1. Généralités

- Nature et objectifs de l'approche base de données;
- Architecture d'un système de gestion de bases de données;
- Cycle de vie d'une base de données.

2. Conception d'une base de données

- Approche entité-association;
- Règles de vérification et de validation.

3. Modèle et langages relationnels

- Modèle et ses formes normales : méthode(s) de conception;
- Bases théoriques : algèbre relationnelle;
- Langages utilisateurs : SQL;
- Passage de la conception (entité-association) à la mise en oeuvre relationnelle.

4. Pratique d'un système relationnel

- ORACLE

5. Aperçu sur les principes de fonctionnement d'un SGBD

- Les vues utilisateur;
- Traitement de requête;
- Concurrence, fiabilité, confidentialité;
- Stockage des données.

FORME DE L'ENSEIGNEMENT: Ex cathedra; exercices en classe; travaux pratiques sur ordinateur.

DOCUMENTATION:

Notes de cours et ouvrages en bibliothèque

LIAISON AVEC D'AUTRES COURS

Titre: BASES DE DONNÉ	ES					
Enseignant: Yann DUPONT	, Chargé de	cours EP	FL/DI		***	
Heures totales: 20	Par semaine	: Cours	1.	Exercices	Pra	tique 1
Destinataires et contrôle des étud	es				Bran	ches
Section (s) SYST. DE COMMUNICATION	Semestre 6		Facult.	Option	Théoriques	Pratiques x

OBJECTIES

Apprendre à:

- analyser une application pour déterminer ses besoins en information,
- concevoir une base de données qui soit le reflet de ces besoins,
- maîtriser les critères de qualité pour définir une "Bonne Base de Données".

CONTENU

Généralités

- Nature et objectifs de l'approche base de données;
- Architecture d'un système de gestion de bases de données;
- Cycle de vie d'une base de données.

Conception

- Approche entité-association;
- Règles de vérification et de validation.

Implantation

- Le modèle relationnel
- Transformation d'un schéma entité-association en schéma relationnel
- Normalisation relationnelle

FORME DE L'ENSEIGNEMENT: Cours ex cathedra, Exercices en classe

DOCUMENTATION:

Notes de cours, Ouvrages en bibliothèque

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Préparation pour:

Bases de données II

Titre: BASES DE DONNÉE	S	-		**			
Enseignant: Yann DUPONT,	chargé de co	ours EPF	L/DI	1 Exercices Pratique 1 Branches			
Heures totales: 30	Par semaine :	Cours	1	Exercices	Pra	tique 1	
Destinataires et contrôle des études Section (s) SYST. DE COMMUNICATION.		Oblig.	Facult.	Option	[ches Pratiques X	

OBJECTIFS

- Apprendre à utiliser un SGBD relationnel.
- Connaître les principes du fonctionnement interne des SGBD.
- Avoir un aperçu sur les systèmes répartis.
- Implanter une base de données sur un SGBD.

CONTENU

Les systèmes relationnels

- Création d'une base de données sur INGRES
- L'algèbre relationnelle;
- Le langage SQL;
- Mise en oeuvre sur INGRES.

Fonctionnement d'un SGBD

- Stockage des données;
- Traitement des requêtes utilisateurs;

Les bases de données réparties.

FORME DE L'ENSEIGNEMENT: Cours ex cathedra, Exercices en classe, TP sur ordinateur

DOCUMENTATION: N

Notes de cours, Ouvrages en bibliothèque

LIAISON AVEC D'AUTRES COURS

Préalable requis: Bases de données I Préparation pour:

Titre: CONCEPTION DE SY	STÈMES P	ROGRAN	IMABLE	S I		· 			
Enseignant: Jean-Dominique DECOTIGNIE, Professeur EPFL/DI									
Heures totales: 30	Par semaine :	Cours	1	Exercices	1 Pra	tique			
Destinataires et contrôle des études Section (s) ÉLECTRICITÉ, IN-PILIER 4		Oblig.	Facult.	Option X	Bran Théoriques X 	Pratiques			

OBJECTIES

A la fin du cours l'étudiant sera capable d'analyser le cahier des charges d'un système programmable (matériel et logiciel), de concevoir une solution répondant au cahier des charges et d'implanter cette solution.

CONTENU

- introduction, problématique
 - phases du développement du matériel
- contenu du cahier des charges
- les fonctions du matériel
- le calcul des contraintes temporelles
- les problèmes divers de conception et leurs solutions (métastabilité, ground bounce)

FORME DE L'ENSEIGNEMENT: Cours ex cathedra avec exercices pratiques

DOCUMENTATION:

Notes de cours

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Informatique Industrielle I et II, Systèmes Logiques

Préparation pour: Conception de Systèmes Programmables II

Titre: CONCEPTION DE SYSTÈMES PROGRAMMABLES II									
Enseignant: Jean-Dominique DECOTIGNIE, Professeur EPFL/DI									
Heures totales: 20	Par semaine :	Cours	1	Exercices	1 P	ratique ·			
Destinataires et contrôle des études Section (s) ÉLECTRICITÉ, IN-PILIER 4		Oblig.	Facult.	Option X	Bro Théoriques	nnches Pratiques			

Ce cours se situe dans le prolongement du cours "Conception de systèmes programmables I". A la fin de ce deuxième cours, l'étudiant sera capable de réaliser une analyse des besoins et de concevoir un logiciel par des techniques semi-formelles.

CONTENU

- introduction au développement du logiciel
- analyse structurée
- conception structurée
- les objets
- analyse orientée sur les objets
- conception orientée sur les objets

Cours ex cathedra avec exercices pratiques FORME DE L'ENSEIGNEMENT:

DOCUMENTATION: Notes de cours

LIAISON AVEC D'AUTRES COURS

Conception de Systèmes Programmables I Préalable requis:

Préparation pour:

Titre: ENVIRONNEMENT INFORMATIQUE										
Enseignant: Guy DELAFONTAINE, chargé de cours EPFL/DI										
Heures totales: 30	Par semaine	: Cours	1 .	Exercices	Pro	tique 2				
Destinataires et contrôle des études Section (s) GÉNIE RURAL		Oblig.	<i>Facult.</i>	Option	Bran	Pratiques X				

Connaître les bases informatiques nécessaires à l'utilisation d'un ordianteur de type station de travail. Application pratique au système d'exploitation UNIX. Quelques parallèles sont donnés avec Macintosh et MS-DOS/Windows.

CONTENU

- 1) Architecture générale d'un ordinateur (les blocs fonctionnels)
- 2) Présentation des composants principaux d'un système informatique (matériel, logiciel, périphériques)
- 3) Le système d'exploitation, avec illustration sous UNIX
- 4) Apprentissage des commandes essentielles pour l'utilisateur
- 5) Les outils d'aide en ligne (cours hypertexte, man, AnswerBook)
- 6) Le système de fichiers, leur utilisation, sa gestion et la sauvegarde
- 7) Introduction aux utilitaires UNIX et offre d'exercices interactifs s'y rapportant
- 8) les shells d'UNIX
- 9) les procédures de commandes Scripts
- 10) les aspects communication entre systèmes, le réseau

(UNIX réparti, Rlogin, TCP/IP, mail, forum électronique)

- 11) Index, glossaire et spécificité de configuration du système du Génie Rural EPFL
- 12) Résumé en anglais des 11 modules du cours (selon recommendations de la CPD et de l'AGEPOLY)

FORME DE L'ENSEIGNEMENT:

cours et exercices pratiques sur stations UNIX

DOCUMENTATION:

Polycopié et didacticiel hypertexte basé sur World Wide Web

LIAISON AVEC D'AUTRES COURS Programmation I

Préalable requis:

Infographie (DGR)

Préparátion pour:

Titre: GESTION II										
Enseignant: Claude E. BERTA, Paris										
Heures totales : 20	Par semaine	: Cours	2	Exercices	Pra	tique				
Destinataires et contrôle des études Branches										
Section (s)	Semestre	Oblig.	Facult.	Option	Théoriques	Pratiques				
SYSTÈMES DE	6	x			x					
COMMUNICATION		П								

At the end of the course, the student will have a more precise and documented idea of the world he/she is going to operate into. This will essentially be the world of today hi-tech internationally minded business enterprises.

Appreciation of economics, finance, management and business environment will be given. Then strategic product management will be covered in details in the proper environment. The ultimate objective is to optimize the student future career development.

CONTENU

A - ENVIRONMENT

Economics, the Entreprise, International Competition, Industrial Policy

C - FINANCE

Cost Management/Control, Financial Analysis, Business Case/Plan

FORME DE L'ENSEIGNEMENT: Ex cathedra with extensive question and answer method

DOCUMENTATION: Foils copes

LIAISON AVEC D'AUTRES COURS

Préalable requis: N.A.

Préparation pour: N.A.

Titre: GESTION III										
Enseignant: Claude F. BERTA, Paris										
Heures totales: 30	Par semaine	e: Cours	2	Exercices	Pra	tique				
Destinataires et contrôle des études Brai										
Section (s) SYSTÈMES DE COMMUNICATION		Oblig.	Facult.	Option	Théoriques X	Pratiques				
				. 🔲		. Ш				

At the end of the course, the student will have a more precise and documented idea of the world he/she is going to operate into. This will essentially be the world of today hi-tech internationally minded business enterprises.

Appreciation of economics, finance, management and business environment will be given. Then strategic product management will be covered in details in the proper environment. The ultimate objective is to optimize the student future career development.

CONTENU

B-TECHNOLOGY

Strategic Product Management, Product Definition, New Product Development

D - HUMAN DIMENSION

Social Environment, Management Theory, Quality Drive, Golden Rules

FORME DE L'ENSEIGNEMENT: Ex cathedra with extensive question and answer method

DOCUMENTATION: Foils copes

LIAISON AVEC D'AUTRES COURS

Préalable requis: N.A. Préparation pour: N.A.

Titre: INFORMATIQUE AV	ANCÉE								
Enseignant: Daniel THALMANN, Professeur EPFL/DI									
Heures totales: 45	Par semaine	: Cours	1	Exercices	Pratique 2				
Destinataires et contrôle des études					Branches				
Section (s) GÉNIE MÉCANIQUE MICROTECHNIQUE	Semestre 3 7	Oblig.	Facult.	Option	Théoriques Pratiques X X X I				

Ce cours permettra à l'étudiant de se familiariser avec l'utilisation de divers logiciels et matériels informatiques. Il permettra aussi de voir comment on réalise certaines applications notamment dans le domaine de la conception assistée par ordinateur et de la visualisation graphique et de l'animation de corps articulés.

CONTENU

Le langage C

Le système UNIX

La programmation graphique.

Langages d'animation et de description de mouvements.

FORME DE L'ENSEIGNEMENT: Ex cathedra, projets

DOCUMENTATION: Notes de cours et transparents

LIAISON AVEC D'AUTRES COURS:

Préalable requis: Programmation I et II

Préparation pour:

Titre: INFORMATIQUE DU	TEMPS RÉ	EL I		7 1 1					
Enseignant: Jean-Dominique DECOTIGNIE, Professeur EPFL/DI									
Heures totales: 30	Par semaine :	Cours	2	Exercices	Pra	tique 1			
Destinataires et contrôle des études Branches									
Section (s) SYSTÈMES DE COMMUNICATION	Semestre 6	Oblig.	Facult.	Option	Théoriques	Pratiques x			

Apprendre les principes de base de la structure et de la programmation des mini et microordinateurs. Apprentissage d'un langage assembleur de microprocesseur et introduction aux problèmes du temps réel.

CONTENU

- 1. Structure des systèmes d'informatique et particularité du temps réel.
- 2. Représentation de l'information et opérations élémentaires.
- 3. Structure et fonctionnement des ordinateurs :
 - organisation générale d'un ordinateur
 - jeu d'instructions
 - mode d'adressage
 - gestion mémoire.

FORME DE L'ENSEIGNEMENT:

Cours ex cathedra + laboratoire utilisant des stations d'élèves spécialisées.

DOCUMENTATION:

Livre "Informatique Industrielle I" H. NUSSBAUMER.

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Préparation pour:

Informatique du temps réel II.

Titre: INFORMATIQUE DU TEMPS RÉEL II										
Enseignant: Jean-Dominique DECOTIGNIE, Professeur EPFL/DI										
Heures totales: 45	Par semaine	: Cours	. 2	Exercices	Prati	ique 1				
Destinataires et contrôle des études Section (s) SYSTÈMES DE COMMUNICATION	Semestre 7	Oblig.	Facult.	Option	Branc Théoriques	hes Pratiques X				

Acquérir les connaissances de base en informatique du temps réel. Conception et réalisation des systèmes temps réel au niveau du matériel et du logiciel. Travaux pratiques de mise en oeuvre du temps réel.

CONTENU

1. Le logiciel:

- organisation générale du logiciel système
- les problèmes du temps réel
- langages assembleur
- traitement du temps réel avec MODULA-2
- exemple d'un noyau temps réel.

2. Grafcet et réseaux de Pétri, -

3. Entrées-sorties et interfaces de processus :

- organisation générales des entrées-sorties
- -bus du microprocesseur MC-68000
- bus normalisés pour microprocesseurs
- adaptateurs d'interface
- interfaces de processus.

FORME DE L'ENSEIGNEMENT:

Cours ex cathedra + laboratoire utilisant des stations d'élèves spécialisées.

DOCUMENTATION:

Livre "Informatique Industrielle II," H. NUSSBAUMER.

LIAISON AVEC D'AUTRES COURS

Préalable requis: Préparation pour: Informatique du temps réel I. Informatique du temps réel III.

Titre: INFORMATIQUI	E EN TEMPS R	ÉEL							
Enseignant: Daniel MANGE, Professeur EPFL/DI Roger-D. HERSCH, Professeur EPFL/DI									
Heures totales: 75	Par semaine	: Cours	2	Exercices	Pra	tique 3			
Destinataires et contrôle des e	études				Bran	ches			
Section (s) GÉNIE MÉCANIQUE	Semestre 1	Oblig.	Facult.	Option	Théoriques	Pratiques x			

OBJECTIES

Acquisition par les étudiants d'une maîtrise dans la conception et l'utilisation de systèmes digitaux pour les applications du temps réel dans trois techniques principales: systèmes logiques câblés (assemblage de circuits intégrés), systèmes microprogrammés (rédaction de microprogrammes) et microprocesseurs (rédaction de programmes).

CONTENU

1. Systèmes logiques câblés

Analyse et synthèse des systèmes logiques combinatoires: variables et fonctions logiques (ET, OU, NON, NAND, OU-exclusif, fonction universelle), réalisation par des circuits intégrés (multiplexeur, démultiplexeur), algèbre logique (algèbre de Boole). Notions de système séquentiel: élément de mémoire, bascules bistables, registre universel, pile, diviseurs de fréquence et horloge électronique.

2. Systèmes microprogrammés

Etude des mémoires vives. Représentation des fonctions logiques par des arbres et par des diagrammes de décision binaire. Réalisation de ces diagrammes par une machine de décision binaire. Sous-programme, procédure et machine de décision binaire avec pile. Programmes incrémentés et séquenceur.

3. Microprocesseurs

Architecture et fonctionnement des microprocesseurs. Répertoire d'instructions: codage des instructions, catégories d'instructions, modes d'adressage. Notions élémentaires de programmation en langage assembleur. Interface microprocesseur: signaux, décodage et sélection de périphériques. Génération et traitement d'interruptions.

FORME DE L'ENSEIGNEMENT : Cours-laboratoire intégré

DOCUMENTATION:

- D. Mange, "Analyse et synthèse des systèmes logiques"
- D. Mange, E. Sanchez, A. Stauffer, "Systèmes logiques programmés"
- A. Schmitz, "Laboratoire sur le Dauphin 68008"
- D. Mange, "Systèmes microprogrammés: une introduction au magiciel"
- D. Mange, A. Stauffer, "Travaux pratiques de systèmes logiques et

microprogrammés"

LIAISON AVEC D'AUTRES COURS

Préalable requis : Préparation pour :

Titre: INFORMATIQUE INDUSTRIELLE									
Enseignant: Roger-D. HERSCH, Professeur EPFL/DI									
Heures totales: 45	Par semaine	: Cours	1 .	Exercices	Pra	tique 2			
Destinataires et contrôle des études Branches									
Section (s) GÉNIE MÉCANIQUE	Semestre 5	Oblig.	Facult	Option	Théoriques	Pratiques X			

L'étudiant devra avoir assimilé les principes de base du fonctionnement, de la structure et de la programmation des microordinateurs. Il devra être capable d'interfacer des actuateurs ou capteurs extérieurs à un microordinateur et d'effectuer par programmation un traitement de données simple.

CONTENU

- 1. Représentation informatique de nombres entiers et réels, calculs arithmétiques en binaire.
- 2. Introduction au langage Modula-2.
- 3. Espace d'adressage, décodage et commande de périphériques (capteurs, moteurs).
- 4. Décompte d'événements et gestion temporelle par compteurs programmables.
- 5. Gestion de moteur en Modula-2.
- Introduction au temps réel (programmation multi-tâche, mécanismes de synchronisation).
- 7. Grafcet et automates programmables.
- 8. Interfaces industrielles: RS-232, entrées-sorties analogiques.

FORME DE L'ENSEIGNEMENT: Séances théoriques et laboratoires

DOCUMENTATION: H. Nussbaumer, Informatique Industrielle I,II, PPUR.

Notes de cours

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Informatique en temps réel

Préparation pour: Commandes des machines, Conception de systèmes

Titre: MÉTHODES DE PROGRAMMATION									
Enseignant: A. STROHMEIER, Professeur et M. KEMPE, Chargé de cours EPFL/DI									
Heures totales: 120	Par semaine	Cours	3	Exercices	Pra	tique 5			
Destinataires et contrôle des études Section (s) SYST. DE COMMUNICATION (Les étudiants provenant de la section informatique sont	Semestre .5	Oblig.	Facult.	Option	Bran Théoriques	ches Pratiques X			

Maîtriser parfaitement la programmation dans un langage procédural moderne. Connaissances de culture générale en structures de données et algorithmique.

CONTENU

Langage Ada

Notions de type et sous-type. Tableaux non contraints et articles à discriminants. Exceptions. Visibilité et surcharge. Paquetages. Types privés. Unités génériques. Unités de programmes, unités de compilation et compilation séparée. Types abstraits et composants logiciels.

Structures de données et algorithmique

Piles, listes, arbres, tables associatives, graphes. Tri. Notion de complexité.

Unix et environnement de programmation

Gestionnaire de fichiers. Langage de commande (shell) et commandes importantes. Quelques utilitaires: mail, News, grep, sccs, make, etc. Compilateur et gestionnaire de bibliothèque.

FORME DE L'ENSEIGNEMENT:

Ex cathedra, drills en classe, exercices sur stations

DOCUMENTATION:

- Manuel de référence du langage de programmation Ada (en anglais ou en français).
- Strohmeier A.; Ada: transparents; vente des polycopiés.
- Strohmeier A.; Algorithmes et structures de données; vente des polycopiés.
- Kipfer Ph., Strohmeier A.; UNIX: une introduction en bref; vente des polycopiés.
- Kempe M., Strohmeier A.; Ada: Drills, distribués en classe.
- Kempe M., Strohmeier A.; Ada: Exercices de programmation, énoncés et corrigés; distribués par News.

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Programmation I, II.

Préparation pour:

Tous les autres cours d'informatique.

Titre: MICROINFORMATIC	QUE	•	,		•					
Enseignant: Jean-Daniel NICOUD, Professeur EPFL/DI										
Heures totales: 60	Par semaine :	Cours	. 2	Exercices	Pra	tique 2				
Destinataires et contrôle des études		Branches.								
Section (s) MICROTECHNIQUE	Semestre 5	Oblig. x	Facult.	Option	Théoriques	Pratiques x				

L'étudiant devra avoir assimilé les principes de base de la structure et de la programmation des microordinateurs. Il devra être capable d'écrire un programme complexe en langage d'assemblage et de le déverminer. Il devra savoir extraire l'information importante dans la documentation générale relative à un système micro-ordinateur, un programme éditeur, assembleur ou compilateur.

CONTENU

- Nombres et opération.
 Opérateurs arithmétiques. Types de donnée. Changement de base.
- Structure et fonctionnement des calculatrices et ordinateurs.
 Architecture de Hardward et de von Neumann, décodage et exécution des instructions modes d'adressage.
- 3. Programmation en langage d'assemblage.
- 4. Systèmes micro-informatique.
 Interfaces simples, périphérique, support logiciel.

Les travaux pratiques porteront sur les sujets suivants :

- Programmation en langage machine, exécution d'un programme en pas-à-pas (Dauphin 68008)
- Programmation en assembleur symbolique (Smaky 196, processeur M68030)
- Interfaces simples (Dauphin et Smaky 196)
- Microprojet (écriture et mise au point d'un programme)

FORME DE L'ENSEIGNEMENT: Ex cathedra. Exercices - laboratoires utilisant un système microprocesseur didactique

DOCUMENTATION: Traité d'Electricité, vol XIV, chap. 1 à 5, et notes polycopiées.

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Préparation pour: Microinformatique II, Microprocesseurs, Périphériques

Titre: MICROINFORMATIQUE										
Enseignant: Jean-Daniel NICOUD, Professeur EPFL/DI										
Heures totales: 40	Par semaine :	Cours	. 2	Exercices	Pra	tique 2				
Destinataires et contrôle des études Section (s) MICROTECHNIQUE	_	Oblig.	Facult.	Option	Bran Théoriques 	ches Pratiques X				

OBJECTIES

L'étudiant devra connaître les techniques numériques utilisées dans la réalisation des systèmes de calculs spécialisés et des interfaces de micro-ordinateurs. Il devra être capable d'analyser les spécifications d'une interface ou d'une unité spécialisée, d'établir le schéma-bloc et le logigramme détaillé, et d'écrire le programme de test.

CONTENU

1. Technologie TTL et MOS

Circuits intégrés standards (registres, décodeurs, mémoire).

Applications des PROMs et PALs.

Systèmes numériques complexes, études de cas.

2. Interfaces

Transmission parallèle et série.

Interfaces Centronics, SCSI, Bus d'instrumentation IEEE 448/IEC 625.

3. Microcontrôleurs

Fonctionnalité générale

Les travaux pratiques porteront sur les sujets suivants :

- Connaissance des bascules, registres, compteurs.

- Codage et décodage d'information série.

- Interface pour un écran video : générateurs de points et de caractères.
- Interface pour des circuits mémoire dynamique.
- Mémoires non volatiles.
- Commande de moteurs pas-à-pas et continu.
- Microcontrôleur HC11

FORME DE L'ENSEIGNEMENT: Ex cathedra, Exercices + laboratoires utilisant des logidules complexes et un ordinateur individuel Smaky 196 pour le développement des programmes.

DOCUMENTATION: J.D. Nicoud, Circuits numériques pour interfaces microprocesseur, Masson, 1991

LIAISON AVEC D'AUTRES COURS

Préalable requis :

Microinformatique I

Préparation pour :

Microprocesseurs, Périphériques

Titre: PROGRAMMATION	I			*	A				
Enseignant: Claude PETITPIERRE, Professeur EPFL/DI									
Heures totales: 60	Par semaine :	Cours	2	Exercices	Prat	ique 2			
Destinataires et contrôle des études					Branc	ches			
Section (s) PHYSIQUE GÉNIE MÉCANIQUE	Semestre 1	Oblig. x x	Facult.	Option	Théoriques	Pratiques x x			

Mettre l'étudiant à même de

- Utiliser un système informatique pour la mise au point de programmes.
- Coder une solution informatique en Pascal.
- Comprendre et utiliser des algorithmes et modules existants.

CONTENU

Le cours est basé sur Pascal qui est un des langages le mieux adapté à l'enseignement de la programmation. Bien qu'il soit simple, ce langage possède les caractéristiques qu'on retrouve dans tous les langages généraux modernes: structuration des instructions et des données et variables dynamiques.

Ce cours vise à faire comprendre ce qu'est le concept de "programmation" et comment on passe d'une idée à un programme qui la réalise. Il est destiné à ceux qui ne sauraient pas encore programmer.

Le cours est fait d'une série d'exercices qui introduisent les instructions les unes après les autres. Chaque étudiant fait les exercices à son rythme, un assistant étant présent pendant les heures indiquées à l'horaire pour répondre aux questions. Les tests prévus pour la détermination des notes peuvent être passés n'importe quand, mais par groupes. Dès qu'un certain nombre d'étudiants se sentent prêts, ils peuvent fixer une date de passage du test, en accord avec le professeur.

Le premier semestre présentera toutes les instructions de Pascal.

FORME DE L'ENSEIGNEMENT:

Exercices en classe

DOCUMENTATION:

Cours polycopié contenant la présentation de Pascal et les exercices

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Préparation pour:

Programmation II

Titre: PROGRAMMATION I	II :	,				
Enseignant: Benoit GENNAR'	Γ, Chargé α	le cours l	EPFL/DI			
Heures totales : 40	Par semaine	Cours	2.	Exercices	Pra	tiquè 2
Destinataires et contrôle des études Section (s) GÉNIE MÉCANIQUE	Semestre 2	Oblig.	Facult.	Option	Bran Théoriques	ches Pratiques

L'étudiant saura :

- Utiliser un système informatique pour la mise au point des programmes
- Coder une solution informatique en FORTRAN
- Comprendre et utiliser des algorithmes et modules existants

CONTENU

Présentation des constructions de langage FORTRAN

Divers problèmes techniques ou d'analyse numérique :

- module d'affichage graphique
- module de calcul matriciel

Compilation séparée, bibliothèque de programmes

FORME DE L'ENSEIGNEMENT:

Cours, laboratoires

DOCUMENTATION:

Cours polycopié. Exemples sur ordinateur

LIAISON AVEC D'AUTRES COURS

Préalable requis: Préparation pour: Programmation I

ration pour: Programmation III et IV, projets de mécanique

Titre: PROGRAMMATION	I			,					
Enseignant: André SCHIPER, Professeur EPFL/DI									
Heures totales: 45	Par semaine :	Cours	. 1	Exercices	Prati	que 2/3*			
Destinataires et contrôle des études					Branc	hes			
Section (s) ÉLECTRICITÉ MICROTECHNIQUE MATHÉMATIQUES*	Semestre 1 . 1	Oblig. x x x	Facult	Option	Théoriques	Pratiques X X X			

L'étudiant apprendra à utiliser un système informatique et acquerra les notions de base de la programmation.

CONTENU

Connaissances générales de l'ordinateur. Rôle du processeur et de la mémoire principale. Mémoires auxiliaires et unités périphériques.

Fonction d'un système d'exploitation. Langage de commande et éditeur.

Forme générale d'un programme. Déclarations et instructions. Types de donnée élémentaires; constantes et variables.

Expressions logiques et arithmétiques. Affectation. Appel de procédure. Instructions d'entrée-sortie. Structure de bloc. Instructions conditionnelle et de boucle. Définition de fonctions et procédures; portée des identificateurs.

Types structurés tableau et enregistrement.

FORME DE L'ENSEIGNEMENT:

Ex cathedra. Exercices par groupes et travaux sur microordinateur.

DOCUMENTATION:

P. GROGONO, La Programmation en Pascal, InterEditions.

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Préparation pour:

Programmation II

Titre: PROGRAMMATION	И ,		,			
Enseignant: André SCHIPER	, Professeur	· EPFL/D	I			
Heures totales: 30	Par semaine :	Cours	1 .	Exercices	Pra	tique 2/3*
Destinataires et contrôle des études					Bran	ches
Section (s) ÉLECTRICITÉ MICROTECHNIQUE MATHÉMATIQUES*	Semestre 2 2 2	Oblig. X X	Facult.	<i>Option</i>	Théoriques	Pratiques X X

L'étudiant apprendra à utiliser un langage de programmation (Pascal), ainsi qu'à utiliser et adapter les structures de données classiques.

CONTENU

Récursivité.

Types structurés fichier et ensemble.

Pointeurs.

Eléments d'algorithmique numérique et non numérique; étude de quelques structures de données élémentaires.

FORME DE L'ENSEIGNEMENT:

Ex cathedra. Exercices par groupes et projets sur microordinateur.

DOCUMENTATION:

P. GROGONO, La Programmation en Pascal, InterEditions.

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Programmation I

Préparation pour:

Divers cours et laboratoires requérant l'usage de l'ordinateur.

Titre: PROGRAMMATION	I .					
Enseignant: Ian SMITH, Cha	ergé de cours	s EPFL/D	Ι			
Heures totales: 45	Par semaine :	Cours	1	Exercices	Pra	tique 2
Destinataires et contrôle des études	;				Bran	ches
Section (s) CHIMIE + FACGÉNIE RURALMATÉRIAUXGÉNIE CIVIL	1	Oblig. X X X	Facult.	Option	Théoriques	Pratiques X X X X

Savoir utiliser un système informatique et connaître les notions de base en programmation.

CONTENU

Programmation Pascal

Utilisation d'un ordinateur et d'un environnement de programmation.

La conception d'un programme.

Forme d'un programme. Déclarations et instructions. Expressions arithmétiques. Types de données élémentaires. Instructions élémentaires d'entrée et sortie.

Fonctions et procédures. Structures conditionnelles. Boucles. Enregistrements et Tableaux. Fichiers séquentiels.

Applications: présentation graphique, analyse numérique, simulation. Introduction à la programmation par objets

Introduction à l'Intelligence Artificielle et aux systèmes de connaissances

FORME DE L'ENSEIGNEMENT : Ex cathedra. Exercices théoriques et pratiques.

Polycopié Programmation I DOCUMENTATION:

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Préparation pour:

Informatique Matériaux I

Titre: PROGRAMMATION 1	III ·	,				. *
Enseignant: Jean-Pierre MOII	NAT, Charg	gé de cou	rs EPFL/	DI ·		
Heures totales: 30	Par semaine .	Cours	· 2	Exercices	Pra	tique
Destinataires et contrôle des études					Bran	ches
Section (s) ÉLECTRICITÉ	Semestre 3	Oblig.	Facult.	Option	Théoriques x	Pratiques

Compléter la formation des étudiants en programmation et leur donner une méthodologie pour la création de logiciels techniques. Compléter leur connaissance du langage Pascal.

CONTENU

Introduction

Particularités des langages de programmation, visibilités et durées de vie des objets, hiérarchie des opérateurs, types et primitives élémentaires vus sous l'angle de leur interaction.

Structures de contrôle

Séquences, répétitions et choix d'un point de vue général. Sous-programmes et mécanismes de passage des paramètres (valeur, référence, descripteur).

Structures de données

Généralités. Structures statiques (tableaux, agrégats et ensembles) et dynamiques (pointeurs, chaînes de caractères, fichiers, piles, vecteurs, files d'attente, listes ordonnées et arbres binaires).

Méthodologie

Modularité. Conception orientée objets, styles de programmation (descendant, montant, etc.); récursivité, documentation.

FORME DE L'ENSEIGNEMENT:

Cours ex cathedra avec exercices incorporés.

DOCUMENTATION:

Notes polycopiées.

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Programmation I et II.

Préparation pour:

Programmation IV et Projet V informatique.

Titre: PROGRA	MMA1	TION	IV		٠.			
Enseignant: Jear	1-Pierre	MOI	NAT, Charge	é de cou	rs EPFL/	DI		
Heures totales:	10	:	Par semaine :	Cours	1	Exercices	Pra	tique
Destinataires et con	trôle des	études	-				Bran	ches
Section (s) ÉLECTRICITÉ			Semestre 4	Oblig.	Facult.	Option	Théoriques X	Pratiques
			-					

Compléter la formation des étudiants en programmation et leur donner une méthodologie pour la création de logiciels techniques. Compléter leur connaissance du langage Pascal. (suite du cours Programmation III).

CONTENU

Mise en oeuvre des notions vue dans le cours Programmation III en langage Pascal sur VAX. Routines généralisées de lecture de données. Modules et environnements en VAX Pascal. Utilisation d'une programmathèque de gestion de structures dynamiques de données.

FORME DE L'ENSEIGNEMENT:

Cours ex cathedra avec exercices incorporés.

DOCUMENTATION:

Notes polycopiées.

LIAISON ÄVEC D'AUTRES COURS

Préalable requis:

Programmation I, II et III.

Préparation pour:

Projet V informatique et divers projets du 2ème cycle.

Titre: SYSTÈMES D'EXPL	OITATION			•		
Enseignant: Alain SANDOZ,	Chargé de c	ours EPI	FL/DI			
Heures totales: 20	Par semaine :	Cours	. 1	Exercices	Pra	tique 1
Destinataires et contrôle des études	5				Bran	ches
Section (s)	Semestre	O <u>blig</u> .	Facult.	Option	Théoriques	Pratiques
SYST. DE COMMUNICATIONS	6	x				x
ÉLECTRICITÉ IN-PILIER 4	6			X	X	
			Ц	Ц		
				∐.	<u> </u>	

A la fin du cours, l'étudiant comprendra les problèmes liés à la programmation concurrente, et saura maîtriser les différents outils permettant d'exprimer la synchronisation.

CONTENU

Programmation concurrente

Notion de processus.

Exclusion mutuelle et synchronisation.

Evénements, sémaphores, moniteurs, rendez-vous.

Aspects concurrents du langage Ada.

FORME DE L'ENSEIGNEMENT:

Ex cathedra...

DOCUMENTATION:

Programmation concurrente (PPUR) + polycopié.

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Méthodes de programmation.

Préparation pour:

Informatique du temps réel III.

Titre: SYSTÈMES D'EXPLO	Titre: SYSTÈMES D'EXPLOITATION										
Enseignant: Alain SANDOZ, Chargé de cours EPFL/DI											
Heures totales: 30	Par semaine :	Cours	1	Exercices	Pra	tique 1					
Destinataires et contrôle des études					Bran	ches					
Section (s) SYST. DE COMMUNICATIONS	Semestre 7	Oblig.	Facult.	Option	Théoriques	Pratiques X					
			. 🗍								

A la fin du cours, l'étudiant saura utiliser-les principaux services mis à disposition par un système d'exploitation et connaîtra les principales techniques de gestion de ressources et de gestion de l'information mises en oeuvre par un système d'exploitation.

CONTENU

Système Unix .

Services offerts par le système Unix.

Gestion des ressources et de l'information

Gestion du processeur.

Gestion de la mémoire.

Les systèmes de fichiers.

Partage et protection de l'information.

FORME DE L'ENSEIGNEMENT:

Ex cathedra.

DOCUMENTATION:

Programmation concurrente (PPUR) + polycopié.

LIAISON AVEC D'AUTRES COURS

Préalable requis: Préparation pour: Méthodes de programmation. Informatique du temps réel III.

Engainment . Doniel M									
Enseignant: Daniel MANGE, Professeur EPFL/DI									
Heures totales: 45	Par semaine	: Cours	2	Exercices	Pra	tique l			
Destinataires et contrôle d	s études			,	Bran	ches			
Section (s) ÉLECTRICITÉ	Semestre 1	Oblig.	Facult.	Option	Théoriques	Pratiques X			
	··········								
ÉLECTRICITÉ	1		<i>Facult.</i>	<i>Option</i>	Théoriques				

Acquisition par les étudiants d'un certain nombre de *méthodes systématiques* permettant la conception et l'analyse de systèmes électroniques digitaux, ainsi que l'apprentissage d'un certain *savoir-faire* dans la réalisation pratique, le câblage et le dépannage de ces mêmes systèmes.

CONTENU

- SYSTÈMES LOGIQUES COMBINATOIRES. Définition des modèles logiques; variable logique; fonctions logiques d'une et plusieurs variables (ET, OU, NON, NAND, OU-exclusif, Majorité, fonction universelle); modes de représentation des fonctions logiques; algèbre logique (algèbre de Boole).
- SIMPLIFICATION DES SYSTÈMES COMBINATOIRES. Réalisation des systèmes combinatoires (multiplexeur, démultiplexeur) et hypothèses relatives à la simplification; simplification par la méthode de la table de Karnaugh; utilisation des portes "OU-exclusif"; systèmes itératifs.
- BASCULES BISTABLES. Notion de système séquentiel; élément de mémoire, définition et modèles des bascules; analyse détaillée d'un cas particulier: la bascule D; modes de représentation des divers types de bascules (bascule JK, diviseur de fréquence).
- COMPTEURS. Définition, représentation par un chronogramme, un graphe ou une table d'états. Méthodes générales de synthèse et d'analyse. Réalisation d'une horloge électronique.
- 5. SYSTÈMES SÉQUENTIELS SYNCHRONES. Définition, analyse, représentation par un graphe et une table d'états. Applications: compteur réversible, registre à décalage. Méthode générale de synthèse: élaboration de la table d'états, réduction et codage des états, réalisation du système combinatoire. Codage minimal et codage 1 parmi M. Réalisation avec portes NAND, multiplexeurs ou démultiplexeurs. Applications: discriminateur du sens de rotation, détecteur de séquence, serrure électronique.

FORME DE L'ENSEIGNEMENT : Cours-laboratoire intégré.

DOCUMENTATION:

Volume V du Traité d'Electricité: "Analyse et synthèse des systèmes logiques"

(D. Mange). "Travaux pratiques de systèmes logiques et microprogrammés"

(D. Mange, A. Stauffer)

LIAISON AVEC D'AUTRES COURS

Préalable requis :

Préparation pour : systèmes microprogrammés

Titre: SYSTÈMES LOGIQU	ES			•		
Enseignant: André STAUFFE	R, Chargé d	le cours	EPFL/DI	,	·	
Heures totales: 45	Par semaine :	Cours	1	Exercices	Prat	ique 2
Destinataires et contrôle des études Section (s) MICROTECHNIQUE	Semestre 3	Oblig:	Facult.	Option	Brand Théoriques	ches Pratiques
	·					

Acquisition par les étudiants d'un certain nombre de méthodes systématiques permettant la conception et l'analyse de systèmes électroniques digitaux, ainsi que l'apprentissage d'un certain savoir-faire dans la réalisation pratique, le câblage et le dépannage de ces mêmes systèmes.

CONTENU

- SYSTÈMES LOGIQUES COMBINATOIRES. Définition des modèles logiques; variable logique; fonctions logiques d'une et plusieurs variables (ET, OU, NON, NAND, OU-exclusif, Majorité, fonction universelle); modes de représentation des fonctions logiques; algèbre logique (algèbre de Boole).
- SIMPLIFICATION DES SYSTÈMES COMBINATOIRES. Réalisation des systèmes combinatoires (multiplexeur, démultiplexeur) et hypothèses relatives à la simplification; simplification par la méthode de la table de Karnaugh; utilisation des portes "OU-exclusif"; systèmes itératifs.
- 3. BASCULES BISTABLES. Notion de système séquentiel; élément de mémoire, définition et modèles des bascules; analyse détaillée d'un cas particulier: la bascule D; modes de représentation des divers types de bascules (bascule JK, diviseur de fréquence).
- COMPTEURS. Définition, représentation par un chronogramme, un graphe ou une table d'états. Méthodes générales de synthèse et d'analyse. Réalisation d'une horloge électronique.
- 5. SYSTÈMES SÉQUENTIELS SYNCHRONES. Définition, analyse, représentation par un graphe et une table d'états. Applications: compteur réversible, registre à décalage. Méthode générale de synthèse: élaboration de la table d'états, réduction et codage des états, réalisation du système combinatoire, avec portes NAND, multiplexeurs ou démultiplexeurs. Applications: discriminateur du sens de rotation, détecteur de séquence.
- CIRCUITS LOGIQUES PROGRAMMABLES. Introduction à la programmation des systèmes logiques combinatoires et séquentiels. Utilisation de différents types de circuits programmables (PAL, EPLD)

FORME DE L'ENSEIGNEMENT:

Cours-laboratoire intégré

DOCUMENTATION:

Volume V du Traité d'Electricité: "Analyse et synthèse des systèmes logiques" (D. Mange). "Travaux pratiques de systèmes logiques", manuel d'utilisation des logidules (D. Mange, A. Stauffer)

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Préparation pour:

systèmes numériques

Titre: SYSTÈMES M	ICROPROGRAM	MÉS								
Enseignant: Daniel M.	Enseignant: Daniel MANGE, Professeur EPFL/DI									
Heures totales: 30	Par semain	e: Cours	2	Exercices	Pra	tique 1				
Destinataires et contrôle de	es études				Bran	ches				
Section (s) ÉLECTRICITÉ	Semestre 2	Oblig.	Facult.	Option	Théoriques	Pratiques x				

OBJECTIES

Acquisition par les étudiants d'un certain nombre de *méthodes systématiques* permettant la conception et l'analyse de systèmes électroniques digitaux avec mémoires, ainsi que l'apprentissage d'un certain *savoir-faire* dans la réalisation pratique, le câblage, la programmation et le dépannage de ces mêmes systèmes.

CONTENU

- MÉMOIRES. Définition et conception des mémoires vives par assemblage de démultiplexeurs, verrous et multiplexeurs. Réalisation des multiplexeurs par passeurs à 3 états. Introduction des bus.
- ARBRES ET DIAGRAMMES DE DÉCISION BINAIRE. Définition, analyse et synthèse des arbres de décision binaire. Transformation des arbres en diagrammes. Réalisation de ces diagrammes par des réseaux de démultiplexeurs (système logique câblé) ou par une machine de décision binaire (système programmé) à deux types d'instructions: test (IF...THEN...ELSE...) et affectation (DO...).
- 3. SOUS-PROGRAMME ET PROCÉDURE Réalisation programmée de compteurs et mise en évidence d'un sous-programme. Réalisation d'une procédure unique ou de procédures imbriquées par une machine de décision binaire à pile (stack) exécutant quatre types d'instructions: test, affectation, appel de procédure (CALL...) et retour de procédure (RET). Application: horloge électronique simple.
- 4. PROGRAMMES INCRÉMENTÉS. Adressage des instructions avec incrémentation. Réalisation des programmes incrémentés par une machine à pile avec compteur de programme, décomposée en un séquenceur et une mémoire.
- 5. PROGRAMMATION STRUCTURÉE. Définition des quatre constructions de la programmation structurée: affectation, séquence, test et itération. Conception descendante d'un programme. Application au cas de l'algorithme horloger.
- 6. MIGRATION LOGICIEL-MATÉRIEL. Décomposition des processeurs en une unité de traitement (système câblé) et une unité de commande (système microprogrammé). Migration du logiciel (modules du microprogramme) vers le matériel (composants de l'unité de traitement). Application: horloge digitale complexe.

FORME DE L'ENSEIGNEMENT: Cours-laboratoire intégré.

DOCUMENTATION:

"Systèmes microprogrammés: une introduction au magiciel" (D. Mange)
"Travaux pratiques de systèmes logiques et microprogrammés" (D. Mange,

A. Stauffer)

LIAISON AVEC D'AUTRES COURS

Préalable requis:

Systèmes logiques

Préparation pour:

Titre: SYSTÈMES PÉRIPHÉRIQUES								
Enseignant: Roger-D. HERSCH, Professeur EPFL/DI								
Heures totales: 20	Par semaine :	Cours	2	Exercices	Pra	tique		
Destinataires et contrôle des études Section (s) MICROTECHMIQUE (TPR)		Oblig.	Fácult.	Option	Bran Théoriques X			
	,			. 📙				

Maîtrise des systèmes multiprocesseurs pour la commande de périphériques, périphériques d'affichage et d'impression

CONTENU

Les périphériques incorporent différents types de circuits et processeurs. Une puissance de traitement très importante peut être obtenue par la parallélisation et l'exécution d'algorithmes sur systèmes multiprocesseurs. La commande de périphériques (écrans, imprimantes) requiert une bonne connaissance des algorithmes de tracé sur plans de bits ainsi que des algorithmes de génération d'images tramées (demitons).

Cours et laboratoires offrent aux étudiants la possibilité de maîtriser le parallélisme appliqué à la commande de périphériques, ainsi que les éléments nécessaires à la génération d'images sur écrans, imprimantes et photocomposeuses.

Multiprocesseurs pour la commande de périphériques

Architecture de transputers, programmation parallèle en langage C, élaboration d'algorithmes distribués.

Génération d'images sur plan de bits

Architectures d'écrans et d'imprimantes, organisation de la mémoire image,

opérations sur plans de bits, conversion ponctuelle et remplissage de formes, tracé de caractères en mémoire image.

Périphériques couleur

Ecrans couleur, dispositifs d'impression couleur, algorithmes de génération d'images tramées (halftoning).

FORME DE L'ENSEIGNEMENT:

Cours, laboratoires

DOCUMENTATION:

Notes de cours

LIAISON AVEC D'AUTRES COURS

Préalable requis: Préparation pour:

Titre: TÉLÉINFORMATIQU	JE I	,		10.00			
Enseignant: Claude PETITPIERRE, Professeur EPFL/DI							
Heures totales: 30	Par semaine	: Cours	2	Exercices	1 Pro	ıtique	
Destinataires et contrôle des études					Branches		
Section (s) SYSTÈMES DE COMMUNICATION	Semestre 6		Facult.	Option	Théoriques x	Pratiques	

OBJECTIES

Connaître le fonctionnement des réseaux locaux d'ordinateurs.

Etre à même de calculer une probabilité d'erreur de transmission résiduelle d'un code de correction d'erreurs et d'en construire un.

CONTENU

Réseaux locaux d'ordinateurs

- Etoile, bus, anneau, adressage dans la couche physique, gestion des collisions, jeton, pont-passerelle
- Ethernet, Anneau à jeton, réseaux à haute vitesse, RNIS à large bande

Codes de détection d'erreurs

- Probabilité d'erreur ou de non détection d'erreurs dans différentes situations
- Conditions de détection et de correction d'erreurs, distances de Hamming
- Codes de parité, de Hamming, polynômiaux, algorithme de Viterbi

Analyse des performances

- Diagramme des temps
- Aloha, Ethernet
- Concentrateur (M/M/1)

Applications et services des réseaux

- Le modèle OSI
- Encodage ASN.1-1

FORME DE L'ENSEIGNEMENT:

Exercices à résoudre sur ordinateurs

DOCUMENTATION:

Cours polycopié "Protocoles de communication"

LIAISON AVEC D'AUTRES COURS

Préalable requis: Préparation pour:

Titre: TÉLÉINFORMATIQUE II								
Enseignant: Claude PETITPIERRE, Professeur EPFL/DI								
Heures totales: 45	Par semaine :	Cours	,2	Exercices	Pra	tique 1		
Destinataires et contrôle des études					Branches			
Section (s) SYSTÈMES DE COMMUNICATION	Semestre 7	Oblig.	Facult.	Option	Théoriques	Pratiques X		
		□ .	∐.					

Etre à même de programmer une application nécessitant des communications entre ordinateurs.

Connaître quelques protocoles standards de transmission de données entre ordinateurs.

CONTENU

Introduction aux langages adaptés aux protocoles

 Environnement multitâche, gestion des variables, réentrance, rendez-vous, introduction à C++ et à UNIX

Problèmes de base résolus par les protocoles de communication (enseignés au moyen de laboratoires)

 transmission fiable, acquittements (positifs, négatifs), contrôle de flux, multiplexage, mécanisme de fenêtre coulissante, routage, diffusion, maintien de l'ordre, temporisateurs, adressage (SAP, CEP), Modèle OSI (couches primitives), automates, circuits-paquets, fragmentation, éclatement

Etudes de cas

X.25, TCP/IP, FTP, serveur-client sur UNIX

FORME DE L'ENSEIGNEMENT:

Exercices à résoudre sur ordinateurs

DOCUMENTATION:

Cours polycopié "Protocoles de communication"

LIAISON AVEC D'AUTRES COURS

Préalable requis: Préparation pour: