

Année académique / Academic Year
2002-2003

(f) f

ÉCOLE POLYTECHNIQUE FÉDÉR ALE DE LAUSANNE

TABLE DES MATIÈRES

Informations générales 1
General informations 6
Calendrier académique 11
Ordonnance sur le contrôle des études 13
Plan d'études de la section de microtechnique i
Règlement d'application du contrôle des études v
Liste alphabétique des enseignants viii
Table des matières des descriptifs de cours xii
Descriptifs des cours 1-101

INFORMATIONS GENERALES

Organisation des études

Les formations d'ingénieurs, d'architectes et de scientifiques à l'EPFL comportent deux cycles d'études. Chaque année de formation est divisée en deux périodes de 14 semaines, les examens ayant lieu en dehors de ces périodes.

Les douze voies de formation débutent par un premier cycle de deux ans dont l'essentiel consiste en une formation en sciences de base (mathématiques, physique, chimie, informatique et sciences du vivant), complétée d'une initiation à la profession d'ingénieur ou d'architecte. Une proportion de 10% de sciences humaines fait également partie du cursus. Le contrôle des études est basé sur le principe des moyennes.

Au second cycle durant deux ans (5 semestres pour la section des Systèmes de communication), la formation dans l'orientation choisie est prépondérante, tout en consolidant les connaissances en sciences de base et en sciences humaines. Pour favoriser les échanges d'étudiants, le contrôle des études est régi par un système de crédits. Le nombre de crédits attribués à chaque branche permet d'en acquérir 60 chaque année, 120 étant nécessaires pour l'ensemble du 2ème cycle. Ce système des crédits est en parfait accord avec le cadre général proposé par les instances européennes, à savoir le système ECTS (European Credit Transfert System). Pour certaines formations, un stage obligatoire peut être exigé.

Dès 2003, cette subdivision devrait changer progressivement, suite à la déclaration de Bologne. La formation, après la première année propédeutique, sera suivie de l'obtention de 120 crédits ECTS conduisant à un titre intermédiaire de bachelor académique. Celuici offrira la possibilité de terminer ses études à l'EPFL ou dans une autre institution équivalente. La formation se terminera par un Master (diplôme) correspondant à 90-120 crédits selon les sections.

Pour obtenir le diplôme d'ingénieur ou d'architecte, il est nécessaire d'effectuer un travail pratique de 4 mois à la fin des études.

Le contrôle des connaissances revêt plusieurs formes : examens oraux ou écrits, laboratoires, travaux pratiques, projets.

Vice-président pour la formation

INFORMATIONS GENERALES

A. Etudes de diplômes

(1) Eventail des sections

Vous pourrez entrer à IEPFL, suivant vos gonts, vos aptitudes et vos projets professionnels dans lune des sections d'études suivantes :

- Génie civil
- Génie rural, enviromement et mensuration
- Génie mécanique
- Microtechnique
- Electricité
- Systèmes de communication
- Physique
- Chimie
- Mathématiques
- Informatique
- Matériaux
- Architecture

La durée minimale des études est de $41 / 2$ années incluant un travail pratique de 4 mois, à lexclusion des formations en Systèmes de communication et en Architecture.
La durée minimale des études en Architecture est de 5 1/2 anmées incluant un stage obligatoire dune année et un travail pratique de 6 mois.
La durée minimale des études en Systèmes de communication est de 5 années incluant un stage obligatoire et un travail pratique pour un total de 6 mois.

2 Inscription

Elle est fixée entre le ler avril et le 15 juillet (sauf pour les échanges officiels).

Les demandes doivent être adressées au Service académique (voir adresse en $2^{\text {ème }}$ page).

(3) Périodes des cours

- Semestre d'hiver: fin octobre à mi-février
- Semestre d'été : mi-mars à fin juin

- Périodes des examens

- Session de printemps :
deux dernières semaines de février
- Session d'été :
trois premières semaines de juillet
- Session d'automne:
deux dernières semaines de septembre et première semaine d'octobre

B. Renseignements et démarches

(Comment venir en Suisse ef obtenir un permis de séjour?

Visa

Suivant le pays dorigine, un visa est indispensable pour entrer en Suisse. Dans ce cas, 11 faut solliciter un visa d'entrée pour études auprès du représentant diplomatique suisse dans le pays dorigine en présentant la lettre dadmission qui est envoyee par le Service académique de IEPFL, dès acceptation de l'admission.
Les visas de "touristes" ne peuvent en aucun cas être transformés en visas pour études après l'arrivée en Suisse.

Etudiants étrangers sans permis de séjour
A son arrivée en Suisse, létudiant se présente au bureau des étrangers de son lieu de résidence, avec les documents suivants :

- Passeport avec visa pour études si requis
- Rapport d'arrivée remis par le bureau des étrangers
- Questionnaire étudiant remis par le bureau des étrangers
- Attestation de l'Ecole remise par IEPFL à la semaine dimmatriculation
- 1 photo format passeport, récente
- Attestation bancaire d'un montant suffisant à couvrir la durée des études mentionnées sur l'attestation de lécole ou
- Relevé bancaire assorti d'un ordre de virement permanent ou
- Attestation de bourse suisse ou étrangère (le montant alloué doit obligatoirement être indiqué) ou
- Déclaration de garantie des parents (formule disponible au bureau des étrangers. Doit être complétée par le père ou la mère, attestée par les autorités locales et accompagnée d'un ordre de virement) ou
- Déclaration de garantie d'une tierce personne (formule disponible au bureau des étrangers. Le garant doit être domicilié en Suisse et prouver des moyens financiers suffisants pour assurer l'entretien de l'étudiant. Sa signature doit être légalisée par les autorités locales).
- Aftestation d'assurance maladie et accident prouvant que les frais médicaux et d'hospitalisation sont couverts en Suisse.

La demande de permis de séjour ne sera enregistrée qu'après obtention de tous les documents requis.

INFORMATIONS GENERALES

Etudiants cetrangers avec permis de séjour B

Documents a présenter dans tous les cas:

- Passeport ou autre pièce didentité
- Questionnaire étudiant
- Attestation de IEcole
- Attestation bancaire ou
- Relevé bancaire ou
- Attestation de bourse ou
- Déclaration de garantie
+ 1. Si habitant de Lausanne
- permis de séjour

2. Si venant dune commune vaudoise

- permis de séjour avec visa de départ de la demiere commune de domicile
- bulletin d'arrivée

3. Si venant dune autre commune de Suisse - permis de séjour avec visa de départ de la demiere commune de domicie

- Rapport d'amivée
- 1 photo

Etudiants mariés

Le BUREAU DES ETRANGERS ne délivre aucun permis de séjour aux conjoints (sauf s'ils sont eux aussi immatriculés), ni à leurs enfants. Conjoints et enfants peuvent cependant faire chaque année deux séjours de 90 jours en Suisse au titre de "touristes".

Prolongation du permis de séjour

Les étudiants étrangers régulièrement inscrits dans une université ou école polytechnique suisse obtiennent, sur demande, un permis de séjour d'une année, renouvelable d'année en année, mais limité à la durée des études. Ce permis ne peut pas être transformé en permis de séjour normal, accompagné dun permis de travail régulier en Suisse. Les étudiants en provenance de l'étranger doivent donc quitter la Suisse peu après la fin de leurs études.

2 Finances, taxes de cours et dispenses

Les montants mentionnés ci-dessous (valeur 97/98) peuvent être modifiés par le Conseil des écoles polytechniques fédérales.

Finances et taxes de cours

Au debut de chaque semestre et dans les delais, chaque étudiant doit payer ses finances et taxes de cours au moyen du bulletin de versement qui lui parvient par la poste ou qui est remis aux nouveaux étudiants lors de la semaine d'immatriculation (deux semaines avant le début des cours du semestre dhiver).
Les finances et taxes de cours s'elèvent, par semestre, à FS 592.-. De plus une taxe dimmatriculation de FS 50.- pour les porteurs d'un cettificat suisse et de FS 110.- pour les
porteurs d'un certificat étranger est perçue au ler semestre al PEPEL.

Dispenses

Des demandes de dispenses (uniquement de la finance de cours) peuvent être déposées au Service social de lEPFL dans les premiers jours du mois de septembre précédant l'année académique concernée. Les étrangers non résidant en Suisse ne peuvent pas déposer de demande pour leur première année détudes.
II est impératif d’assurer le financement des études avant de sinscrire a IEPFL, pour éviter une perte de temps, des désillusions et pour assurer une bonne intégration.

(3) Assurance maladie et accident

L'assurance maladie et accidents est obligatoire en Suisse. Tout étudiant étranger doit s'affilier à une assurance reconnue par la Suisse. S'ils le désirent, les étudiants peuvent adhérer, a l"assurance collective de l'EPFL, la SUPRA.
Pour un séjour de courte durée et si les conditions requises sont remplies, une dérogation est possible.
En outre, il est impératif d'arriver en Suisse avec une dentition en bon état, car les frais dentaires n'etant pas pris en charge par les caisses maladie, les factures peuvent atteindre une somme considérable pour un étudiant. Pour tout renseignement et adhésion, prière de s'adresser au Service social (voir adresse en page de couverture).

(afice de la mobilité

L'office de la mobilité organise les échanges d'étudiants.

- Il informe les étudiants de lePFL intéressés à un séjour d'études dans une autre Haute école suisse ou étrangère.
- Il prépare l'accueil des étudiants étrangers venant accomplir une partie de leurs études à lPPFL (logement, renseignements pratiques, etc...).

Les heures de réception figurent en page de couverture.

© Service social

Pour tout consell en cas de difficultés économiques, administratives ou personnelles, les étudiants peuvent consulter le Service social de IEPFL.
Les heures de réception figurent en page de couverture.

INFORMATIONS GENERALES

(6) Documents officiels pendant les études

Calendrier académique

Ce document, joint à l'admission defuitive, donne toutes les dates et échéances indispensables pour les études.

Horaire des cours

Ce document est à disposition au Service académique ou à l'adresse Internet http//daawww.epl.ch/daa/sac/. It est edité chaque semestre et contient, pour chaque section, le placement à lhoraire et le lieu ou se déroulent les cours, exercices et travaux pratiques.

Langues d'enseignement

Une bonne connaissance du français est indispensable pour les études de diplôme et posigrades. Pour ces demières, la connaissance de langlais peut être exigée.

Un cours intensif de français est organisé de mi-septembre à mi-octobre pour les nouveaux étudiants étrangers.

C. Vie pratique

- Coutt des études

Budget

Le budget annuel indicatif est le suivant:

- frais de scolarité et matériel
- Logement

FS 2300.-

- Nourriture
- Habits et effets personnels FS 1000.
- Assurances, transports, divers ES 3000.Total

Frais courant d'entretien

Les frais de nourriture se montent au minimum à FS 500.par mois.
Les couts du matériel scolaire varient sensiblement. En debut de formation, les étudiants doivent parfois s'équiper pour le dessin, acheter des machines à calculer, etc. Les cours polycopiés édités à lePFL contribuent à limiter les frais, mais il faut compter un minimum de FS 1200.- par an pour pouvoir étudier sans être trop dépendant des bibliothèques et du matériel d'autrui.
Les loisirs représentent un montant indispensable du budget pour maintenir un équilbre personnel et étendre sa culture générale. Il faut compter environ FS 30 .- pour aller
au spectacle et entre FS 12.- et FS 15.- pour une place au cinéma.
Dautres frais sont importants dans un budget mensuel : le logement, les finances de cours, les transports, lassurance maladie et accident (voir chapitres correspondants).

(3) Logement

Lausanne est une agglomération de 200000 habitants. Malgré sa taille, elle ne possède pas de campus universitaire et il appartient à chacun de se trouver un logement.

Service du logement

A disposition des étudiants de lUniversité de Lausame et de IEPFL, le Service des affaires socioculturelles de MUniversité de Lausame est situé dans le bâtiment du Rectorat et de l'Administration.
Ce service centralise les offres de chambres chez
Thabitant, en ville ou à proximité des deux Hautes Ecoles. Il peut s'agir de chambres dependantes (dans un appartement privé) ou de chambres indépendantes (prix entre FS 400 .- et FS 500.-).
Les heures de réception figurent en $2^{\text {mae }}$ page.

Foyers pour étudiants

Ils offrent plus de 1000 lits pour une communauté universitaire de 12000 étudiants (Université de Lausanne + EPFL). Dans les foyers, les loyers mensuels varient entre FS 300.~ et ES 600.--
La Fondation Maisons pour étudiants gère plusieurs immeubles comprenant des chambres meublées ou non et des studios. Pour tous renseignements et reservations concernant ces foyers, réservés aux éudiants, s'adresser à la Direction des Maisons pour étudiants ou au Foyer catholique universitaire dont les adresses figurent en $2^{\text {eme }}$ page.

Studios et appartements

Les prix des studios et appartements commencent dè FS 600.- par mois. Il faut savoir que la gérance ou le propriétaire demandent, avant d'entrer dans le logement, une garantie de trois mois de loyer. Ainsi, pour obtenir la location d'un studio à FS 600 - - par mois, la garantie s'elèvera à FS 1800.- plus le loyer du premier mois, soit au total FS 2400.-.
La plupart des logements sont loués non meublés. Pour un aménagement sommaire, avec du mobilier neuf, mais modeste, il faut compter FS 2:500... Beaucoup d'étudiants ont recours à la récupération et aux occasions, ce qui diminue quelque peu ce montant. Les cuisines sont habituellement équipées d'un petit frigo, d'une cuisinière et de placards.
Il est dusage que les immeubles assez récents soient pourvus dune buanderie collective ou les locataires

INFORMATIONS GENERALES

utilisent une machine a laver a tour de role, contre paiement.
De plus, il faut absolument faire établir un devis avant de commander des travaux tels que mise en place de moquette et rideaux, dinstallations électriques et du téléphone, pour éviter des surprises désagréables. Pour lusage du téléphone, les PTT demandent une garantie jusqu'a FS 2500.- L'abomement mensuel coûte de FS 20.- à FS 30...

(3) Restauration

Divers restaurants et cafétérias sont à la disposition des étudiants de MEPFL qui peuvent y prendre leur repas de midi et du soir. Les étudiants peuvent acheter à 1'AGEPOLY des coupons-repas, leur domant droit a un prix de FS 6.50 par repas (valeur octobre 1999).

© Travaux rémunérés

Les possibilités pour un étudiant de payer ses études en travaillant sont soumises à trois types de contraintes.

Contrainte légale

La Police cantonale des étrangers autorise les étudiants étrangers, 6 mois après leur arrivée, à travailler au maximum 15 heures par semaine, pour autant que cet emploi ne compromette pas les études. Un permis de travail spécial est alors accordé. La police exerce un controlle constant et efficace sur les étudiants-travailleurs. Les démarches sont à faire auprès du Service social.

Contrainte académique

Lhoraire compte environ 32 heures de cours, exercices et travaux pratiques par semaine auxquelles il convient d'ajouter 15 à 20 heures de travail personnel régulier (sans compter les préparations dexamens). Avec une charge de 50 à 60 heures par semaine, il est difficile de gagner beaucoup dargent en parallele.

Contrainte conjoncturelle

Comme partout, la récession se fait sentir en Suisse et il n'est pas facile de trouver du travail. Voici un aperçu du salaire-horaire pour certains travaux :

- baby-sitting
FS 8.- / heure
- traductions

FS
35.-/ page

- magasinier

FS 16.-/ heure

- leçons de math.

ES 20.-/ heure

- assistant-étudiant FS 21.-/heure

Un panneau d'affichage répertoriant des offres de petits travaux se trouve à l'extérieur du Service social.

6 Transports

Le site principal de IEPFL et de lUniversité de Lausanne est relié à la gare CFF de Renens et à la place du Fion au centre de Lausanne par le Métro-Ouest (TSOL).

© Parkings

Des parkings sont a disposition des étudiants sur le site de IEPFL, moyennant lacquisition au bureau "Accueilinformation" (centre Midi - ler ćtage) dune vignette semestrielle de FS 75.- ou annuelle de FS 150.- (valeurs janvier 95).

- Aide aux études

Les bibliotheques

Pour compléter les possibilités de la Bibliothèque Centrale et les connaissances à acquérir, de nombreux départements et laboratoires disposent de leur propre bibliothèque.

Les salles d'ordinateurs

Certains cours ont lieu dans des salles équipées d'ordinateurs qui sont souvent laissées en libre accès en dehors des heures de cours.

© Commerces

Pour faciliter la vie estudiantine, certains commerces se sont installés sur le site de IEPFL:

- une poste
- une banque
- une agence d'assurance
- une épicerie
* une agence de voyage
- une antenne des CFF
- une librairie.

- Centre sportif universitaire

Pour un nouvel art de vivre, pour joindre futile à l'agréable, pour profiter dun site sportif exceptionnel, 55 disciplines sportives vous sont proposées avec la collaboration de 120 moniteurs.

Une brochure complète de toutes les disciplines sportives mentionnant les heures de fréquentation est à disposition des étudiants, au Service académique, chaque année au début du semestre dhiver.

GENERAL INFORMATION

How the diploma course is organised

The degree courses for Engineers, Architects and scientists at the EPFL are made up of two cycles. Each year of study is divided into two periods of 14 weeks; the exam dates are not in these periods.

The twelve courses of study start with a first cycle of two years of which the main part is the study of basic science subjects (mathematics, physics, chemistry, computer science and life sciences), to which is added an introduction to the profession of engineer or architect. A proportion of 10% of this cycle is also taken up by human sciences. The pass mark is based on a system of averages.

In the second cycle which lasts two years (5 semesters for the Communications systems section), the main study is in the chosen subject, but there is a continuation of the study of the basic subjects as well as of human sciences. To encourage student exchange, a credit system is in operation for this cycle. The number of credits possible for each subject allows a student to obtain 60 each year, 120 being necessary for the entire cycle. This credit system fits into the general framework agreed by the European authorities, i.e. the ECTS system (European Credit Transfer System). For some courses there is an obligatory practical period.

From 2003, this subdivision should change progressively, following the Bologna declaration. The first foundation year will be followed by a study period counting for 120 ECTS which will lead to a first degree, an academic Bachelor. This degree will enable the holder to finish his or her studies at the EPFL or in another equivalent academic institution. The study period ends with a Master (diplome) corresponding to $90-120$ credits depending on the subject chosen.

To obtain the Engineer's or Architect's diploma, it is also necessary to do a practical project of 4 months at the end of the study period.

The kind of exams can vary: oral or written exams, laboratory tests, practical projects or exercises.

Professeur Marcel Jufer

Vice-président pour la formation

GENERAL INFORMATION

A. Study information

0 Departments

Diploma courses are held in the following departments:

- Architecture
- Chemistry and Chemical engineering
- Civil engineering
- Communication systems
- Computer sciences
- Electrical engineering
- Environmental sciences and engineering
- Materials sciences
- Mathematics
- Mechanical engineering
- Microtechnical engineering
- Physics

The minimal study period is $41 / 2$ years including a 4 month practical project, with the exception of Architecture and Communication systems.
The minimal study period for a diploma in Architecture is $51 / 2$ years, including an obligatory year of practical experience and a practical project of 6 months. The minimal study period for a diploma in Communication systems is 5 years, including practical experience and a practical project of 6 months.

(2) Enrolment

Enrolment dates are between 1st April and 15th July (except for official exchanges).

Applications must be addressed to the Service académique, av. Piccard, EPFL - Ecublens, CH - 1015 LAUSANNE.

(3) Course dates

Winter semester : end October to mid-February
Summer semester : mid-March to end June

(4) Exam dates

- Spring session:
last two weeks of February
- Summer session :
first three weeks of July
- Autumn session : two last weeks of September and first week of October

B. Information and procedure

- Foreign student permits and visas for entering Switzerland

Visas

Depending on the future student's country of origin, a visa is indispensable for entry into Switzerland. A student visa can be obtained from the Swiss diplomatic representative in the country of origin by showing the acceptance letter sent by the EPFL Service académique (which is sent at the end of the full admission procedure).
Tourist visas cannot be changed to student visas once in Switzerland.

Foreign students without resident permits

On arrival in Switzerland, the student must report to the " bureau des étrangers " of the town or village in which he or she will be living, with the following documents:

- Passport
with student visa if necessary
- Arrival report
supplied by the " bureau des étrangers"
- Student questionnaire supplied by the " bureau des étrangers"
- Proof of studentship provided by the EPFL during the admissions week
- 1 recently taken passport photo
- Bank statement indicating an amount sufficient to cover the costs of studies mentioned on the proof of studentship or
- Bank form with standing order or
- Proof of a Swiss or foreign grant (the amount allocated must be indicated) or
- Parental guarantee (this form can be obtained from the "bureau des étrangers". It must be completed by the mother or father, certified by the local authorities and attached to a standing order or
- Guarantee statement (this form can be obtained from the " bureau des étrangers". The guarantor must be living in Switzerland and be able to prove he or she has the financial means to support the student. His or her signature must be certified by the local authorities
- Proof of medical and accident insurance for Switzerland

The student permit, which costs about FS 100.- for the first year, will only be issued after all the documents have been provided.

GENERAL INFORMATION

Foreign students with a B permit

Documents to be provided:

- Passport or identity papers
- Student questionnaire
- Proof of studentship from the EPFL
- Bank statement or
- Bank document or
- Proof of grant or
- Guarantee statement
+ 1. If resident in Lausanne
- residence permit

2. If resident in the Canton de Vaud

- resident permit with departure visa from the last commune and the visa from the present commune plus amval certificate

3. If coming from a commune in Switzerland outside Vaud

- resident permit with departure visa from the last commune, arrival report and 1 photo

Married students

The "Bureau des étrangers " will not issue residence permits for spouses unless they also have student status, and will not issue residence permits to students' children. However, spouses and children can visit for up to two $90-$ day periods as tourists in any one year.

Prolongation of student visas

Students enrolled to study at the University or EPFL will receive one-year permits, which are renewed every year for the length of the course enrolled for. This student permit cannot be changed into a regular resident permit for work purposes. Foreign students must therefore leave Switzerland on completion of their studies.

(2) Registration, tuition fees and exemptions

The amounts mentioned below (price 97/98) are subject to modification by the Conseil des écoles polytechniques fédérales.

Registration and tuition fees

Fees must be paid before each semester by means of a Post Office payments slip, which each student will receive by post or which new students will be given during the registration week, held two weeks before the start of the autumn/winter semester. Foreign students may pay by banker's order.
The registration and tuition fees are SF 592.- per semester. In addition to this there is a supplementary fee for the first semester at the EPFL of SF 50.- for holders of a Swiss certificate and SF 110.- for holders of foreign certificates.

Exemptions

Requests for exemptions (for the registration fee only) can be made to the Social Services of the EPFL at the beginning of September before the corresponding academic year. Non-resident foreign students cannot make a request the first year.
It is essential for students to ensure that they have proper financial provision for studying before enrolling at the EPFL, to avoid disappointment and wasted time as well as to ensure full integration.

3 Accident and health insurance

Students at the EPFL are legally obliged to be insured against illness and accidents with an insurance company recognised by Switzerland. It is possible for students to obtain insurance though the EPFL insurance scheme, the SUPRA.
Exceptions can be made for those students who are on very short courses.
In addition, it is important to arrive in Switzerland with teeth in good order, because dental work is not included in health insurance and it can be very expensive.
Information and application forms for insurance can be obtained through our social services office (see address on the last but one page)

(4) Mobility

The " office de la mobilite " organises student exchanges.

- It provides information to those EPFL students interested in a study period either in another Swiss University or abroad
- It organises the administrative matters for foreign students coming to the EPFL on a student exchange (lodgings, practical information, etc..).

Opening hours of this office are to be found on the last but one page of this brochure.

(3) Social services

The EPFL social services are available to provide advice in the case of financial, personal or administrative problems.

Opening hours for this office are to be found on the last but one page of this brochure.

GENERAL INFORMATION

6 Official study documents

Academic calendar

This is given at the time of admission, and contains all the essential dates for a student at the EPFL.

Timetables

They can be obtained from the Service académique or at the adress Intemet http:/daawww.epl.ch/daa/sac/. It is printed every semester and contains for every Department, the place and time for all lectures, exercises or practical projects.

(7) Teaching language

An excellent knowledge of French is essential for the diploma course and most of the postgraduate courses. For some postgraduate courses English is also essential. An intensive French course is available from midSeptember to mid-October for foreign students.

C. Information for day-to-day living

(1) Study costs

Budget

The following annual budget will give you an idea of expenses involved in studying here:

- Fees and books SF 2,300.-
- Lodgings

SF 4,900.-

- Food
- Clothing and personal items
- Insurance, transport, other. Total

C Lodgings

Despite the fact that the Lausanne area has a population of 200,000 , there is no university campus as such and it is up to students to find their own lodgings.

Lodgings office

This function is carried out by the "Service des affaires socioculturelles " at Lausame University and is to be found in the Admissions and Administration building (Rectorat et Administration).
This office centralises all the offers of rooms to let, in the town or near to the University or the EPFL. These can be rooms in private homes or independent rooms (prices vary between FS 400 .- and FS 500 .-).
Opening hours can be found on the last but one page of this guide.

Halls of residence

There are more than 1,000 beds available for a student population of 12,000 (University and EPFL). In these halls the rent varies from SF 300.- to SF 600.-.
The "Fondation Maisons" for students runs several halls of residence, which consist of furmished and unfurnished rooms as well as one-room apartments. For further information and reservations concerning these halls of residence, please contact " la Direction des Maisons pour etudiants" or the "Foyer catholique universitaire" whose addresses you will find on the last but one page of this guide.

Studios and apartments

The prices of studios and apartments start around SF 600.a month. In addition, the renting agency will require a deposit equivalent to three months rent, returnable on departure. So to rent a studio at SF 600 .- a month, the deposit will come to SF 1,800.-, in addition to the rental for the first month, coming to a total of SF 2,400.-. Most lodgings are rented non-furnished. Even cheap new furnishings will cost at least SF 2,500.-. Many students use second-hand furnishings. Kitchen areas are usually equipped with a small fridge, cooker and cupboard space. Most apartment blocks have a communal laundry room where a coin-operated washing machine is available as well as drying space.
To avoid any unpleasant surprises, it is important to ask for an estimate before going ahead with any installation of electrical equipment, telephones or carpeting etc..
The PTT (telephone company) will require a guarantee of up to SF 2,500.- The monthly rental is SF 20.- to SF 30.-.

3 Campus restaurants

Several restaurants and cafeterias are available to EPFL students for midday and evening meals Students can buy

GENERAL INFORMATION

restaurant tickets from the AGEPOLY, allowing them to buy a meal for SF 6.50 (price as at October 1999).

(4) Paid work

The possibility for students to pay their way while studying is subject to three constraints.

Legal constraint

The cantonal police for foreigners allows foreign students to work a maximum of 15 hours a week, but only six. months after their arrival in Switzerland, and only if the work does not interfere with their studies. A special work permit is necessary. The police keep a close watch on student workers.
More information can be obtained from the EPFL Social services.

Studying constraint

Lectures, exercises and practical exercises amount to about 32 hours a week. In addition one must allow for 15 to 20 hours of homework (without exam preparation). So with 50 to 60 hours of work a week, it is difficult to earn much money at the same time.

General constraints

As everywhere, the recession has reduced the number of oddjobs available. Below you will find the rates for various student jobs.

- baby-sitting
- translations

SF 8.-hour

- shelf-filler
- maths lessons
- student assistant
21.-/hour A notice board with various job offers is to be found just outside the Social services office.

(9) Transport

The main site of the EPFL and University is connected to the railway station at Renens and to the Place du Flon in the centre of Lausanne by the tube line Métro-Ouest (TSOL).

6 Car parking

Paying car parks are available at the EPFL. Students who wish to use these must buy either a semestrial (SF 75.-) or annual (SF 150.-) sticker and display it on the inside of the car's windscreen. These can be purchased from the
"Accueil-information" Centre Midi-1st floor).

Study help

Libraries

In addition to the main library (BC) there are also a number of Departments and laboratories which have their own libraries.

Computer rooms

Some courses are given in rooms equipped with computers and these rooms are often left open for student use out of class hours.

(8) Shops

- To make student life more convenient there are several shops on-site:
- post-office
- bank
- insurance agent
- grocery
- travel agent
- railway agent
- bookshop.

© University sports facilities

In order to enjoy time away from studying a beautiful sports centre is available, staffed by 120 teachers. There are 55 sports to chose from.
A complete brochure detailing all these sports and giving dates and times is available to students from the Service académique at the start of the autumn term.

CALENDRIER ACADEMIQUE 2002-2003

INFORMATIONS GENERALES

IMPORTANT	Si les circonstances liexigent, ce document peut être soumis à modification
DUREE DES SEMESTRES	HIVER : du 21 octobre 2002 au 7 février $2003=14$ semaines Interruption du 21 décembre 2002 au 5 janvier 2003 ETE : du 10 mars 2003 au 20 juin $2003=14$ semaines Interruption du 18 avril au 27 avril 2003 (Pâques)
PERIODES DES EXAMENS EN 2003	Session de printemps : du 10 février au 1er mars 2003 Session d'été : du 30 juin au 19 juillet 2003 Session d'automne : du 15 septembre au 4 octobre 2003
SITES WEB	Le calendrier académique ainsi que l'horaire des cours se trouvent sur le site Internet du Service académique : http://www.epfl.ch/sac
BRANCHES D'EXAMENS	Pour toutes les branches d'examens choisies hors de votre plan d'études, vous devez vous assurer personnellement que la branche est bien examinée lors de la session choisie (voir livret des cours) et vous adresser directement auprès de l'enseignant pour fixer une date d'examen
DELAI	En cas de non-respect, par un étudiant, d'un délai prescrit, une taxe de Fr. 50.-- sera perçue, conformément à l'Ordonnance sur les taxes perçues dans le domaine des Ecoles Polytechniques Fédérales
$\begin{aligned} & \text { DELAI D'INSCRIPTION AUX } \\ & \text { EXAMENS } \end{aligned}$	Les inscriptions tardives, moyennant une taxe de Fr. 50..-- , sont prises en compte jusqu'à la fin de la période de retrait
RETRAIT AUX EXAMENS	Aucun retrait ne sera pris en compte après la fin de la période autorisée
ABREVIATIONS	SAC : Service académique SOC : Service d'Orientation et Conseil
PERIODE DES COURS POUR 2003-2004	Semestre d'hiver : du 20.10.2003 au 06.02.2004 Semestre d'été : du 08.03.2004 au 18.06.2004
$\begin{aligned} & \text { PERIODE DES COURS } \\ & \text { POUR 2004-2005 } \end{aligned}$	Semestre d'hiver : du 18.10.2004 au 04.02.2005 Semestre d'été : du 07.03.2005 au 17.06.2005

Ordonnance générale
 sur le contrôle des études à l'Ecole polytechnique fédérale de Lausanne
 (Ordonnance sur le contrôle des études à l'EPFL)

du 10 août 1999

La Direction de l'Ecole polytechnique fédérale de Lausanne,

vu l'art. 28, al. 4, let. a, de la loi fédérale du 4 octobre 1991 sur les EPF ${ }^{1}$, vu les directives du 14 septembre 1994 du Conseil des EPF concernant les études dans les EPF ${ }^{2}$ arrête:

Chapitre premier Dispositions générales

Section 1 Objet et champ d'application

Art. 1 Objet

La présente ordonnance arrête les principes régissant l'organisation du contrôle des études à l'Ecole polytechnique fédérale de Lausanne (EPFL).

Art. 2 Champ d'application

${ }^{1}$ La présente ordonnance s'applique aux $1^{\text {er }}$ et 2^{e} cycles des études de diplôme de l'EPFL.
${ }^{2}$ Dans la mesure où la direction de l'EPFL n'a pas édicté de règles particulières, les art. 6, 8, 11, 12, 16,17 et 18 s'appliquent également :
a. aux examens du Cours de mathématiques spéciales (CMS);
b. aux examens d'admission;
c. aux examens d'admission au doctorat et aux examens de doctorat;
d. aux examens des programmes pré-doctoraux et doctoraux;
e. aux examens organisés en vue de l'obtention du certificat d'enseignement supérieur de mathématiques appliquées ou d'un certificat analogue.
${ }^{3}$ Dans la mesure où la direction de l'EPFL n'a pas édicté de règles particulières, les articles mentionnés à l'al. 2, à l'exception de l'art. 6, s'appliquent également aux examens organisés dans le cadre des études postgrades (cours et cycles).

Section 2 Définitions générales

Art. 3 Contrôle
${ }^{1}$ Le contrôle des études peut être ponctuel, continu ou à la fois ponctuel et continu.
${ }^{2}$ Par contrôle ponctuel, on entend l'interrogation ponctuelle portant sur une branche.

[^0]${ }^{3}$ Par contrôle continu, on entend les exercices, travaux pratiques, laboratoires et projets.
${ }^{4}$ Le contrôle ponctuel ou continu est obligatoire lorsque la note obtenue est prise en compte dans le calcul de la note sanctionnant la branche.
${ }^{5}$ Si le contrôle continu est facultatif, il contribue uniquement à augmenter la note de la branche correspondante à raison d'un point au maximum. Les enseignants ne sont pas tenus d'organiser ce type de contrôle.
${ }^{6} \mathrm{Si}$ l'étudiant ne se soumet pas au contrôle continu facultatif, seule la note du contrôle ponctuel est prise en considération.

Art. 4 Branches
'Une branche est une matière ou un ensemble de matières faisant l'objet d'un contrôle qui donne lieu à une note.
${ }^{2}$ Une branche dite de semestre est une branche notée exclusivement pendant le semestre ou l'année.
${ }^{3}$ Une branche dite d'examen est une branche noté exclusivement pendant une session d'examen.
${ }^{4}$ Une branche dont la note résulte à la fois d'un contrôle effectué pendant le semestre ou l'année et d'un contrôle effectué pendant une session d'examen est assimilée à une branche d'examen.
${ }^{5} \mathrm{Au} 2^{\mathrm{e}}$ cycle, une branche dite de diplôme est une branche qui est examinée en automne en présence d'un expert externe. L'interrogation se fait oralement, sauf dérogation accordée par le directeur des affaires académiques. La note sanctionnant la branche de diplôme peut tenir compte de la note obtenue sur la base d'un contrôle continu.

Art. 5 Examens

${ }^{1}$ Un examen est un ensemble d'épreuves portant sur les branches faisant l'objet d'un contrôle ponctuel ou continu, ou à la fois ponctuel et continu.
${ }^{2}$ Les examens comprennent :
a. au $1^{\text {er }}$ cycle :

- deux examens propédeutiques à la fin du deuxième et du quatrième semestres d'études, portant chacun sur dix branches d'examen au plus et sur des branches de semestre;
b. au $2^{\text {e chcle }}$:
- un examen d'admission au travail pratique de diplôme portant sur toutes les branches faisant l'objet d'un contrôle au 2^{e} cycle;
- un travail pratique de diplôme.

Section 3 Dispositions générales communes aux 1^{er} et 2^{e} cycles

Art. 6 Appréciation des travaux
Les travaux sont notés de 1 à 6 , la moyenne étant de 4 . Seuls les points entiers et les demi-points sont admis. Le zéro est réservé au cas où l'étudiant ne s'est pas présenté, sans motif valable dont il puisse justifier, à l'épreuve à laquelle il était inscrit, de même qu'au cas où il s'est présenté à l'épreuve, mais a rendu feuille blanche.

Art. 7 Sessions d'examens, inscription et retrait
${ }^{1}$ L'EPFL organise trois sessions d'examens par année académique : au printemps, en été et en automne. Ces sessions ont lieu en général en dehors des semestres de cours.
${ }^{2}$ Le directeur des affaires académiques organise les examens. Il fixe les dates des sessions, les modalités d'inscription et établit les horaires qu'il porte à la connaissance des intéressés.
${ }^{3}$ Il communique la période d'inscription aux examens ainsi que la date limite pour le retrait des candidatures.

Art. 8 Interruption des examens et absence
${ }^{1}$ Dix jours avant le début d'une session, les inscriptions des étudiants aux diverses épreuves de ladite session sont définitives et l'étudiant ne peut les modifier. Seuls les résultats obtenus dans le cadre des épreuves pour lesquelles l'étudiant était inscrit définitivement seront pris en considération.
${ }^{2}$ Lorsque la session a débuté, l'étudiant ne peut l'interrompre que pour un motif important et dûment justifié, notamment une maladie ou un accident attestés par un certificat médical. Il doit aviser immédiatement le directeur des affaires académiques et lui présenter les pièces justificatives nécessaires, au plus tard dans les trois jours qui suivent la survenance du motif d'interruption.
${ }^{3}$ Le directeur des affaires académiques décide de la validité du motif invoqué.
${ }^{4}$ Les notes des branches examinées restent acquises si le directeur des affaires académiques considère l'interruption justifiée.
${ }^{5}$ Le fait de ne pas terminer un examen équivaut à un échec.
${ }^{6}$ L'étudiant qui, sans motif important et dûment justifié, ne se présente pas à une épreuve à laquelle il était inscrit reçoit la note zéro.
${ }^{7}$ L'invocation de motifs personnels ou la présentation d'un certificat médical après la session ne justifient pas l'annulation d'une note.

Art. 9 Langue des examens

Les examens se déroulent en français. Des dérogations peuvent être accordées par le directeur des affaires académiques.

Art. 10 Enseignants

${ }^{1}$ L'enseignant interroge l'étudiant sur les matières qu'il enseigne. S'il en est empêché, le directeur des affaires académiques désigne un remplaçant.
${ }^{2}$ Si la présente ordonnance et les règlements d'application du contrôle des études n'en disposent pas autrement, les enseignants :
a. donnent aux départements les informations nécessaires sur leurs matières d'enseignement pour qu'elles soient publiées dans le livret des cours;
b. informent les étudiants du contenu des matières et du déroulement des interrogations;
c. conduisent l'interrogation;
d. prennent des notes de chaque interrogation orale;
e. attribuent les notes;
f. conservent pendant six mois les notes prises durant les interrogations orales ainsi que les travaux écrits, ce délai étant prolongé en cas de recours.

Art. 11 Experts

${ }^{1}$ Pour l'interrogation orale des branches d'examen autres que celles de diplôme, un expert de l'EPFL est désigné par le directeur des affaires académiques sur proposition de l'enseignant et en accord avec le chef du département ou le chef du conseil de la section.
${ }^{2}$ Pour les branches de diplôme et pour le travail pratique de diplôme, un expert externe est désigné par le directeur des affaires académiques sur proposition de l'enseignant et en accord avec le chef du département ou le chef du conseil de la section.
${ }^{3}$ L'expert prend des notes pendant l'interrogation orale; ces informations peuvent être demandées par la conférence des notes et, le cas échéant, par les autorités de recours. L'expert veille au bon déroulement de l'interrogation, joue un rôle d'observateur et de conciliateur et peut, à la demande de l'enseignant, participer à la notation.

Art. 12 Consultation des travaux
${ }^{1}$ L'étudiant peut consulter ses travaux auprès de l'enseignant dans les six mois qui suivent l'examen.
${ }^{2}$ La consultation des travaux est réglée à l'art. 26 de la loi fédérale sur la procédure administrative ${ }^{3}$.

Art. 13 Commissions d'examen

${ }^{1}$ Des commissions d'examen peuvent être mises sur pied pour les branches de semestre. L'évaluation des travaux se fait alors sur la base d'une présentation orale par l'étudiant.
${ }^{2}$ Outre l'enseignant et l'expert, ces commissions peuvent comprendre les assistants et les chargés de cours qui ont participé à l'enseignement, ainsi que d'autres professeurs.

Art. 14 Conférence des notes

${ }^{1}$ Pour chaque session, une conférence des notes est organisée. Elle est composée du président de la commission d'enseignement de l'EPFL qui la préside, du président de la commission d'enseignement du département ou de la section, du directeur des affaires académiques et du chef du service académique. Les membres de la conférence des notes peuvent se faire remplacer par leurs suppléants.

Art. 15 Admission à des semestres supérieurs
${ }^{1}$ Pour pouvoir s'inscrire au 3^{e} ou au 5° semestre, l'étudiant doit avoir réussi l'examen propédeutique I ou II. L'étudiant admis à se présenter à la session de printemps en vertu de l'art. 21, al. 2 peut être autorisé à suivre l'enseignement du semestre d'hiver supérieur avec l'accord du directeur des affaires académiques.
${ }^{2}$ En cas d'échec à la session de printemps, l'étudiant ne peut pas continuer le programme du semestre d'été supérieur.

Art. 16 Fraude
'Par fraude, on entend toute forme de tricherie permettant d'obtenir une évaluation non méritée.
${ }^{2}$ La fraude, la participation à la fraude ou la tentative de fraude sont sanctionnées par l'ordonnance du 17 septembre 1986 sur la discipline à l'Ecole polytechnique fédérale de Lausanne ${ }^{4}$.

[^1]
Art. 17 Communication des résultats

${ }^{1}$ Le directeur des affaires académiques notifie aux étudiants la décision de réussite ou d'échec aux examens ou au travail pratique de diplôme.
${ }^{2}$ La décision fait mention des notes obtenues et des crédits acquis au 2^{e} cycle.
Art. 18 Demande de nouvelle appréciation et recours administratif
${ }^{1}$ La décision rendue par le directeur des affaires académiques en vertu de la présente ordonnance peut faire l'objet d'une demande de nouvelle appréciation dans les 10 jours qui suivent sa notification.
${ }^{2}$ Elle peut également faire l'objet d'un recours administratif auprès du Conseil des Ecoles polytechniques fédérales dans les 30 jours qui suivent sa notification.
${ }^{3}$ Les délais prévus aux al. 1 et 2 courent simultanément.

Chapitre $21^{\text {er }}$ cycle-examens propédeutiques

Art. 19 Règlements d'application du contrôle des études
Les règlements d'application publiés par la direction de l'EPFL définissent :
a. les branches de semestre et les branches d'examen;
b. la nature du contrôle des branches d'examen (écrit, oral ou défense d'un mémoire);
c. les coefficients attribués à chaque branche;
d. les conditions de réussite.

Art. 20 Livrets des cours
Les livrets des cours publiés par les départements indiquent le contenu de chaque matière.
Art. 21 Sessions d'examens
${ }^{1}$ Deux sessions ordinaires, en été et en automne, sont prévues pour chaque examen propédeutique. L'étudiant choisit la session à laquelle il désire présenter chaque branche d'examen; il doit toutefois avoir présenté l'ensemble des branches d'examen à l'issue de la session d'automne.
${ }^{2}$ Lorsque l'étudiant est dans l'impossibilité de se présenter à la session d'été ou à la session d'automne pour un motif important et dûment justifié, notamment une maladie, un accident ou une période de service militaire, le directeur des affaires académiques peut l'autoriser à se présenter à une session extraordinaire organisée au printemps.

Art. 22 Moyennes

Les moyennes définies dans les règlements d'application sont calculées en pondérant chaque note par son coefficient.

Art. 23 Conditions de réussite
${ }^{1}$ L'examen propédeutique est réputé réussi lorsque l'étudiant a obtenu une moyenne générale égale ou supérieure à 4 et à condition qu'il n'ait pas reçu un zéro dans une branche de semestre.
${ }^{2}$ Les règlements d'application du contrôle des études peuvent en outre poser des conditions particulières supplémentaires.

Art. 24 Répétition

${ }^{1}$ Si un étudiant a échoué à l'un des examens propédeutiques, il peut le présenter une seconde et dernière fois, dans le délai d'une année.
${ }^{2}$ Si l'étudiant est en mesure de justifier un motif d'empêchement important, le directeur des affaires académiques peut prolonger ce délai à titre exceptionnel.
${ }^{3}$ Les règlements d'application du contrôle des études peuvent prévoir qu'une moyenne suffisante dans le groupe des branches d'examen ou dans celui des branches de semestre reste acquise en cas de répétition.
${ }^{4}$ Lorsque, dans les branches de semestre, une note ou une moyenne égale ou supérieure à 4 est une condition de réussite et que celle-ci n'est pas remplie, l'étudiant est tenu de suivre à nouveau les branches de semestre en répétant l'année.
${ }^{5}$ En cas de modification du plan d'études et du règlement d'application, l'étudiant qui redouble est tenu de se conformer aux dispositions en vigueur, à moins que le directeur des affaires académiques n 'arrête des conditions de répétition particulières.

Chapitre $3 \quad 2^{e}$ cycle - examen d'admission au travail pratique de diplôme

Art. 25 Crédits

${ }^{1}$ A chaque branche du 2° cycle est associé un certain nombre de crédits, correspondant à un volume de travail moyen estimé pour cette branche.
${ }^{2}$ Les plans d'études sont conçus de façon à permettre aux étudiants d'acquérir 60 crédits en une année.
${ }^{3}$ Chaque branche fait l'objet d'un contrôle noté à la fin d'un semestre ou à la fin d'une année. Les crédits sont attribués lorsque la note obtenue dans la branche est égale ou supérieure à 4 .
${ }^{4}$ Lorsque les conditions de réussite ne sont pas remplies, les branches pour lesquelles les notes sont inférieures à 4 peuvent être représentées conformément à l'art. 33 .

Art. 26 Blocs

${ }^{1}$ Un bloc regroupe plusieurs branches. Pour chaque bloc, la totalité des crédits est accordée si la moyenne de ce bloc, calculée en pondérant chaque note par le nombre de crédits correspondants, est égale ou supérieure à 4 .
${ }^{2}$ Si, pour un bloc, les conditions d'attribution de la totalité des crédits correspondants ne sont pas réalisées, les branches dont la note est inférieure à 4 peuvent être représentées conformément à l'art. 33. Les crédits correspondant aux branches dont la note est égale ou supérieure à 4 restent acquis.
${ }^{3}$ Une branche ne peut faire partie que d'un seul bloc.
${ }^{4}$ Le nombre de blocs est limité à six sur l'ensemble du 2^{e} cycle.

Art. 27 Conditions de réussite
${ }^{1}$ L'examen d'admission au travail pratique de diplôme est réputé réussi lorsque l'étudiant a acquis 120 crédits et remplit les conditions supplémentaires fixées par le règlement d'application de la section concernée.
${ }^{2}$ Les plans d'études sont conçus de façon à permettre l'obtention de 120 crédits en deux ans. La durée du $2^{\text {e }}$ cycle ne peut excéder quatre ans et 60 crédits au moins doivent être obtenus en deux ans.
${ }^{3}$ La moyenne générale est calculée en pondérant chaque note par le nombre de crédits correspondants. Elle doit être égale ou supérieure à 4 .
${ }^{4}$ Les crédits obtenus dans le cadre d'un programme de mobilité reconnu par la direction de l'Ecole sont considérés comme acquis.
${ }^{5}$ La durée du 2^{2} cycle de la section Systèmes de communication est de deux ans et demi. Le nombre de crédits nécessaires pour se présenter au travail pratique de diplôme est fixé dans le règlement d'application du contrôle des études de la section.

Art. 28 Préalables
Les préalables sont les branches pour lesquelles les crédits doivent être obtenus pour pouvoir suivre d'autres matières. Ils sont définis dans les règlements d'application du contrôle des études et dans les livrets des cours.

Art. 29 Règlements d'application du contrôle des études
Les règlements d'application publiés par la direction de l'EPFL définissent :
a. les branches d'examen, les branches de semestre et les branches de diplôme;
b. la session à laquelle les branches d'examen peuvent être présentées;
c. les crédits attribués à chaque branche;
d. la composition des blocs;
e. le nombre de crédits à obtenir dans chaque bloc;
f. les conditions générales applicables aux préalables;
g. les conditions de réussite.

Art. 30 Livrets des cours
Les livrets des cours publiés par les départements indiquent :
a. le contenu de chaque matière;
b. la nature du contrôle des branches d'examen (écrit, oral ou défense d'un mémoire);
c. les conditions liées aux préalables.

Art. 31 Nature du contrôle
${ }^{1}$ Si les règlements d'application du contrôle des études n'en disposent pas autrement, le conseil de département ou le conseil de section déterminent la nature du contrôle des branches d'examen et la communiquent aux étudiants au début de chaque semestre.
${ }^{2}$ Ces éléments sont communiqués par le directeur des affaires académiques dans les horaires d'examens.

Les sessions ordinaires ont lieu au printemps, en été et en automne. Les règlements d'application fixent les sessions pendant lesquelles les branches d'examen peuvent être présentées.

Art. 33 Répétition
${ }^{1}$ Une branche ne peut être répétée qu'une fois, l'année suivante, pendant la même session ordinaire. A titre exceptionnel, une session de rattrapage peut être accordée en vertu de l'art 34.
${ }^{2}$ L'étudiant qui échoue deux fois dans une branche à option peut en présenter une nouvelle avec l'accord du président de la commission d'enseignement de la section concernée.

Art. 34 Rattrapage
${ }^{1}$ L'étudiant qui a échoué dans deux branches au plus, peut participer à une session de rattrapage, organisée par le président de la commission d'enseignement de la section concernée :
a. s'il n'a pas obtenu 60 crédits au bout de deux ans;
b. s'il n'a pas obtenu 120 crédits au bout de quatre ans;
c. s'il a redoublé à la fin de la 3^{e} ou de la 4^{e} année pour les cas où une promotion annuelle est prévue dans les règlements d'application;
d. s'il n'a pas obtenu le nombre minimal de crédits requis par le règlement d'application pour pouvoir présenter les branches de diplôme;
e. s'il a échoué dans les branches de diplôme.
${ }^{2}$ Une branche peut être examinée une seule fois en session de rattrapage.
${ }^{3}$ Le président de la commission d'enseignement propose les branches pouvant faire l'objet d'un rattrapage à la conférence des notes.

Chapitre 4 Travail pratique de diplôme

Art. 35 Admission au travail pratique de diplôme

Pour pouvoir s'inscrire au travail pratique de diplôme, l'étudiant doit avoir réussi l'examen d'admission correspondant. Des dérogations peuvent être accordées par le directeur des affaires académiques, sur proposition du département concerné.

Art. 36 Déroulement
${ }^{1}$ La durée du travail pratique de diplôme est de quatre mois.
${ }^{2}$ Le travail pratique de diplôme donne lieu à un mémoire que l'étudiant présente oralement. Le sujet est fixé ou approuvé par le maître qui en assume la direction.
${ }^{3}$ A la demande de l'étudiant, le chef du département ou le président du conseil de section peut confier la direction du travail pratique de diplôme à un maître rattaché à un autre département ou à un collaborateur scientifique.
${ }^{4}$ Si la rédaction du mémoire est jugée insuffisante, le maître peut exiger que l'étudiant y remédie dans un délai de deux semaines à compter de la présentation orale.

Art. 37 Condition de réussite
Le travail pratique de diplôme est réputé réussi lorsque l'étudiant a obtenu une note égale ou supérieure à 4 .

Art. 38 Répétition
'En cas d'échec, un nouveau travail pratique de diplôme peut être présenté.
${ }^{2}$ Un second échec est éliminatoire.
Art. 39 Moyenne finale du diplôme
La moyenne finale du diplôme est la moyenne arithmétique entre la moyenne générale de l'examen d'admission au travail pratique de diplôme et la note de ce dernier.

Art. 40 Diplôme et titre
${ }^{1}$ L'étudiant qui a réussi l'examen d'admission au travail pratique de diplôme et le travail pratique de diplôme reçoit, en plus de la décision mentionnée à l'art. 17, un diplôme muni du sceau de l'EPFL.
${ }^{2}$ Le diplôme mentionne le nom du diplômé, le titre décerné, une éventuelle orientation particulière; il est signé par le président de l'EPFL, par le vice-président et directeur de la formation de l'EPFL, ainsi que par le chef du département ou le président du conseil de la section concernée.
${ }^{3}$ L'étudiant diplômé est autorisé à porter l'un des titres suivants:
en Génie civil
en Génie rural, environnement et mensuration
en Génie mécanique
en Microtechnique
en Electricité
en Systèmes de communication
en Physique
en Chimie
en Mathématiques
en Informatique
en Matériaux
en Architecture
ingénieur civil (ing. civ. dipl. EPF)
ingénieur du génie rural (ing. gén. rur. dipl. EPF)
ingénieur mécanicien (ing. méc. dipl. EPF)
ingénieur en microtechnique (ing. microtechn. dipl. EPF)
ingénieur électricien (ing. él dipl. EPF)
ingénieur en systèmes de communication (ing. sys. com. dipl. EPF)
ingénieur physicien (ing. phys. dipl. EPF)
ingénieur chimiste (ing. chim. dipl. EPF)
chimistes (chim. dipl. EPF)
ingénieur mathématicien (ing. math. dipl. EPF)
ingénieur informaticien (ing. info. dipl. EPF)
ingénieur en science des matériaux (ing. sc. mat. dipl. EPF)
architecte (arch. dipl. EPF)

Chapitre 5 Dispositions finales

Art. 41 Abrogation du droit en vigueur

L'ordonnance générale du 16 juin 1997 sur le contrôle des études à l'Ecole polytechnique fédérale de Lausanne ${ }^{5}$ est abrogée.

[^2]Art 42 Dispositions transitoires
Les étudiants qui se présentent à la session extraordinaire des examens propédeutiques au printemps 1999 et les étudiants qui accomplissent leur travail pratique de diplôme lors de l'année académique 1998-1999 sont notés selon le barème de 10, la moyenne étant de 6.

Art. 43 Entrée en vigueur
La présente ordonnance entre en vigueur le ler octobre 2000.

8 octobre 2001 Au nom de la direction de l'Ecole polytechnique fédérale de Lausanne:
Le Président, Professeur P. Aebischer
Le vice-président de la formation, Professeur M. Jufer

PLAN D'ÉTUDES
 MICROTECHNIQUE 2002-2003

arrêté par la direction de I'EPFL le 17 juin 2002

Directeur de la section	Prof. T. Lasser
Conseillers d'études:	
lère année	
2 ème année	Prof. J. Brugger $2^{\text {eme }}$ cycle
Prof. M. Gijs Diplômants Profs R.-.P. Salathé + R. Popovicer + D. Floreano Prof. R. Clavel Responsable passerelle HES Prof. T. Lasser Coordinateur STS Prof. M.-O. Hongler Délégué à la mobilité M. P.-A. Besse Secrétariat de la section Mme M.-J. Seywert	

Au $2^{\text {ène }}$ cycle, selon les besoins pédagogiques, les heures d'exercices mentionnées dans le plan d'études pourront être intégrées dans les heures de cours; les scolarités indiquées représentent les nombres moyens d'heures de cours et d'exercices hebdomadaires sur le semestre.

MICROTECHNIQUE

MICROTECHNIQUE (2ème cycle)

MICROTECHNIQUE - 2ème cycle

REGLEMENT D'APPLICATION DU CONTRÔLE DES ÉTUDES DE LA SECTION
 de microtechnique
 (sessions de printemps, d'été et d'automne 2003)
 du 17 juin 2002

La direction de l'Ecole polytechnique fédérale de Lausanne
vu l'ordonnance générale sur le contrôle des études à lEPFL du 10 aout 1999
arrête

Article premier - Champ d'application

Le présent règlement est applicable aux examens de la section de microtechnique de JEPFL dans le cadre des études de diplôme.

Chapitre 1: Examens au ler cycle

Art. 2-Examen propédeutique 1

1 L'examen propédeutique I est composé du groupe des branches d'examen et du groupe des branches de semestre: coefficient
Branches d'examen

1. Analyse I,II (écrit) 2
2. Algèbre linéaire (écrit) I
3. Géométrie (écrit) 1
4. Physique générale I,II (écrit) 1
5. Chimie appliquée (écrit) 0.5
6. Introduction à la science des matériaux (écrit) 0.5
7. Electrotechnique I, II (oral)

Branches de semestre
8. Eléments de construction et DAO , projets (hiver + été)
9. Informatique I,II, projet (hiver+été) I
10. SHS : Cours-vitrine 1 (hiver) 0.25
11. SHS : Cours-vitrine 2 (hiver) 0.25
12. SHS : Cours-vitrine 3 (été) 0.25
13. SHS : Cours-vitrine 4 (été) 0.25

2 L'examen propédeutique I est réussi lorsque le candidat a obtenu une moyenne égale ou supérieure à 4 dans les branches d'examen d'une part, et une moyenne égale ou supérieure à 4 dans l'ensemble des branches d'examen et de semestre d'autre part.

3 Lorsque les conditions de réussite ne sont pas remplies, la répétition ne porte que sur les branches d'examen si la moyenne des branches de semestre est suffisante.

Art. 3 - Examen propédeutique II	
1 L'examen propédeutique II est composé du groupe des branches d'examen et du groupe des branches de semestre: coefficient	
Branches d'examen	
1. Analyse III, IV (écrit)	1
2. Probabilité et statistique et	
Analyse numérique (écrit)	1
3. Physique générale III, IV (écrit)	1
4. Matériaux microtechniques $I, I I$ (écrit)	0.5
5. Chimie des surfaces (écrit) (dès 2003-04)	0.5
6. Conversion électromécanique I (ecrit)	0.5
7. Electronique I, II (écrit)	1
8. Mécanique des structures (écrit)	1
9. Statique et dynamique (écrit)	1

Branches de semestre
10. Composants de la microtechnique $11, \mathrm{II}$, projets (hiver+été)
11. Electronique I, II, Laboratoire (hivertété)
12. Systemes logiques, Laboratoire (hiver) I
13. Microcontrôleurs (été) I
14. Ecologie industrielle I (hiver) 0.5
15. Ecologie industrielle II (été) 0.5

2 L'examen propédeutique II est réussi lorsque le candidat a obtenu une moyenne égale ou supérieure à 4 dans les branches d'examen d'une part, et une moyenne égale ou supérieure à 4 dans l'ensemble des branches d'examen et de semestre d'autre part.

3 Lorsque les conditions de réussite ne sont pas remplies, la répétition ne porte que sur les branches d'examen si la moyenne des branches de semestre est suffisante.

Art. 4 - Stage obligatoire

1 Pour être admis au 2e cycle. l'étudiant doit en outre avoir effectué un stage d'usinage.

2 Les directives relatives au stage et au rapport de stage font l'objet de dispositions internes à la section.

Chapitre 2 : Examens au 2ème cycle

Article 5 - Systèmes des crédits

1 Le total des crédits à obtenir est de 120 au minimum. Dans la regle, ils sont acquis en deux ans, la durée maximale pour les obtenir étant limitée à quatre ans et un minimum de 60 crédits devant être obtenu dans les deux premières années.

2 En règle générale, 1 crédit correspond à 1 heure d'enseignement par semaine et par semestre.

3 Les enseignements du second cycle sont répartis en 5 blocs:

- Bloc 1 : Bases de la microtechnique
- Bloc 2: STS
- Bloc 3 : Projets
- Bloc 4 : Options
- Bloc 5 : Approfondissement

4 Les crédits associés à une branche sont attribués si la note est égale ou supérieure à 4 .

5 Un bloc est acquis lorsque la moyenne des notes des branches, pondérée par les crédits, est égale ou supérieure à 4.

6 Lorsque les crédits associés à une branche sont attribués, cette branche est considérée comme acquise et ne peut pas être représentée.

7 En cas deéchec dans un bloc, seules les branches pour lesquelles les notes sont inférieures à 4 peuvent être représentées.

Art. 6 - Inscriptions et prealables

1 Les inscriptions aux enseignements d'approfondissement, aux enseignements STS et aux projets sont régies par des directives propres à la section de Microtechnique.

2 Pour suivre certains cours, des préalables sont nécessaires. Dans la rubrique "Préalables requis " du livret des cours, l'enseignant indique quels cours l'étudiant doit avoir suivi pour pouvoir assimiler le contenu de son cours dans de bonnes conditions. Il est de la responsabilité de l'étudiant de suivre ces recommandations et d'en discuter, si besoin est, avec le conseiller d'études.

3 Pour s'inscrire aux projets I et II, I'étudiant doit avoir acquis au moins 48 crédits dans le bloc 1 .

4 Les projets I et II ne peuvent pas ètre effectués sous la direction du même professeur.

5 L'étudiant s'inscrit à l'un des 3 domaines d'approfondissement (bloc 5):

- Photonique appliquée (PA)
- Produits intégrés (PI)
- Techniques de production (TPr)

6 L'étudiant choisit des branches à option selon le plan d'études pour un minimum de 17 crédits. Pour faciliter son choix, des options sont conseillees pour chacun des approfondissements. Le choix d'une option qui ne figure pas explicitement dans la liste des options conseillées pour I'approfondissement choisi par l'étudiant doit recevoir l'aval du conseiller d'études.

7 Le nombre d'options présentées est limité au minimum nécessaire pour l'obtention des 17 crédits.

8 Pour présenter les branches de diplôme (bloc 5), l'éudiant doit avoir acquis au moins 109 crédits dans les 4 autres blocs.

9 Toutes les branches du blocs 1 doivent être réussies au plus tard à la session d'été précédant la présentation des branches de diplôme.

10 Pour entreprendre le travail pratique de diplôme, l'étudiant doit avoir acquis au minimum les 120 crédits requis selon l'article 8.

Art. 7 -Répétitions

1 Les branches échouées à la session de printemps ne peuvent pas être représentées dans la méme année.

2 Les branches échouées à la session d"été ne peuvent pas être représentées dans la meme année à la session d'automne.

Art. 8 - Examen d'admission au travail pratique de diplôme

1 Le bloc 1 "Bases de la microtechnique» est reussi lorsque le candidat a obtenu une moyenne égale ou supérieure à 4 dans les branches des 3 domaines. Il représente 56 crédits.
crédits
a. Le domaine «Commandes de systèmes " comprend: Branches d'examen (session de printemps)

1. Systèmes vibratoires

3

Branches d'examen (session d'été ou d'automne)
2. Automatique 1,II et TP 6
3. Conversion électromécanique 11 et TP 5
4. Signaux et systèmes $1,11 \quad 6$
b. Le domaine "Electronique-optique-informatique " comprend :
Branches d"examen (session de printemps)

1. Circuits et systèmes électroniques I

Branche de semestre
2. Electronique, labo (été) 2
3. Microinformatique 1,II (hiver+été) 6

Branches d'examen (session d'été ou d'automne)
$\begin{array}{ll}\text { 4. Optique } & 3 \\ \text { 5. Microélectronique I } & 3\end{array}$
3
c. Le domaine «Produits-production » comprend:

Branches d'examen (session de printemps)

1. Méthodes de production 3

Branches d'examen (session d'été ou d'automne)
2. Technologie des microstructures I 3
3. Industrialisation 2
4. Capteurs et microsystèmes I,II 4

Branche de semestre
5. Conception de produits et systèmes 1,1] 6
6. TP en salle blanche (hiver + été)

4 Le bloc 2 " STS " est réussi lorsque les 12 crédits sont obtenus. crédits
Branche de semestre

1. Cours STS I (hiver et/ou été)
2. Cours STS II (hiver et/ou été) 4
3. Projet STS (hiver+été) 4

5 Le bloc 3 " Projets " est réussi lorsque les 24 crédits sont obtenus.

	crédits
Branche de semestre	
1. Projet I (hiver ou été)	12
2. Projet II (hiver ou été)	12

6 Le bloc 4 "Options" est réussi lorsque les 17 crédits sont obtenus. Les branches a option sont examinées, soit par contrôle continu, soit à la session de printemps ou d'été suivant la fin du cours.

7 Le bloc 5 "Approfondissement", composé des branches de diplôme, est réussi lorsque les 11 crédits sont obtenus. Elles sont examinées en automne de la dernière amée.
crédits

Branches de diplôme (session d'automne)
Approfondissement PA

1. Optique appliquée I.II 6
2. Lasers 2
3. Optique TP (été) 3

Approfondissement PI

1. Microélectronique II 2
2. Technologie des microstructures 3
3. Capteurs et microsystèmes III 2
4. Microélectronique et microsystèmes, TP (hivertété)

Approfondissement TPr

1. Robotique/Microrobotique 5
2. Techniques d'assemblage I,II 4
3. Assemblage et robotique TP (hiver) 2

Art. 9 - Travail pratique de diplôme

1 Le travail pratique de diplôme donne lieu à une note et est réussi si la note est égale ou supérieure à 4.

2 La durée du travail pratique de diplôme est de quatre mois.

Art. 10 -Diplôme

Le diplôme est décerné à l'étudiant ayant obtenu au minimum 120 crédits selon les conditions fixées à larticle 8 et ayant réussi le travail pratique de diplôme.

Art. 11 - Mobilité

1 Par mobilité, on entend la possibilité deffectuer

- une année d'études dans une autre université
- le travail pratique de diplôme à l'étranger.

2. Il n'est pas possible de cumuler une année d'études et un travail pratique de diplôme à l'étranger.
3. Les étudiants qui partent en mobilité pour une année doivent obtenir avant leur départ l'accord du délégué à la mobilité de la section de Microtechnique. Celui-ci approuve le programme des cours choisis et valide les credits correspondants au retour de l'étudiant.
4. Les étudiants qui font un travail pratique de diplôme à l'étranger doivent le faire sous la responsabilité d'un professeur de la section de Microtechnique ou obtenir laccord du delégué à la mobilité de la section de Microtechnique si le professeur responsable est d'une autre section.

Chapitre 3 : Dispositions finales et transitoires

Art. 12 - Abrogation du droif en vigueur et régime

 transitoireLe règlement d'application du contrôle des études de la section de microtechnique de l'EPFL du 3 juillet 2000 est abrogé à l'exclusion de l'article 8 pour les étudiants ayant commencé leur $2 e$ cycle en $2001 / 2002$ ou antérieurement pour lesquels le règlement d'application antérieur reste en vigueur.

Art. 13 - Entrée en vigueur

Le présent règlement est applicable pour les examens correspondant au plan d'études 2002/2003.

17 juin 2002 Au nom de la direction de l'EPFL
Le président, P. Aebischer
Le vice-président pour la formation, M. Jufer

LISTE ALPHABETIQUE DES ENSEIGNANTS

Enseignant(e)	Titre du cours	Page
Besse	Conception de produits et systèmes I, II Détection optique	51 78
Biollay	Analyse I, II (en français)	1,2
Blanc	Détection optique	78
Bleuler	Statique et dynamique Systèmes vibratoires Robotique/Microrobotique Assemblage et robotique TP	30 41 64 66
Blu	Signaux et systèmes I, II	42
Botsis	Mécanique des structures	29
Boulic	Informatique I, II	17,18
Bourban	Matériaux microtechniques I, II	24
Brune	Physique générale I, II (en français)	11,12
Cassat	Transducteurs et entraînements intégrés	100
Clavel	Composants de la microtechnique I, II, III Robotique/Microrobotique	$26,27, \frac{28}{64}$
Dacorogna	Analyse III, IV	8,9
DÄndliker	Optique Optique appliquée I	45 56
de Roois	Technologies des capteurs et actionneurs intégrés	97
Declerce	Circuits et systèmes électroniques I, TP Electronique, Labo	43 44
Depeursinge	Conception de systèmes optiques II	75
Deveaud-Pledran	Optoélectronique	90
Erkman	Ecologie industrielle I	36
Forro	Physique générale III, IV	15,16
Floreano	Machines adaptatives bio-inspirées	87
Friedli	Chimie appliquée	22

Enseignant(e)	Titre du cours	Page
Gus	Technologie des microstructures I	53
	Travaux pratiques en salle blanche	54
	Technologie des microstructures II	62
Glleet	Automatique TP	38
Glardon	Gestion de production I, II	81,82
Gotthardt	Physique générale I, II (en allemand)	13,14
Harbich	Physique générale II (en allemand)	14
Hersch	Systèmes périphériques	96
Hochet	Conception des CI numériques	76
Hoffmann	Chimie des surfaces	23
	Micro-usinage	88
Holzer	Microcontrôleurs	20
Hongler	Projet STS	55
Ilegems	Microélectronique I	46
Jacquot	Conception de systèmes optiques II	75
Jacot	Méthodes de production	49
	Industrialisation	50
	Techniques d'assemblage I, II	65
	Assemblage et robotique TP	66
Joluet	Ecologie industrielle II	37
Karimi	Identification et commande I	83
Kayal	Electronique I, II	33, 34
Kunz	Optique intégrée	89
Kuonen	Probabilité et statistique I	7
Lamon	Microinformatique I	47
Lasser	Optique appliquée II	57
	Conception de systèmes optiques I, II	74, 75
	Physique générale IV	16
Leblebici	Conception VLSI (pratique)	77
	Systèmes numériques intégrés	95
Liebling	Algèbre linéaire	5

Enseignant(e)	Titre du cours	Page
LONGCHAMP	Automatique I, II Identification et commande II	$\begin{aligned} & 38 \\ & 84 \end{aligned}$
Ludwig	TP d'électromécanique	40
Maeder	Eléments de construction et DAO	25
Manson	Matériaux microtechniques I, II	24
Marquis Weible	Instrumentation biomédicale	85
Meister	Génie médical II	80
Mlynek	Systèmes numériques intégrés	95
Pellandin	Signaux et systèmes II	44
Perriard	Electrotechnique I, II Conversion électromécanique I Conversion électromécanique II TP d'électromécanique	$\begin{array}{r} 31,32 \\ 35 \\ 39 \\ 40 \end{array}$
Picasso	Analyse numérique	10
Piguet	Microinformatique II Systèmes informatiques	$\begin{aligned} & 48 \\ & 52 \end{aligned}$
Pollnau	Lasers	58
Popovic	Conception de produits et systèmes I, II Microélectronique II Microélectronique et microsystèmes, labo Analyse de produits et systèmes Détection optique	51 60 63 67 78
Renald	Capteurs et microsystèmes I, II Capteurs et microsystèmes III Microélectronique et microsystèmes, labo	52 61 63
Rossi	Audio I, II	68,69
Ryser	Industrialisation L'ingénieur dans R\&D industriels I, II	50 86
Salathe	Optique Lasers Optique TP Détection optique Optique intégrée	45 58 59 78 89
Setter	Matériaux microtechniques I, II	24

Enseignant(e)	Titre du cours	Page
SHAH	Cellules solaires et «macro-électronique»	71
Sideer	Lasers	58
Siegwart	Conception de produits et systèmes I, II Robotique/Microrobotique Robots mobiles	51 64 91
Stauffer	Systèmes logiques	19
Stergiopulos	Génie médical I	79
Stroud	Systèmes de CAO	93
Tarradellas	Ecologie industrielle I Ecologie industrielle II	36 37
Troyanov	Géométrie	6
UnSER	Signaux et systèmes I, II Traitement d'images I, II	$\begin{array}{r} 42 \\ 98,99 \end{array}$
Vitroz	Circuits intégrés analogiques I, II	72,73
Wavre	Transducteurs et entraînements directs	101
Wohlhauser	Analyse I, II (en allemand)	3, 4
Wuehtrich	Statique et dynamique Systèmes vibratoires	30 41
WURM	Biotechnologie cellulaire et moléculaire I, II	70
Xirouchakis	Simulation multi-corps assistée par ordinateur Systèmes de FAO	92
Zuppiroli	Introduction à la science des matériaux	21

TABLE DES MATIERES DES DESCRIPTIFS DE COURS

Titre du cours

Enseignant(e)
Page

Mathématiques

Analyse I, II (en français)
Analyse I, II (en allemand)
Algèbre linéaire
Géométrie
Probabilités et statistique
Analyse III, IV
Analyse numérique
Biollay $\quad 1,2$

Wohlhauser $\quad 3,4$
Liebling 5
Troyanov 6
Kuonen 7
Dacorogna 8,9
Picasso 10

Physique

Physique générale I, II (en français)
Physique générale I (en allemand)
Physique générale II (en allemand)
Physique générale III
Physique générale IV

Informatique

Informatique I, II
Systèmes logiques
Microcontrôleurs
Brune 11,12
Gotthardt 13
Gotthardt/Harbich 14
Forro 15
Forro/Lasser 16

Matériaux et chimie

Introduction à la science des matériaux
Chimie appliquée
Chimie des surfaces
Matériaux microtechniques
Boulic 17,18
Stauffer 19
Holzer 20

Zuppiroli 21
Friedli 22
Hoffmann 23
Manson/Setter/Bourban 24

Mécanique

Eléments de construction et DAO
Maeder
25
Composants de la microtechnique I, II, III
Mécanique des structures
Clavel 26,27,28
Statique et dynamique
Botsis 29
Bleuler/Wüthrich 30

Electricité

Electrotechnique I, II
Electronique I, II
Conversion électromécanique I
Perriard 31,32
Kayal 33,34
Perriard 35

Enseignement Science-Technique-Société (STS)
Ecologie industrielle I
Tarradellas/Erkman 36
Ecologie industrielle II
Jolliet/Tarradellas 37

BASES DE LA MICROTECHNIQUE

Commandes de systèmes

Automatique I, II + TP
Conversion électromécanique II
TP d'électromécanique
Systèmes vibratoires
Signaux et systèmes I, II
Longchamp + Gillet 38
Perriard 39
Perriard/Ludwig 40
Bleuler/Wüthrich 41
Unser/Blu 42
Electronique - optique - informatique
Circuits et systèmes électroniques I
Electronique, Labo
Optique
Microélectronique I
Microinformatique I + II

Produits-production

Méthodes de production
Industrialisation
Conception de produits et systèmes I, II
Capteurs et microsystèmes I, II
Technologie des microstructures I
Travaux pratiques en salle blanche
Enseignement Science-Technique-Société (STS)
Projet STS
Jacot 49
Jacot/Ryser 50
Popovic/Siegwart/Besse 51
Renaud 52
Gijs 53
Gijs 54

Hongler 55

APPROFONDISSEMENTS

Approfondissement PA (Photonique appliquée)
Optique appliquée I
Dändliker 56
Optique appliquée II
Lasser 57
Lasers
Optique TP
Approfondissement PI (Produits intégrés)
Microélectronique II
Capteurs et microsystèmes III
Technologie des microstructures II
Popovic
60
Renaud 61
Gijs 62
Renaud/Popovic 6363

Approfondissement TPr (Techniques de production)
Robotique/Microrobotique
Bleuler/Clavel/Siegwart 64
Techniques d'assemblage I, II
Jacot
65
Assemblage et robotique TP
Bleuler/Jacot
66

OPTIONS

Analyse de produits et systèmes
Audio I, II
Biotechnologie cellulaire et moléculaire I, II
Cellules solaires et macroélectronique
Circuits intégrés analogiques I, II
Conception de systèmes optiques I
Conception de systèmes optiques II
Conception de CI numériques
Conception VLSI (pratique)
Détection optique
Génie médical I
Génie médical II
Gestion de production I, II
Identification et commande I + II
Instrumentation biomédicale
L'ingénieur dans R\&D industriels I, II
Machines adaptatives bio-inspirées
Micro-usinage
Optique intégrée
Opto-électronique
Robots mobiles
Simulation multi-corps assistée par ordinateur
Systèmes de CAO
Systèmes de FAO
Systèmes numériques intégrés
Systèmes périphériques
Technologies des capteurs et actionneurs intégrés
Traitement d'images I, II
Transducteurs et entraînements intégrés
Transducteurs et entraînements directs

Popovic
67

Rossi 68,69
Wurm 70
Shah 71
Vittoz 72,73
Lasser 74
Lasser/Jacquot/Depeursinge 75
Hochet 76
Leblebici 77
Popovic/Salathé/Besse/Blanc 78
Stergiopulos 79
Meister 80
Glardon 81,82
Karimi + Longchamp 83,84
Marquis Weible 85
Ryser 86
Floreano 87
Hoffmann 88
Salathé/Kunz 89
Deveaud-Plédran 90
Siegwart 91
Xirouchakis 92
Stroud 93
Xirouchakis 94
Mlynek/Leblebici 95
Hersch 96
de Rooij 97
Unser 98,99
Cassat 100
Wavre 101

Titre A	ANALYSE I					
Enseignant Yves BIOLLAY, professeur EPFL/SMA						
Section (s)	Semestre	Oblig.	Option	Facult.	Heures totales	112
Microtechnique	1	区	\square	\square	Par semaine	
		\square	\square	\square	- Cours	4
		\square	\square	\square	- Exercices	4
		\square	\square	\square	- Pratique	-

OBJECTIFS

Apprendre à utiliser les méthodes d'analyse de base applicables aux modèles mathématiques des problèmes de l'ingénieur.

CONTENU

Nombres complexes.
Suites et séries numériques.
Fonctions élémentaires d'une variable. Limites et continuité.
Calcul différentiel des fonctions d'une variable.
Représentations des courbes planes. Extrema.
Calcul intégral des fonctions d'une variable.
Séries entières.

FORME DE L'ENSEIGNEMENT

Cours ex cathedra; exercices en salle.

FORME DU CONTROLE
Test écrit

BIBLIOGRAPHIE

F.Ayres/E.Mendelson,Calcul différentiel et intégral,McGraw-Hill, 2e éd, 1993 M. R. Spiegel, Analyse, McGraw-Hill, 1993
H. Matzinger, Aide-mémoire d'analyse, PPUR, 2000
E. Swokowski, Analyse, de Broeck Univ.

LIAISON AVEC D'AUTRES COURS

Préalable requis:
Préparation pour: Analyse II

Titre A	ANALYSE II					
Enseignant Yves BIOLLAY, professeur EPFL/SMA						
Section (s)	Semestre	Oblig.	Option	Facult.	Heures totales	84
Microtechnique	2	区	\square	\square	Par semaine	
		\square	\square	\square	- Cours	4
		\square	\square	\square	- Exercices	2
		\square	\square	\square	- Pratique	

OBJECTIFS

Apprendre à utiliser les méthodes d'analyse de base applicables aux modèles mathématiques des problèmes de l'ingénieur.

CONTENU

Equations différentielles ordinaires.
Calcul différentiel et intégral des fonctions de plusieurs variables.

FORME DE L'ENSEIGNEMENT

FORME DU CONTROLE
Cours ex cathedra; exercices en salle.
Test écrit

BIBLIOGRAPHI

F. Ayres/E.Mendelson,Calcul différentiel et intégral,McGraw-Hill, 2^{c} éd. 1993 M. R. Spiegel, Analyse, McGraw-Hill, 1993 ; H. Matzinger, Aide-mémoire d'analyse, PPUR, 2000
E. Swokowski, Analyse, de Broeck Univ.

LIAISON AVEC D'AUTRES COURS

Préalable requis Analyse I
Préparation pour: Analyse III

OBJECTIFS

Cours de base en allemand, orienté vers les applications et les besoins de lingénieur.

ZIELSETZUNG

Anwendungsorientierte Basisvorlesung in deutscher Sprache, ausgerichtet auf die Bedürfnisse des Ingenieurs.

INHALT

. Grenzwerte und Stetigkeit
. Komplexe Zahlen
. Differentialrechnung einer reellen Variablen

- Integration
. Unendliche Reihen
. Taylorreihen

FORME DE L'ENSEIGNEMENT

FORME DU CONTROLE
Vorlesung mit Uebungen in kleinen Gruppen.
Das mathematische Vokabular wird zweisprachig erarbeitet (d/f).

BIBLIOGRAPHIE

Wird in der Vorlesung bekanntgegeben. Sera communiquée au cours.

LIAISON AVEC D'AUTRES COURS

Préalable requis:
Basisvorlesung - Cours de base
Préparation pour:

Titre	ANALYSIS II in deutscher Sprache / ANALYSE II en allemand					
Enseignant	Alfred	WOHLHAUSER, professeur	EPFL/SMA			
Section (s)		Semestre	Oblig.	Option	Facult.	Heures totales

OBJECTIFS

Cours de base en allemand, orienté vers les applications et les besoins de lingénieur.

ZIELSETZUNG

Anwendungsorientierte Basisvorlesung in deutscher Sprache, ausgerichtet auf die Bedürfnisse des Ingenieurs.

INHALT

. Funktionen mehrerer Variabler
. Doppel - und Dreifachintegrale
. Ebene Kurvenintegrale, Potentiale
. Differentialgleichungen 1 -ter Ordnung
. Lineare Differentialgleichungen mit konstanten Koeffizienten
. Lineare Differentialgleichungen mit variablen Koeffizienten

FORME DE L'ENSEIGNEMENT

Vorlesung mit Uebungen in kleinen Gruppen.
Das mathematische Vokabular wird zweisprachig erarbeitet (d/f).

BIBLIOGRAPHIE

Wird in der Vorlesung bekanntgegeben. Sera communiquée au cours.

LIAISON AVEC D'AUTRES COURS

Préalable requis:
Basisvorlesung - Cours de base
Préparation pour:

FORME DU CONTROLE
Tests
Travaux écrits

Titre A	ALGEBRE LINEAIRE					
Enseignant Thomas M. LIEBLING, professeur EPFL/SMA						
Section (s)	Semestre	Oblig.	Option	Facult.	Heures totales	84
Microtechnique	1		\square	\square	Par semaine	
		\square	\square	\square	- Cours	4
		\square	\square	\square	- Exercices	2
		\square	\square	\square	- Pratique	-

OBJECTIFS

Les étudiants auront à reconnaître, formuler et résoudre des problèmes d'algèbre linéaire à l'aide notamment des notions d'espace vectoriel et d'application linéaire. Ils sauront se servir des matrices et de leurs principales propriétés.

CONTENU

- Systèmes d'équations linéaires et algorithme de Gauss, pivotement
- Calcul matriciel, matrices en blocs, inversion, factorisation des matrices
- Espaces vectoriels, indépendance linéaire, bases, sous-espaces, interprétation géométrique
- Coordonnées et changements de base
- Coordonnées homogènes
- Espaces associés à une matrice, rang
- Applications linéaires, noyau, image, matrices associées
- Produits scalaires, bases orthonormées, orthogonalisation de Gram Schmidt
- Approximations par la méthode des moindres carrés
- Les déterminants, calcul, interprétation géométrique, propriétés
- Valeurs propres et vecteurs propres
- Diagonalisation, diagonalisation orthogonale, équations aux différences
- Formes quadratiques, notions sur les quadriques
- Notions sur les tenseurs.

FORME DE L'ENSEIGNEMENT

Cours ex cathedra et exercices en classe

BIBLIOGRAPHIE

Notes polycopiées, Th.M. Liebling

LIAISON AVEC D'AUTRES COURS

Préalable requis

Préparation pour: Analyse I et II, Géométrie, Analyse numérique, Statistiques, Recherche opérationnelle

FORME DU CONTROLE
examen écrit, tests

Titre GEO	GEOMETRIE					
Enseignant Mare Troyanov, MER EPFL/SMA						
Section (s)	Semestre	Oblig.	Option	Facult.	Heures totales	56
Microtechnique	2	区	\square	\square	Par semaine	
Génie Mécanique	2	区	\square	\square	- Cours	3
		\square	\square	\square	- Exercices	1
		\square	\square	\square	- Pratique	-

OBJECTIFS

Apprendre à appliquer les méthodes de l'algèbre linéaire et de l'analyse à des problèmes géométriques. Travailler avec des paramétrisations locales. Etudier les notions de base de la géométrie différentielle et leurs applications mécaniques.

CONTENU

1. Géométrie vectorielle

Vecteurs, produits scalaire et autres, coordonnées de Plücker

2. Transformations

Transformations affines, isométries, théorèmes de Chasles et d'Euler

3. Courbes

Courbes paramétrées, repère de Frenet, longueur, courbure, développante et développée

4. Surfaces

Notions de surfaces, aire, tenseur métrique, courbes tracées sur une surface.

```
FORME DE L'ENSEIGNEMENT
BIBLIOGRAPHIE
    Polycopié
LIAISON AVEC D'AUTRES COURS
Préalable requis Algèbre linéaire, analyse
Préparation pour: Robotique, Mécanique, Méthodes de construction, etc.
```

FORME DU CONTROLE
Examen écrit

Titre	PROBABILITES ET STATISTIQUE					
Enseignant D	Diego KUONEN, chargé de cours EPFL/SMA					
Section (s)	Semestre	Oblig.	Option	Facult.	Heures totales	56
Microtechnique	3	区	\square	\square	Par semaine	
Electricité	3	\triangle	\square	\square	- Cours	2
		\square	\square	\square	- Exercices	2
		\square	\square	\square	- Pratique	-

OBJECTIFS

Présenter les concepts fondamentaux des probabilités et des statistiques nécessaires aux sciences de l'ingénieur.

Familiariser l'étudiant au calcul des probabilités et à l'utilisation de divers outils statistiques simples.

CONTENU

1. Statistique exploratoire
(Types de données; Étude graphique de variables; Synthèses numériques de distribution;
Le boxplot; La loi normale)
2. Calcul des probabilités
(Probabilités d'événements; Variables aléatoires; Valeurs caractéristiques;
Théorèmes fondamentaux)
3. Idées fondamentales de la statistique
(Modèles statistiques et estimation de paramètres; Estimation par intervalle; Tests statistiques;
Tests khi-deux)
4. Méthodes statistiques
(Régression linéaire; Contrôle de qualité)

Cours ex cathedra, exercices en classe

Titre A	ANALYSE III					
Enseignant Bernard DACOROGNA, professeur EPFL/SMA						
Section (s)	Semestre	Oblig.	Option	Facult.	Heures totales	56
Microtechnique	3	区	\square	\square	Par semaine	
Electricité	3	区	\square	\square	- Cours	2
		\square	\square	\square	- Exercices	2
		\square	\square	\square	- Pratique	-

OBJECTIFS

Présenter les outils de l'analyse vectorielle et de l'analyse de Fourier indispensables aux applications

CONTENU

Analyse vectorielle:
Etude des opérateurs gradient, rotationnel et divergence
Intégrales de surfaces, théorèmes de Stokes et de la divergence
Applications.
Analyse complexe:
Définition et exemples de fonctions complexes
Equations de Cauchy-Riemann
Intégrales complexes. Formule de Cauchy
Séries de Laurent. Théorème des résidus
Applications conformes
Transformée de Laplace
Applications.
FORME DE L'ENSEIGNEMENT
\quad Ex cathedra, exercices en salle
BIBLIOGRAPHIE
B. Dacorogna et C. Tanteri: Analyse avancée pour ingénieurs, PPUR (2002)
LIAISON AVEC D'AUTRES COURS
Préalable requis Analyse I et II
Préparation pour:

FORME DU CONTROLE
1 travail écrit

Titre ANALYSE IV	ANALYSE IV					
Enseignant Bernard DACOROGNA, professeur EPFL/SMA						
Section (s)	Semestre	Oblig.	Option	Facult.	Heures totales	56
Microtechnique	4	区	\square	\square	Par semaine	
Electricité	4	\otimes	\square	\square	- Cours	2
		\square	\square	\square	- Exercices	2
		\square	\square	\square	- Pratique	-

OBJECTIFS

Présenter les outils de l'analyse complexe indispensables aux applications.

CONTENU

Transformée de Laplace
Séries de Fourier
Transformée de Fourier
Applications aux équations différentielles ordinaires et aux dérivées partielles.

FORME DE L'ENSEIGNEMENT

Ex cathedra, exercices en salle

bibliographie

B. Dacorogna et C. Tanteri: Analyse avancée pour ingénieurs, PPUR (2002)

LIAISON AVEC D'AUTRES COURS
Préalable requis Analyse I, II et III
Préparation pour:

FORME DU CONTROLE
1 travail écril

Titre A	ANALYSE NUMERIQUE					
Enseignant Marco PICASSO, chargé de cours EPFL/SMA						
Section (s)	Semestre	Oblig.	Option	Facult.	Heures totales	42
Microtechnique		区	\square	\square	Par semaine	
Matériaux	4	\triangle	\square	\square	- Cours	2
		\square	\square	\square	- Exercices	1
		\square	\square	\square	- Pratique	-

OBJECTIFS

L'étudiant apprendra à résoudre numériquement divers problèmes mathématiques susceptibles de se poser aux ingénieurs.

CONTENU

Interpolation polynomiale. Intégration et différentiation numériques. Discrétisation par différences finies. Méthodes directes pour la résolution de systèmes linéaires. Equations et systèmes d'équations non linéaires. Equations et systèmes différentiels. Problèmes de valeurs propres. Problèmes de moindres carrés. Différences finies. Eléments finis. Approximation des problèmes elliptiques, paraboliques, hyperboliques, ainsi que de convection-diffusion.

FORME DE L'ENSEIGNEMENT

Ex cathedra et exercices en salle et exercices de programmation

BIBLIOGRAPHIE

Introduction à l'analyse numérique (J. Rappaz, M. Picasso) PPUR 1998
LIAISON AVEC D'AUTRES COURS
Préalable requis Analyse. Algèbre linéaire. Informatique I, II
Préparation pour:

OBJECTIFS

Connaître les lois générales de la cinématique et de la dynamique du point matériel ainsi que du solide indéformable. Application de ces lois à un problème de mécanique (représentation géométrique, paramétrisation, choix de repères, formulation des équations).

CONTENU

I MECANIQUE

Introduction

Rappel des notions d'espace, de temps, de masse, de vitesse, d'accélération et de la trajectoire et de forces qui interviennent fondamentalement en mécanique. On parlera des propriétés des vecteurs et des scalaires, de coordonnées cartésiennes polaires et sphériques, et de la distinction entre repère et référentiel

Cinématique du point

Mouvement rectiligne (1D), mouvement uniformément accéléré en 2D - balistique.

Lois de Newton - Dynamique du point

Chocs, lois de conservation, énergie, mouvement central en $1 / r^{2}$, lois de Kepler.

Oscillateur harmonique

Oscillateur libre, forcé, amorti, courbes de résonance et facteur de qualité, analogie oscillateur mécanique et électrique, oscillateurs harmoniques couplés.

Dynamique du solide

corps solide indéformable, centre de masse, axes principaux - moment d'inertie, loi de Steiner, rotation autour d'un axe quelconque - tenseur et ellipsoïde d'inertie - forces sur les paliers, axes libres

FORME DE L'ENSEIGNEMENT

Ex cathedra et exercices dirigés en classe

BIBLIOGRAPHIE

Mécanique générale, C. Gruber, W. Benoit University Physics, A. Hudson \& R. Nelson
Physique Générale I, Mécanique, Alonso \& Finn
LIAISON AVEC D'AUTRES COURS

Préalable requis Bonne formation au niveau maturité
Préparation pour: Physique II

Examen écrit et controle continu

Titre $\quad \mathbf{P}$	PHYSIQUE GENERALE II					
Enseignant Harald P. BRUNE, professeur EPFL/SPH						
Section (s)	Semestre	Oblig.	Option	Facult.	Heures totales	84
Microtechnique	2	区	\square	\square	Par semaine	
		\square	\square	\square	- Cours	4
		\square	\square	\square	- Exercices	2
		\square	\square	\square	- Pratique	-

OBJECTIFS

Connâtre les lois de la dynamique des solides indéformables, identification des forces, changement de référentiel, solution des problèmes à l'aide de la mécanique analytique. Connâ̂tre et appliquer les principes de la thermodynamique.

CONTENU

Travail et puissance

Force passives et actives, Forces conservatives et dissipatives, potentiel.

Dynamique dans les référentiels en mouvement

Translation non-uniforme, rotation uniforme - dynamique Terrestre (pesanteur, déviation vers l'Est, pendule de Foucault, Marées).

Mécanique analytique

Equations de Lagrange.

II THERMODYNAMIQUE

Introduction

Température, définition d'un système.

Théorie cinétique des gaz

Energie interne U, équipartition et chaleur spécifique, facteur de Boltzmann, distribution des vitesses.

Premier et deuxième principes
Travail et chaleur, entropie externe et interne, réversibilité, cycle de Carnot, rendement.
Machines thermiques
Gaz réels, cycles d'Otto et de Diesel, moteur de Stirling.

FORME DE L'ENSEIGNEMENT	FORME DU CONTROLE
Ex cathedra et exercices dirigés en classe	Examen écrit et contrôle continu
BIBLIOGRAPHIE	
Mécanique générale, C. Gruber, W. Benoit	
University Physics, A. Hudson \& R. Nelson	
Introduction à la thermodynamique, J.-P. Pérez\& P. Laffont	
LIAISON AVEC D'AUTRES COURS	
Préalable requis Physique I, Analyse I	
Préparation pouf:	

Titre	PHYSIK I, in deutscher Sprache				
Enseignant	Rolf GOTTHARDT, chargé de cours EPFL/SPH				
Section (s)	Semestre	Oblig.	Option	Facult.	Heures totales

ZIELSETZUNG

- Kennenlernen und Anwenden der allgemeinen Sätze der Kinematik und der Dynamik einzelner Massenpunkte.
- Analysieren der Bewegungen von Materie-Systemen und Bestimmen der für ihre Bewegung verantwortlichen Kräfte.

INHALT

- Kinematik des einzelnen Massenpunktes

Begriffe: Raum, Zeit
Bezugssysteme, Koordinatensysteme
Geschwindigkeit, Beschleunigung

- Dynamik des einzelnen Massenpunktes

Begriffe: Masse, Kraft
Newtonsche Gesetze
Arbeit, Leistung, kinetische Energie
Erhaltungssätze

- Kinematik von nicht-verformbaren Festkörpern

Eulersche Winkel
Rotationsvektor

- Relative Bezugssysteme

Zerlegung von Geschwindigkeiten und Beschleunigungen

FORME DE L'ENSEIGNEMENT
Ex cathedra und Uebungen
BIBLIOGRAPHIE
empfohlene Bücher, korrigierte Uebungen

LIAISON AVEC D'AUTRES COURS

Préalable requis: Gute Arbeitskenntnisse in Mathematik und Physik
Préparation pour: Physik II

FORME DU CONTROLE
Uebungen, Klausuren,
Schlussexamen

Titre PHY	PHYSIK II, in deutscher Sprache						
Enseignant $\begin{aligned} & \text { Rolf } \\ & \text { EPF }\end{aligned}$	$\begin{aligned} & \text { Rolf GOTTHARDT } \\ & \text { EPFL/SPH } \end{aligned}$	et Wolfgang		HARBICH,	H, chargés		cours
Section (s)	Semestre	Oblig.	Option	Facult.	Heures totales		84
EL 2, GC 2,	2	区	\square	\square	Par semaine		
GM 2. GR 2,	2	区	\square	\square	- Cours		4
IN 2, MA 2,	2	\triangle	\square	\square	- Exercices		2
MT 2, MX 2, SC 2	2	\triangle	\square	\square	- Pratique		

ZIELSETZUNG

- Kennenlernen und Anwenden der Gesetze der Kinematik und der Dynamik von MaterieSystemen.
- Anwenden dieser Gesetze für die Bestimmung des Gleichgewichtes und der Bewegung von Systemen von Massenpunkten und von Festkörpern.
- Kennenlernen der Gesetze der Thermodynamik und ihre Anwendung auf idealisierte Systeme. Betrachtungen von Motoren, Mehrphasensystemen und chemischen Reaktionen.

INHALT

Mechanik, Fortsetzung (R. Gotthardt)

- Dynamik von Materie-Systemen

Massenschwerpunkt, Impuls, Trägheitsmoment, Hauptachsen

- Statik, Stossmechanik
- Lagrange'sche Mechanik

Thermodynamik (W. Harbich)

- Kinetische Theorie der Gase
- Erster und zweiter Hauptsatz der Thermodynamik
- Formalismus der Thermodynamik
- Mehrphasensysteme und andere Anwendungen

```
FORME DE L'ENSEIGNEMENT
Ex cathedra und Uebungen
BIBLIOGRAPHIE
Empfohlene Bücher, korrigierte Uebungen
LIAISON AVEC D'AUTRES COURS
Préalable requis: Physik I
Préparation pour: Physique III, IV
```

Titre P	PHYSIQUE GENERALE III					
Enseignant Laszlo FORRO, professeur EPFL/SPH						
Section (s)	Semestre	Oblig.	Option	Facult.	Heures totales	84
Microtechnique	3	区		\square	Par semaine	
		\square	\square	\square	- Cours	4
		\square	\square	\square	- Exercices	2
		\square	\square	\square	- Pratique	

OBJECTIFS

Le troisième semestre de physique est entièrement consacré à l'action à distance, mécanique et électromagnétique. Au centre du discours se trouvera le concept d'onde et, en amont, celui de champ.
On y forgera donc les outils qui permettent notamment de comprendre et de modéliser des situations simples de propagation d'ondes, mécaniques, sonores ou électromagnétiques.

CONTENU

Mécanique des milieux continus dans l'hypothèse de l'élasticité linéaire
Quelques aperçus sur la déformation plastique et les dislocations
Ondes classiques : propagation du son dans les milieux matériels
Ondes classiques : interférences et diffraction
Champ électrique et induction magnétique : applications des théorèmes de Gauss et d'Ampère
Champ électrique et induction magnétique : les équations de Maxwell dans le vide et la propagation des ondes électromagnétiques

L'électromagnétisme dans les milieux matériels

FORME DU CONTROLE écrit

BIBLIOGRAPHIE

University Physics de Hudson et Nelson
LIAISON AVEC D'AUTRES COURS

Titre	PHYSIQUE GENERALE IV				
Enseignant	Laszlo FORRO, professeur	SPH et	Théo LASSER, professeur SMT		
Section (s)	Semestre	Oblig.	Option	Facult.	Heures totales

OBJECTIFS

Ce cours présente les principes physiques fondamentaux régissant le comportement de la lumière vue sous ses différents aspects, géométrique, ondulatoire, électromagnétique et particulaire. Ces notions seront abordées afin de permettre aux étudiants:

- d'intégrer une connaissance des principes fondamentaux
- d'acquérir une compréhension intuitive des phénomènes optiques
- d'exploiter ultérieurement ces phénomènes dans leur travail d'ingénieur

CONTENU

Principe de Fermat
réflexion, réfraction, dispersion
optique géométrique, éléments optiques, construction des images
Principe de Huygens-Fresnel
Interférence, diffraction
Optique ondulatoire, holographie, réseau de diffraction, cohérence
Approximations de Fraunhofer et de Fresnel
Propagation des faisceaux gaussiens
Propagation des ondes électromagnétiques
La réponse optique des milieux matériels et le modèle de Lorentz
Polarisation, réflexion et transmission à un interface

Le photon
Loi de Planck, effet photoélectrique, laser

Préalable requis

Préparation pour: optique

Titre In	INFORMATIQUE I					
Enseignant Ronan BOULIC, chargé de cours EPFL/SIN						
Section (s)	Semestre	Oblig.	Option	Facult.	Heures totales	56
Microtechnique	1	\triangle	\square	\square	Par semaine	
		\square	\square	\square	- Cours	2
		\square	\square	\square	- Exercices	-
		\square	\square	\square	- Pratique	2

OBJECTIFS

L'objectif de ce cours est de familiariser les étudiants avec un environnement informatique (station de travail sous UNIX) et de présenter les notions de base de l'informatique logicielle. Une importance particulière sera donnée à la présentation des notions de programmation (langage C).

Eléments de base sur le fonctionnement d'un ordinateur et prise en main de l'environnement de programmation sous UNIX (éditeur, compilateur, dévermineur).
Initiation à la conception et à la spécification de programmes.
Initiation à la programmation par la maitrise du langage C (première partie) avec programmation d'algorithmes simples sur des structures de données simples. Eléments de calcul scientifique et évaluation de la complexité d'un algorithme.

CONTENU

Numération binaire et notions sur l'architecture d'un ordinateur.
Introduction au système UNIX

Langage C:
Généralités
Les types de base
Les opérateurs et les expressions
Les entrées-sorties conversationnelles
Les instructions de contrôle
La programmation modulaire et les fonctions
Les tableaux et pointeurs

Thèmes approfondis
calcul scientifique (arrondis)
calcul scientifique (propagation d'erreur)
système d'exploitation
calcul scientifique (algorithme \& complexité)
système d'exploitation
système d'exploitation

FORME DE L'ENSEIGNEMENT

Ex cathedra, Exercices pratiques

BIBLIOGRAPHIE

C. Delannoy, Programmer en Langage C, Eyrolles, ISBN 2-212-08985-6

+ suggestion additionnelle pour quelqu'un n'ayant jamais écrit un programme:
C. Delannoy, Initiation à la programmation, Eyrolles, ISBN 2-212-08983-X

LIAISON AVEC D'AUTRES COURS

Préalable requis
Préparation pour: Informatique II

FORME DU CONTROLE
Branche de semestre
un test écrit

Titre IN	INFORMATIQUE II					
Enseignant Ronan BOULIC, chargé de cours EFFL/SIN						
Section (s)	Semestre	Oblig.	Option	Facult.	Heures totales	56
Microtechnique	2	区	\square	\square	Par semaine	
		\square	\square	\square	- Cours	2
		\square	\square	\square	- Exercices	-
		\square	\square	\square	- Pratique	2

OBJECTIFS

L'objectif de ce cours est d'approfondir les connaissances théoriques et pratiques présentées dans le cours Informatique I. Certains des concepts importants seront illustrés par le biais d'approfondissements thématiques et la réalisation d'une mini-application sous la forme d'un projet par groupe permettra la mise en pratique effective des notions introduites en cours

Orientation pratique vers le développement modulaire d'une application interactive (notions de programmation par événements). Notions de test, validation et de documentation de programme.

Approfondir les connaissances de programmation en langage C (deuxième partie)
Approfondir les connaissances sur le système d'exploitation UNIX

CONTENU

Développement d'application traité en travaux pratiques et en projet
Structure d'une application interactive
Gestion des événements et interface graphique utilisateur avec Tcl-Tk
Eléments de graphique 2D avec OPEN-GL

Langage C :
Les structures
La gestion dynamique de la mémoire
Le préprocesseur
Les chaines de caractères
Les fichiers
Les possibilités du langage C proches de la machine

Thèmes approfondis système d'information système d'exploitation
système d'exploitation système d'exploitation (temps-réel)

Synthèse de l'expérience de développement en C, en particulier concernant la discipline de programmation, pour introduire et justifier les fondements de l'approche objet.

FORME DE L'ENSEIGNEMENT

Ex cathedra, Exercices pratiques
BIBLIOGRAPHIE
C. Delannoy, Programmer en Langage C, Eyrolles, ISBN 2-212-08985-6

LIAISON AVEC D'AUTRES COURS

Préalable requis Informatique I

Préparation pour: cours, laboratoires et projets avec ordinateur

FORME DU CONTROLE
Branche de semestre
un test écrit

+ un projet en binome

Titre S	SYSTEMES LOGIQUES					
Enseignant André STAUFFER, chargé de cours EPFL/SIN						
Section (s)	Semestre	Oblig.	Option	Facult.	Heures totales	42
Microtechnique	3	区	\square	\square	Par semaine	
		\square	\square	\square	- Cours	1
		\square	\square	\square	- Exercices	-
		\square	\square	\square	- Pratique	2

OBJECTIFS

Acquisition par les étudiants d'un certain nombre de méthodes systématiques permettant la conception et l'analyse de systèmes électroniques digitaux, ainsi que l'apprentissage d'un certain savoir-faire dans la réalisation pratique, le câblage et le dépannage de ces mêmes systèmes.

CONTENU

SYSTEMES LOGIQUES COMBINATOIRES. Définition des modèles logiques; variable logique; fonctions logiques d'une et plusieurs variables (ET, OU, NON, NAND, OU-exclusif, Majorité, fonction universelle); modes de représentation des fonctions logiques; algèbre logique (algèbre de Boole).

SIMPLIFICATION DES SYSTEMES COMBINATOIRES. Réalisation des systèmes combinatoires (multiplexeur, démultiplexeur) et hypothèses relatives à la simplification; simplification par la méthode de la table de Karnaugh; utilisation des portes "OU-exclusif"; systèmes itératifs.

BASCULES BISTABLES. Notion de système séquentiel; élément de mémoire, définition et modèles des bascules; analyse détaillée d'un cas particulier: la bascule D ; modes de représentation des divers types de bascules (bascule JK, diviseur de fréquence).

COMPTEURS. Définition, représentation par un chronogramme, un graphe ou une table détats. Méthodes générales de synthèse et d'analyse. Réalisation d'une horloge électronique.

SYSTEMES SEQUENTIELS SYNCHRONES. Définition, analyse, représentation par un graphe et une table d'états. Applications: compteur réversible, registre à décalage. Méthode générale de synthèse: élaboration de la table d'états, réduction et codage des états, réalisation du système combinatoire, avec portes NAND, multiplexeurs ou démultiplexeurs. Applications: discriminateur du sens de rotation, détecteur de séquence.

CIRCUITS LOGIQUES PROGRAMMABLES. Introduction à la programmation des systèmes logiques combinatoires et séquentiels. Utilisation de différents types de circuits programmables (PAL, EPLD)

FORME DE L'ENSEIGNEMENT

Cours-laboratoire intégré.

BIBLIOGRAPHIE

Volume V du Traité d'Electricité: "Analyse et synthèse des systèmes logiques" (D. Mange). "Travaux pratiques de systèmes logiques", manuel d'utilisation des logidules (D. Mange, A. Stauffer).

LIAISON AVEC D'AUTRES COURS
Préalable requis
Préparation pour: microinformatique

```
FORME DU CONTROLE
    Test théorique (écrit)
    + test pratique
```

Titre \quad M	MICROCONTRÔLEURS					
Enseignant Raphael HOLZER, chargé de cours EPFL/SMT						
Section (s)	Semestre	Oblig.	Option	Facult.	Heures totales	42
Microtechnique	4	区	\square	\square	Par semaine	
		\square	\square	\square	- Cours	1
		\square	\square	\square	- Exercices	-
		\square	\square	\square	- Pratique	2

OBJECTIFS

L'étudiant apprendra à utiliser un microcontrôleur 8-bit. On travaillera avec le microcontrôleur AVR ATmegal03 de Atmel, qui a une architecture de type RISC avec un large nombre de registres et un jeu d'instructions régulier.
L'étudiant apprendra à programmer en assembleur, à utiliser un oscilloscope pour observer des signaux électriques, et à lire et comprendre des documents techniques en anglais. Lors du cours il apprendra à interfacer le microcontrôleur avec divers périphériques tel que moteur, haut-parleur, affichage LCD, boutons, EEPROM, capteur de température, clavier PC, terminal série, télécommande par infrarouge etc.

CONTENU

- Qu'est-ce qu'un microcontrôleur ?
- Architechture du microcontrôleur
- Environnement de programmation
- Entrées/sorties logiques
- Moteur pas-à-pas
- Moteur servo
- Haut-parleur piezo
- Opérations booléennes
- Branchements et appel de sous-routine
- Affichage LCD
- Les interruptions
- Timers/compteurs
- Communication sérielle
- Interface 22 C
- Dallas 1-wire® interface
- Interface RS-232 (UART)
- Télécommande infrarouge (protocole RC5)

FORME DE L'ENSEIGNEMENT	FORME DU CONTROLE
Présence aux TP	
Ex cathedra, Exercices pratiques, mini-projet	mini-projet
BIBLIOGRAPHIE	Examen écrit
polycopié "Introduction aux microcontrôleurs", R. Holzer	
LIAISON AVEC D'AUTRES COURS	
Préalable requis	
Préparation pour:	

Titre INT	Introduction a la science des materiaux					
Enseignant Libe	Libero ZUPPIROLI, professeur EPFL/SMX					
Section (s)	Semestre	Oblig.	Option	Facult.	Heures totales	42
Microtechnique	2	区	\square	\square	Par semaine	
Génie Mécanique		\square	\square	\square	- Cours	2
Matériaux		\square	\square	\square	- Exercices	1
		\square	\square	\square	- Pratique	-

OBJECTIFS

Ce cours d'initiation est conçu comme une vaste promenade dans le monde des matériaux, destinée à familiariser les étudiants avec les comportements qualitatifs et les ordres de grandeur pertinents pour l'ingénieur, -e.

CONTENU

- Présenter les grandes classes de matériaux, métaux, céramiques, verres, matières plastiques, composites;.
- Expliquer en se référant à l'échelle atomique et moléculaire;
- Insister sur les facteurs-clé du comportement, défauts de structure et microstructure;
- Introduire les matériaux d'aujourd'hui, utilisés pour le traitement de l'information, les télécommunications et le bio-médical ;
- Ouvrir sur les nano-matériaux de demain, les propriétés de surface, les couches minces et l'auto-assemblage.

```
FORME DE L'ENSEIGNEMENT
    Ex cathedra.
    Séances d'exercices.
```


BIBLIOGRAPHIE

```
Introduction à la science des matériaux :J.-P. Mercier, G. Zambelli, W. Kurz, PPUR, Lausanne, \(3^{\circ}\) éd.1999, et autres ouvrages du «Traité des matériaux »
LIAISON AVEC D'AUTRES COURS
Préalable requis
Préparation pour:
```

FORME DU CONTROLE
Ecrit

Titre CHIMIE APPLIQUEE	CHIMIE APPLIQUEE					
Enseignant Claude FRIEDLI, professeur EPFL/SCGC						
Section (s)	Semestre	Oblig.	Option	Facult.	Heures totales	42
Microtechnique	1	区	\square	\square	Par semaine	
Génie Mécanique	1	区	\square	\square	- Cours	2
		\square	\square	\square	- Exercices	1
		\square	\square	\square	- Pratique	

OBJECTIFS

- Acquérir ou compléter les connaissances de base en chimie générale et préparer l'accès aux enseignements ultérieurs de la section
- Se familiariser avec le langage et la symbolique utilisés en chimie afin de servir de base aux relations interdisciplinaires
- Servir d'introduction aux cours de sciences du vivant

CONTENU

Série périodique des éléments: Relations entre position des éléments dans le tableau périodique et leurs propriétés physiques et chimiques, prédiction des réactivités.

Liaisons, réaction chimique et strechiométrie: Bref rappel des différents types de liaison, influence sur les propriétés physiques et chimiques des composés, réactions chimiques et équilibres (y compris acide-base, tampon, hydrolyse, solubilité).

Thermodynamique: Transformation de l'énergie chimique et prédiction, énergie interne, enthalpie, loi de Hess, énergie libre, thermodynamique des équilibres, pile électrique et corrosion.

Cinétique: Vitesse de réaction, ordre de réaction, mécanismes, théorie du complexe activé, catalyses et biocatalyse.

Chimie organique: Le carbone, hydrocarbures, groupes fonctionnels, composés industriels, composés naturels.

Chimie des surfaces et collö̈des: Tension interfaciales, contacts liquide-solide et gaz-solide, adsorption, film, phénomènes électrocinétiques, propriétés optiques, mécaniques et électriques de l'état colloïdal.

FORME DE L'ENSEIGNEMENT
 Ex cathedra avec démonstrations pratiques et exercices en salle
 BIBLIOGRAPHIE

Livre PPR + polycopié
LIAISON AVEC D'AUTRES COURS
Préalable requis Maturité fédérale
Préparation pour: Cours nécessitant des connaissances de base de chimie

FORME DU CONTROLE
Examen écrit

OBJECTIFS

Comprendre l'importance des forces d'interaction moléculaire pour la microtechnique. Acquérir des notions préliminaires sur les méthodes de caractérisation de surfaces. Apprendre les bases physicochimiques des procédés d'usinage chimique en phase liquide et en phase vapeur.

CONTENU

1. Surfaces idéales. réelles, et mouillabilité

Structure et composition chimique des surfaces idéales
Structure et composition chimique des surfaces réelles
Angle de contact, tension de surface critique
2. Pollution. Adhésion. Friction

Origine, composition, abondance des particules de l'air, impact sur la contamination des surfaces
Forces d'interaction intermoléculaires et forces entre objets miniaturisés statiques et dynamiques
3. Structuration

Propriétés des masques
Taux d'érosion relatif
Attaque isotropique - anisotropique
4. Usinage chimique et physique en phase liquide

Dissolution de solides (acides, complexation, solubilité)
Déposition des métaux par électrodéposition avec et sans courant
5. Usinage chimique en phase vapeur

Erosion par bombardement ionique (sputtering)
Erosion par méthodes plasma
Erosion par bombardement ionique assisté chimiquement
Déposition par sputtering
Déposition chimique en phase vapeur (CVD) - assisté par plasma
6. Méthodes de caractérisation des surfaces

Méthodes de microscopie électronique (MEB, MET)
Méthodes optiques (bases de spectroscopie IR, UV-vis, ellipsommetrie)
Méthodes de microscopie de sonde à balayage (AFM, STM, ...)

FORME DE L'ENSEIGNEMENT

cours et exercices

FORME DU CONTROLE
écrit

BIBLIOGRAPHIE

Physical Chemistry, Atkins, Oxford

LIAISON AVEC D'AUTRES COURS

Préalable requis
Préparation pour:

Titre M	Materiaux microtechniques					
Enseignant J.-A. MÅNSON, N. SETTER, P.-E. BOURBAN, EPFL/SMX						
Section (s)	Semestre	Oblig.	Option	Facult.	Heures totales	56
Microtechnique	3/4	区	\square	\square	Par semaine	
		\square	\square	\square	- Cours	$2 / 2$
		\square	\square	\square	- Exercices	
		\square	\square	\square	- Pratique	

OBJECTIFS

Connaissance des relations mise en oeuvre-structure-propriétés des matières plastiques, composites et des céramiques. Etude des méthodes d'élaboration et de mise en oeuvre de ces matériaux. Mise en évidence des leurs propriétés pour guider le choix des matériaux dans le développement de composants et de structures de la microtechnique.

CONTENU

Matériaux Polymères et Composites

Structure moléculaire des polymères
Relations structure-propriétés
Propriétés mécaniques, électriques et optiques
Ingénierie et applications des polymères
Matériaux composites à matrice organique
Mise en oeuvre et production des polymères et de leurs composites
Sélection des matériaux et des procédés
Assemblage

Matériaux Céramiques

Le mise en forme at les structures des céramiques.
Les propriétés mécaniques et thermiques; les applications des céramiques structurelles.
Les propriétés électriques ; les applications des céramiques fonctionnelles.

FORME DE L'ENSEIGNEMENT Ex cathedra avec exercices	FORME DU CONTROLE Examen écrit
BIBLIOGRAPHIE	
Polycopié 'Introduction aux matières plastiques'	
LIAISON AVEC D'AUTRES COURS	
Préalable requis	
Préparation pour:	

Titre ELEMENTS DE CONSTRUCTION ET DAO	ELEMENTS DE CONSTRUCTION ET DAO					
Enseignant Willy MAEDER, maitre de construction EPFL/SMT						
Section (s) Microtechnique	Semestre	Oblig.	Option	Facult.	Heures totales	84
	$1 / 2$	区		\square	Par semaine	
		\square	\square	\square	- Cours	2/-
		\square	\square	\square	- Exercices	-
		\square	\square	\square	- Pratique	$2 / 2$

OBJECTIFS

Construction

Etre capable de s'exprimer et de comprendre les moyens graphiques utilisés en mécanique. Maitriser les tolérances de base liées aux procédés de fabrication. Connaître les méthodes et les outils de travail utilisés lors de la conception. Savoir dimensionner les éléments mécaniques de base.

DAO :

Le cours a pour but de familiariser l'étudiant avec l'outil de dessin assisté par ordinateur, d'en comprendre les avantages et limitations. Les séances d'exercices mettent l'accent sur le travail à l'écran et l'organisation des techniques de création du dessin dans le cadre de projets de construction en microtechnique.

CONTENU

Construction :

Introduction aux normes ISO, les divers documents graphiques
Les règles du dessin technique et les artifices graphiques pour la représentation
La reconnaissance des éléments normalisés
La cotation fonctionnelle et de fabrication et les diverses tolérances
Introduction à la DAO, dessin assisté par ordinateur
Eléments de construction, les liaisons possibles entre deux corps, les mécanismes élémentaires, les transformations de mouvements
DAO :
Introduction à la DAO et la CAO
Organisation de la salle, réseau de machines
Sauvegarde, création et organisation des fichiers
Etude du logiciel CAO
Impression des dessins

FORME DE L'ENSEIGNEMENT

Exposé oral + exercices

BIBLIOGRAPHIE

Extrait de normes, cours polycopié, doc. PTC
LIAISON AVEC D'AUTRES COURS

Préalable requis

Préparation pour: Composants de la microtechnique I, II, III

FORME DU CONTROLE
Construction : test + projet
DAO : test + projet

OBJECTIFS

Connaitre les composants de base de la microtechnique ainsi que les règles de conception de mécanismes de précision. Etre apte à concevoir et construire des produits réels compatibles avec les exigences industrielles.

CONTENU

- Introduction aux mécanismes de précision
- Matériaux les plus couramment utilisés en microtechnique pour la conception de mécanismes de précision
- Techniques de fabrication en microtechnique en relation avec la précision et les états de surface
- Frottement
- théorie du frottement et de l'usure
- frottement dans les mécanismes
- Guidages
- lisses
- roulants
- à couteau et à pointe
- à éléments flexibles
- Accouplements
- permanents: rigides, télescopiques, pour axes parallèles, pour axes concourant, élastiques, magnétique
- temporaires: à dents, à disques, à cône, centrifuges, électromagnétiques, à ressort (cabestan), à cliquets

FORME DE L'ENSEIGNEMENT

Exposé oral + exercices

BIBLIOGRAPHIE

Polycopié "Composants de la microtechnique", Extrait de normes VSM, Documentations techniques de foumisseurs

LIAISON AVEC D'AUTRES COURS
Préalable requis Eléments de construction, Introduction à la science des matériaux
Préparation pour: Composants de la microtechnique II, III + Conception de produits et systèmes + Robotique/Microrobotique

Titre	COMPOSANTS DE LA MICROTECHNIQUE II					
Enseignant R	Reymond CLAVEL, professeur EPFL/SMT					
Section (s)	Semestre	Oblig.	Option	Facult.	Heures totales	28
Microtechnique	3	区	\square	\square	Par semaine	
		\square	\square	\square	- Cours	2
		\square	\square	\square	- Exercices	-
		\square	\square	\square	- Pratique	-

OBJECTIFS

Connaitre les composants de base de la microtechnique ainsi que les règles de conception des mécanismes de précision. Etre apte à concevoir et construire des produits réels compatibles avec les exigences industrielles.

CONTENU

Transmission de mouvement et de couple:

- rapport de transmission, inertie et couple rapportés, rendement, raideur, transmissions séries et parallèles
- à friction: cylindres, cônes
- courroies: plates, trapézoïdales, dentées
- chaînes
- engrenages: droits, hélicoïdaux, côniques; correction de dentures et géométries spéciales, résistance, pression, rendement; dispositions particulières (planétaire, différentiels, ...)

Transformations de mouvements:

- lois de mouvement
- cames, systèmes à leviers

Eléments élastiques:

- caractéristiques F - x, disposition en série et en parallèle
- ressorts hélicoïdaux de traction, compression, torsion
- barres de torsion, ressort spiral
- utilisation et dimensionnement

FORME DE L'ENSEIGNEMENT

Exposé oral + exercices

FORME DU CONTROLE

Projet au 4e semestre évalué et noté

BIBLIOGRAPHIE

Polycopié "Composants de la microtechnique", Extrait de normes VSM, Documentations techniques de fournisseurs

LIAISON AVEC D'AUTRES COURS

Préalable requis Eléments de construction, DAO, Composants MT I Introduction à la science des matériaux
Préparation pour Composants de la microtechnique III, Conception de produits et systèmes, Robotique/Microrobotique

Titre C	COMPOSANTS DE LA MICROTECHNIQUE III					
Enseignant	CLAVEL, professeur EPFL/SMT					
Section (s)	Semestre	Oblig.	Option	Facult.	Heures totales	42
Microtechnique		区	\square	\square	Par semaine	
		\square	\square	\square	- Cours	1
		\square	\square	\square	- Exercices	
		\square	\square	\square	- Pratique	2

OBJECTIFS

Connaitre les composants de base de la microtechnique ainsi que les règles de conception des mécanismes de précision. Etre apte à concevoir et construire des produits réels compatibles avec les exigences industrielles.
Etre capable de conduire, de façon indépendante, une construction de mécanisme de précision à partir d'un cahier des charges donné.

CONTENU

Liaisons électriques:

- bonding
- composants montés en surface

Méthodologie de conception de produits:

- démarche générale
- appui théorique au projet en fonction des difficultés rencontrées

Règles de construction en vue de l'assemblage automatique:

- modularité
- limitation du nombre de composants
- facilité d'insertion, stabilité des composants
- non retournement du récepteur
- problème de la manipulation des fils

Règles générales de construction:

- analyse de la valeur fonctionnelle et optimisation des sous-ensembles
- utilisation des prototypes

FORME DE L'ENSEIGNEMENT

Exposé oral + projet conduit en groupes de 2 à 4 étudiants

BIBLIOGRAPHIE

Polycopié "Composants de la microtechnique", Extrait de normes VSM,
Documentations techniques de fournisseurs
LIAISON AVEC D'AUTRES COURS
Préalable requis Eléments de construction, DAO, Composants de la microtechnique I, II, Introduction à la science des matériaux
Préparation pour: Conception de produits et systèmes, Robotique/Microrobotique, Projets de sem. et de diplome

FORME DU CONTROLE

Evaluation du projet sur la base du rapport, des plans et de la présentation orale.
La donnée du projet sera mise à disposition vers le milieu du semestre d'hiver précédent.

Titre ME	MECANIQUE DES STRUCTURES					
Enseignant Ioannis BOTSIS, professeur EPFL/SGM						
Section (s)	Semestre	Oblig.	Option	Facult.	Heures totales	56
Microtechnique	3	区	\square	\square	Par semaine	
Génie Mécanique	3	区	\square	\square	- Cours	3
		\square	\square	\square	- Exercices	1
		\square	\square	\square	- Pratique	-

OBJECTIFS

Connaître les lois, principes et théorèmes de base concernant le comportement des corps solides déformables, ainsi que les méthodes d'analyse de systèmes simples, statiques et hyperstatiques. Etre en mesure de calculer les composants et structures élémentaires de la construction microtechnique.

CONTENU

1. Propriétés des matériaux et équilibre intérieur : généralités - hypothèses fondamentales - propriétés mécaniques des matériaux - efforts intérieurs et contraintes.
2. Traction et compression, cisaillement, torsion circulaire : définitions - calcul des contraintes et des déformations - analyse de l'état de contrainte, cercles de Mohr - énergie de déformation.
3. Flexion des poutres : définitions - flexion pure - flexion simple - moments d'une are plane - contraintes normales et tangentielles - analyse de l'état de contrainte, cercles de Mohr énergie de déformation - calcul des lignes élastiques et des déformées.
4. Energie de déformation élastique : formes quadratiques de l'énergie élastique théorèmes de Betti-Rayleigh, Maxwell, Castigliano et Menabrea - application aux systèmes statiques et hyperstatiques.
5. Flambage élastique des poutres droites : notion d'instabilité - cas fondamental et dérivés du flambage d'une poutre - flambement d'Euler - méthode approchée de Timoshenko.
6. Théorie de l'état de contrainte : théorème de Cauchy - matrice des contraintes - tricercles de Mohr - états limites, coefficient de sécurité et contrainte de comparaison - critères de rupture de Mohr-Coulomb, Tresca et von Mises.

FORME DE L'ENSEIGNEMENT ex cathedra avec exercices hebdomadaires	FORME DU CONTROLE examen écrit
BIBLIOGRAPHIE livre PPUR (Del Pedro et Gmür) et fascicules divers	
LIAISON AVEC D'AUTRES COURS	
Préalable requis \quadAnalyse, Algèbre linéaire, Mécanique générale, Matériaux microtechniques I	
Préparation pour: produits et systèmes, Capteurs et microsystemes, Systèmes vibratoires.	

Titre ST	STATIQUE ET DYNAMIQUE					
Enseignant H	Hannes BLEULER, professeur, et Rolf WUTHRICH, EPFL/SMT					
Section (s)	Semestre	Oblig.	Option	Facult.	Heures totales	42
Microtechnique	4	\triangle	\square	\square	Par semaine	
		\square	\square	\square	- Cours	2
		\square	\square	\square	- Exercices	1
		\square	\square	\square	- Pratique	-

OBJECTIFS

Ce cours donne les bases minimales en mécanique qui sont attendues d'un ingénieur EPFL. Ces connaissances essentielles servirons dans des situations diverses, p.ex. en énergétique, microtechnique, mécatronique ou en électronique.

CONTENU

I BASES

1) Mouvement d'un point "matériel"
2) Cinématique du corps rigide (théorème des projections de vitesses, translation, rotation, mouvement général...)
3) Forces. Principe de réaction. Forces internes et externes.
4) Forces réparties en surface et en volume, densité de forces.

II STATIQUE ELEMENTAIRE

5) Equivalence, couple, moment, réduction de groupes de forces
6) Equilibre statique, appuis, réactions aux appuis, centre de masse
7) Statique de systèmes, structures
8) Frottement
9) Traction, compression, moment de flexion, effort tranchant, flèche d'une poutre

III INTRODUCTION A LA DYNAMIQUE DE SYSTEMES SIMPLES

10) Accélération, Les équations de Newton-Euler
11) Equations de mouvements de systèmes à un degré de liberté, oscillations
12) Mouvements relatifs

FORME DE L'ENSEIGNEMENT

Cours \& exercices intégrés

BIBLIOGRAPHIE

Mechanik 1 \& 3, M. Sayir, IfM, ETHZ
LIAISON AVEC D'AUTRES COURS
Préalable requis Analyse
Préparation pour:

FORME DU CONTROLE
Examen écrit

Titre EL	ELECTROTECHNIQUE I					
Enseignant Yves PERRIARD, MER EPFL/SMT						
Section (s)	Semestre	Oblig.	Option	Facult.	Heures totales	28
Microtechnique		区	\square	\square	Par semaine	
		\square	\square	\square	- Cours	1
		\square	\square	\square	- Exercices	1
		\square	\square	\square	- Pratique	-

OBJECTIFS

Etre capable d'analyser et d'appliquer les principales lois de l'électricité et de mettre en équation les circuits linéaires. Maîtriser l'application du calcul complexe aux systèmes sinusoïdaux monophasés et triphasés. Etre capable d'analyser des systèmes linéaires en régime transitoire.

CONTENU

Lois fondamentales de l'électricité.

Conventions, symboles et unités. Potentiel électrique et tension. Courants, lois d'Ohm, de Joule et de Kirchhoff.

Eléments de circuits

Modèle d'un circuit électrique : sources, résistance, inductance, capacité, inductance mutuelle.

Circuits en régime continu

Mise en équation. Combinaison d'éléments linéaires. Transformation étoile-triangle. Théorèmes de Thévenin et de Norton. Principe de superposition.

Méthode des noeuds. Méthode des mailles.
Composants réels. Eléments non linéaires.

FORME DE L'ENSEIGNEMENT	
Ex cathedra, séances d'exercices et démonstrations	FORME DU CONTROLE
BIBLIOGRAPHIE	
Traité d'Electricité, vol. I, Polycopié Electrotechnique I et II	
LIAISON AVEC D'AUTRES COURS	
Préalable requis	
Préparation pour: tous les cours d'électricité	

Titre	ELECTROTECHNIQUE II				
Enseignant	Yves PERRIARD, MER EPFL/SMT				
Section(s)	Semestre	Oblig.	Option	Facult.	Heures totales

OBJECTIFS

Etre capable d'analyser et d'appliquer les principales lois de l'électricité et de mettre en équation les circuits linéaires. Maitriser l'application du calcul complexe aux systèmes sinusoidaux monophasés et triphasés. Etre capable d'analyser des systèmes linéaires en régime transitoire.

CONTENU

Grandeurs Sinusoïdales

Principe d'un générateur alternatif. Définitions des grandeurs sinusoïdales. Nombres complexes associés. Impédances et admittances. Etudes des régimes permanents par le calcul complexe. Puissances active, réactive et apparente. Systèmes triphasés symétriques et non symétriques.

Régimes Transitoires

Réponses indicielles, éléments R, L, C. Eléments réels, méthode générale. Exemples : saut de tension aux bornes d'un circuit RC en série, RL en série. Enclenchement sur une source de tension sinusoïdale.

Applications

Synthèse des méthodes acquises au travers d'exemples d'applications.

Laboratoire

Bases de métrologie. Mesures de circuits linéaires. Démonstrations expérimentales.

```
FORME DE L'ENSEIGNEMENT
    Ex cathedra, séances d'exercices et démonstrations. Laboratoires.
BIBLIOGRAPHIE
    Traité d'Electricité, vol. I, Polycopié Electrotechnique I et II
LIAISON AVEC D'AUTRES COURS
Préalable requis Physique générale, Analyse
Préparation pour: Electronique, Conversion électromécanique
```

FORME DU CONTROLE examen oral + labo

Titre EL	ELECTRONIQUE I					
Enseignant Maher KAYAL, professeur EPFL/SEL						
Section (s)	Semestre	Oblig.	Option	Facult.	Heures totales	70
Microtechnique	3	区	\square	\square	Par semaine	
		\square	\square	\square	- Cours	2
		\square	\square	\square	- Exercices	1
		\square	\square	\square	- Pratique	2

OBJECTIFS

A la fin du cours, l'étudiant sera capable de comprendre et de concevoir correctement les circuits électroniques de base. Cet objectif s'appuie sur une connaissance fondamentale des composants électroniques modernes et la mâtrise de leur mise en oeuvre dans les circuits. Létudiant aura une approche théorique et également "physique" des phénomènes et des techniques de circuits et saura interpréter des résultats de calcul ou de mesures. Il aura le sens des approximations et leurs limites de validité.

CONTENU

Cours

1. Circuits passifs linéaires
2. Circuits passifs non-linéaires
3. Amplificateur opérationnel en contre-réaction
4. Amplificateur opérationnel en réaction positive
5. Imperfections des amplificateurs opérationnels
6. Applications de l'amplificateur opérationnel
7. Oscillateurs
8. Bascules

Exercices et travaux pratiques

Avec les exercices et travaux pratiques, l'étudiant confrontera systématiquement la théorie aux résultats expérimentaux.
Il mettra en oeuvre différents types de circuits intégrés et de composants discrets dans diverses expériences.

FORME DE L'ENSEIGNEMENT

Cours ex cathedra et exercices dirigés en salle. Travaux pratiques en

FORME DU CONTROLE
Examen écrit laboratoire

BIBLIOGRAPHIE
Notes de cours polycopiées. Notice de laboratoire
LIAISON AVEC D'AUTRES COURS

Préalable requis Electrotechnique I et II
Préparation pour: Electronique II

Titre EL	ELECTRONIQUE II					
Enseignant Maher KAYAL, professeur EPFL/SEL						
Section (s)	Semestre	Oblig.	Option	Facult.	Heures totales	70
Microtechnique	4	区	\square	\square	Par semaine	
		\square	\square	\square	- Cours	2
		\square	\square	\square	- Exercices	1
		\square	\square	\square	- Pratique	2

OBJECTIFS

A la fin du cours, l'étudiant sera capable de comprendre et de concevoir correctement les circuits électroniques de base. Cet objectif s'appuie sur une connaissance fondamentale des composants électroniques modernes et la maîtrise de leur mise en oeuvre dans les circuits. L'étudiant aura une approche théorique et également "physique" des phénomènes et des techniques de circuits et saura interpréter des résultats de calcul ou de mesures. Il aura le sens des approximations et leurs limites de validité.

CONTENU

Cours

9. Semiconducteurs et jonction pn
10. Diode
11. Transistor bipolaire
12. Ttransistor MOS
13. Configurations petits signaux du transistor
14. Polarisation et sources de courant
15. Amplificateurs élémentaires à transistors
16. Réponse en fréquence des amplificateurs

Exercices et travaux pratiques

Avec les exercices et travaux pratiques, l'étudiant confrontera systématiquement la théorie aux résultats expérimentaux.
Il mettra en oeuvre différents types de circuits intégrés et de composants discrets dans diverses expériences.

FORME DE L'ENSEIGNEMENT

Cours ex cathedra et exercices dirigés en salle. Travaux pratiques en laboratoire

BIBLIOGRAPHIE

Notes de cours polycopiées. Notice de laboratoire
LIAISON AVEC D'AUTRES COURS
Préalable requis Electronique I
Préparation pour: Circuits et systèmes électroniques

FORME DU CONTROLE
Examen écrit

Titre C	CONVERSION ELECTROMECANIQUE I					
Enseignant Yves PERRIARD, MER EPFL/SMT						
Section (s)	Semestre	Oblig.	Option	Facult.	Heures totales	28
Microtechnique		Q	\square	\square	Par semaine	
		\square	\square	\square	- Cours	2
		\square	\square	\square	- Exercices	-
		\square	\square	\square	- Pratique	

OBJECTIFS

Les étudiants seront capables d'utiliser les méthodes spécifiques de l'électromécanique en vue de la modélisation et d'analyser les caractéristiques externes des principaux moteurs électriques.

CONTENU

Méthodes

Circuits magnétiques

- Analyse de circuits magnétiques
- Perméance, inductance, propres et mutuelles
- Pertes fer

Conversion électromécanique

- Dérivée de l'énergie magnétique
- Tenseur de Maxwell
- Force de Laplace
- Bilan énergétique

Aimant permanent

- Caractéristiques
- Point de fonctionnement

Comportement dynamique

- Tension induite de transformation
- Tension induite de mouvement
- Tension induite de saturation
- Mise en équations et résolution

Transducteurs

Classification des transducteurs

FORME DE L'ENSEIGNEMENT

Ex cathedra + démonstrations et exercices

BIBLIOGRAPHIE

Traité d'Electricité, vol. IX «Electromécanique»
LIAISON AVEC D'AUTRES COURS
Préalable requis
Préparation pour: Conversion électromécanique II

FORME DU CONTROLE
écrit

Titre ECOLOGIE INDUSTRIELLE I	ECOLOGIE INDUSTRIELLE I					
Enseignant						
Section (s) Microtechnique	Semestre	Oblig.	Option	Facult.	Heures totales	28
	3	区	\square	\square	Par semaine	
		\square	\square	\square	- Cours	2
		\square	\square	\square	- Exercices	-
		\square	\square	\square	- Pratique	-

OBJECTIFS

Donner la connaissance des contextes naturels dans lesquels l'ingénieur exerce son action et celle des facteurs écologiques dont il convient de tenir compte pour développer une politique industrielle économiquement viable et respectant les critères d'un développement durable.

CONTENU

Notion de biosphère, de milieu, d'écosystème, de biotope et de biocénose. Circulation de la matière et de l'énergie dans la biosphère. Les cycles biogéochimiques, les éléments biogènes, les catégories trophiques. Bilans de masse et d'énergie dans les écosystèmes naturels et artificiels.

Les populations et leurs caractères : abondance, distribution et structure. Les coactions entre populations.

Importance du concept de diversité écologique, biodiversité. Les facteurs écologiques. Notion de facteur limitant. Facteurs dépendants ou indépendants de la densité. Les pollutions d'origine anthropogénique. Les principales causes de pollution des écosystèmes. Concept de macro- et de micropolluants. Cas particulier de la pollution provenant des circuits d'approvisionnement et désapprovisionnement des matières et des produits. Devenir des polluants dans les écosystèmes.

A partir de ces concepts, le système industriel lui-même peut être considéré comme un cas particulier d'écosystème. Telle est la perspective de l'écologie industrielle, qui propose une approche pratique, économiquement viable, du développement durable. Sur la base d'exemples concrets, le cours présentera les notions de base de l'écologie industrielle: métabolisme industriel, symbiose industrielle, parcs éco-industriels, dématérialisation et décarbonisation, stratégies et trajectoires technologiques pour l'optimisation des flux de matière et d'énergie.

FORME DE L'ENSEIGNEMENT	FORME DU CONTROLE continu
Ex cathedra	
BIBLIOGRAPHIE	
Polycopiés: Introduction à l'écologie, J. Tarradellas -Livre: Vers une écologie	
industrielle, S. Erkman, Paris, Ed. Charles Léopold Mayer, 1998	
LIAISON AVEC D'AUTRES COURS	
Préalable requis Physique générale, Chimie appliquée	
Préparation pour:	

Titre E	ECOLOGIE INDUSTRIELLE II					
Enseignant O. JOLLIET et J. TARRADELLAS, professeurs EPFL/SSIE						
Section (s)	Semestre	Oblig.	Option	Facult.	Heures totales	28
Microtechnique		\triangle	\square	\square	Par semaine	
		\square	\square	\square	- Cours	-
		\square	\square	\square	- Exercices	-
		\square	\square	\square	- Pratique	2

OBJECTIFS

Donner la possibilité à l'étudiant de relier sa pratique de futur ingénieur aux questions environnementales, en identifiant les points environnementaux clé d'un produit dès le début de sa conception. Approcher des exemples concrets et permettre de saisir les impératifs écologiques, sociaux et économiques dont il convient de tenir compte pour développer une politique industrielle économiquement viable et respectant les critères d'un développement durable.

CONTENU

Cette partie du cours est constituée de trois éléments :

- Une partie cours présentant une série d'outils simple de conception environnementale
- Un contact avec des entreprises qui ont développé une approche environnementale exemplaire ou originale tout en respectant les conditions d'un économique dynamique ou une visite d'installation de gestion et traitement des déchets (sites exemplaires pour l'approche écologie industrielle).
- Un projet de groupe sur le design environnemental d'un produit ou d'un système, avec un rapport de synthèse.

```
FORME DE L'ENSEIGNEMENT
    Visites
BIBLIOGRAPHIE
    Polycopié: Introduction à l'écologie, J. Tarradellas - Livre: Vers une écologie
    industrielle, S. Erkman, Paris, Ed. Charles Léopold Mayer, }199
LIAISON AVEC D'AUTRES COURS
Préalable requis: Physique générale, Chimie appliquée, Ecologie industrielle I
Préparation pour:
```

FORME DU CONTROLE
Continu - Rapport

Remarque: Le vendredi, tous les 15 jours, de 8 h à 12 h

Titre／Title Automatique I，II，TP／Control systems I，II，Laboratory projects	Automatique I，II，TP／Control systems I，II，Laboratory projects						
Enseignant Roland LONGCHAMP，professeur＋Denis GILLET，MER，EPFL／SGM							
Section（s）		Semestre	Oblig．	Option	STS	Heures totales	112
Microtechnique		hiver	区	\square	\square	Par semaine：	
		été	区	\square	\square	－Cours	$2 / 2$
	TP	êté	区	\square	\square	－Exercices	$1 /$－
			\square	\square	\square	－Pratique	－ 11

OBJECTIFS

I + II L＇étudiant maftrisera les méthodes classiques d＇analyse et de synthèse des régulateurs automatiques．Il sera en outre capable de modéliser les systèmes discrets en vue de leur commande par ordinateur．L＇étudiant sera en mesure d＇analyser et de synthétiser des régulateurs numériques．Il pourra dimensionner des régulateurs fondés sur la logique floue．

TP Etude expérimentale du comportement de systèmes dynamiques et de certains concepts de base introduits au cours Automatique I，II．Mise en oeuvre de systèmes de mesure et de commande．

GOALS

I＋II The sudent will know how to anatyze and design classical control systems．Moreover，he will be able to model discrete－time systems for the purpose of digital control，and will be able to analyse and design digital control systems．He will know how to design fuzzy controllers．

Labprojects Experimental study of dynamic systems and of some basic control concepts introluced in the course Control systems I．II．Implementation of measurement and control solutions．

CONTENU

I
－Introduction à l＇automatique
－Commande par calculateur de processus
－Echantillonnage et reconstruction
－Systèmes discrets
－Transformée en z
－Fonction de transfert discrète du système bouclé
－Réponse harmonique

II
－Stabilité
－Numérisation
－Synthèse discrète
－Commande floue
TP
－Introduction à Matlab et Simulink
－Modélisation et commande numérique d＇un entraînement électrique

CONTENTS

I
－Introduction to control systems
－Digital control systems
－Sampling and reconstruction
－Discrete－time systems
－The z－transform
－Closed－loop discrete－time transfer function
－Frequency response

II
－Stability
－Translation of analog design
－Discrete－time design
－Fuzzy control
Lab projects
－Introduction to Matlab and Simulink
－Modeling and digital control of an clectrical drive

FORME DE L＇ENSEIGNEMENT

Ex cathedra．Démonstrations et exercices intégrés

BIBLIOGRAPHIE

R．Longchamp，Commande numérique de systèmes dynamiques，PPUR， 1995

LIAISON AVEC D＇AUTRES COURS

Préalable requis．1er cycle
Préparation pour：Identification et commande I，II．Systèmes multivariables I，II． Robotique／microrobotique

NOMBRE DE CREDITS

SESSION D＇EXAMEN

Eté ou automno
FORME DU CONTROLE
écrit＋cominu

Titre/Title Conversion électromécanique II / Electromechanics conversion II						
Enseignant Yves Perriard, MER EPFL/SEL						
Section (s) Microtechnique	Semestre	Oblig.	Option	STS	Heures totales	42
	hiver	区	\square	\square	Par semaine:	
		\square	\square	\square	- Cours	2
		\square	\square	\square	- Exercices	1
		\square	-	\square	- Pratique	-

OBJECTIFS

Les étudiants seront capables dutiliser les méthodes spécifiques de l'électromécanique en vue de la modélisation et de la conception, d'analyser les caractéristiques externes des principaux moteurs électriques et de concevoir un entraînement électrique.

GOALS

Students will be able to use the electromechanical specific methods, to analvse the external characteristics of the main electric motors and to design an electric drive.

CONTENU

Transducteurs

- Réluctant
- Electrodynamique
- Electromagnétique
- Hybride

Moteurs

- Champ tournant et phaseur spatial
- Moteur synchrone : principe et structure, (marche en circuit ouvert, régime autocommuté, générateur)
- Moteur à courant continu : principe et structure, caractéristiques externes.
- Moteur asynchrone: structure et principe, caractéristiques externes
- Synthèse des différents moteurs

CONTENTS

Tranducers

- Reluctant
- Electrodynamic
- Electromagnetic
- Hybrid

Motors

- Rotating field and space phaser
- Synchronous motor: principle and structure, (open-loop mode, self-commutated motor. generator)
DC motor : principle and structure, external characteristics
- Induction motor: structure and principle. external characteristics
- Synthesis of the different motors

Electric drives

- Electric drive components
- Driver and control

Entrainements électriques

- Composants d'un entraînement électrique
- Alimentation et commande

FORME DE L'ENSEIGNEMENT

ex cathedra + démonstrations et exercices
BIBLIOGRAPHIE
Traitéd'Electricité, volume IX «Electromécanique»»
LIAISON AVEC D'AUTRES COURS
Préalable requis. Conversion électromécanique I
Préparation pour: Transducteurs et entraînements intégrés et Transducteurs et entrainements directs

NOMBRE DE CREDITS
Cf. TP Conv. électromécanique
SESSION D'EXAMEN
Eté ou automne
FORME DU CONTROLE

Titre/Title TP d'électromécanique / Electromechanics Lab experiments						
Enseignant Y	Yves PERRIARD, MER E	EPFL/SMT, J.-Pierre		LUDWIG, chargé de cours EPFL/SEL		
Section (s)	Semestre	Oblig.	Option	STS	Heures totales	28
Microtechnique	été	区	\square	\square	Par semaine:	
		\square	\square	\square	- Cours	-
		-		\square	- Exercices	-
		\square	\square	\square	- Pratique	2

OBJECTIFS

- Assimiler par des applications pratiques les lois principales de l'électromécanique, ainsi que les concepts et le comportement statique et dynamique relatifs aux mteurs et entraînements électriques.
- Maitriser les techniques de mesures correspondantes.

CONTENU

1. Familliarisation aux instruments de mesure

2. Circuit magnétique - Transformateur

Illustration des concepts d'inductances propre et mutuelle pour des circuits couplés, mesures de ces grandeurs; approche expérimentale des phénomènes de fuites magnétiques, de saturation, de pertes dans le fer, de rendement.
3. Système d'entraînement composé d'un moteur à courant continu et d'un moteur synchrone auto-commuté
Caractérisation de façon globale d'un systeme d'entraînement électrique; analyse du comportement de la machine à courant continu et de son alimentation; analyse du fonctionnement de la machine synchrone auto-commutée en boucles fermée et ouverte ainsi que de son alimentation à 120°; comparaison des 2 types de machines et de leur alimentation.

4. Moteur asynchrone

Etude des caractéristiques d'une machine asynchrone en charge sur un réseau industriel (fonctionnement en moteur et en génératrice)

GOALS

- Through experiments, to assimilate the fundamentals of electromechanics as well as the concepts and the static and dynamic behaviour of electrical motors and drives.
- To master the corresponding measurement techniques.

CONTENTS

1. Using the measurement appliances
2. Magnetic circuit - Transformer

Illustration of the concepts of self and mutual inductances for coupled circuits, measuring of those variables; experimental approach of the phenomena of magnetic leaks, of saturation, of iron losses, of efficiency.
3. Driving system composed of a DC motor and of a self-commutated synchronous motor Global characterization of an electric drive system; analysis of the behaviour of the DC machine and of its supply; analysis of the operation of the self commutated synchronous machine (closed and open-loop mode) as well as of its 120° driver; comparison of both machines and of their driver.
4. Asynchronous motor

Study of the characteristics of an induction machine when on load to an industrial network (motor and generator operation).

FORME DE L'ENSEIGNEMENT
 Travaux pratiques

BIBLIOGRAPHIE

Traité d'électricité, vol., IX
LIAISON AVEC D'AUTRES COURS
Préalable requis. Conversion électromécanique I, II
Préparation pour:

NOMBRE DE CREDITS
Conv. électroméc. II et TP 5
SESSION D'EXAMEN
FORME DU CONTROLE
continu obligatoire

Titre/Title Systèmes vibratoires / Vibrational systems						
Enseignant Hannes BLEULER, professeur EPFL/SMT et Rolf Wüthrich, EPFL/SMT						
Section (s) Microtechnique	Semestre	Oblig.	Option	STS	Heures totales	42
	hiver	区	\square	-	Par semaine.	
		\square	\square	\square	- Cours	3
			\square	\square	- Exercices	-
		\square	\square	\square	- Pratique	-

OBJECTIFS

Les vibrations étant très répandues dans la pratique de l'ingénieur, ce cours vise à donner les notions de base nécessaires à une compréhension du phénomène physique, à la modélisation, l'analyse et à des aspects de synthèse de systèmes dynamiques mécatroniques tels qu'ils se présentent souvent en microtechnique.

Ce cours de base très pluridisciplinaire se fonde sur les mathématiques (analyse et algèbre linéaire) et la mécanique, mais inclut également des concepts de systèmes électriques et surtout de modélisation en automatique.

CONTENU

Oscillateur à un degré de liberté (ddl)
Systèmes continus simples (nombre infini de ddl, fréquences propres, modes propres, propagation d'ondes)
Matrices de masse et de rigidité pour systèmes à nombre fini de ddl.

Analyse du comportement à partir des équations differentielles, stabilité. Solutions propres, interprétation des vecteurs propres, coordonnées normales; Découplage.
Représentation par variables d'états, matrice fondamentale, solution générale, réponse indicielle.
Réponse complexe en fréquence.
Exemple d'application . rotor
Logiciels de simulation
Quelques effets non-linéaires.

GOALS

Vibrations being very common in engineering practice, this course aims at giving some basics of the physical phenomena and of mathematical modeling and analytical treatment of the dynamics of mechatronic systems.

The connections to electrical engineering, numerical modeling and automatic control are highlighted with the purpose of opening up the mind to a transdisciplinary point of view.

CONTENTS

Simple Oscillator (one degree-of-freedom d.o.f.)
Simple continuous examples (infinity of d.o.f., wave propagation, eigenfrequencies, mode shapes)
Mass and stiffness matrices of multi-d.o.f. systems
Analysis of stability, eigenmodes, modal coordinates.
State representation.
Frequency domain.
Rotor modeling, simulation.
A glimpse of nonlinear effects.

FORME DE L'ENSEIGNEMENT

ex cathedra avec exercices étroitement liés au cours

BIBLIOGRAPHIE

polycopié, PPUR Georges Spinnler Conception des machines, vol. 1 Statique, vol. 2 Dynamique

LIAISON AVEC D'AUTRES COURS
Préalable requis. ler cycle
Préparation pour: Robotique/Microrobotique, Automatique

NOMBRE DE CREDITS

SESSION D'EXAMEN
printemps
FORME DU CONTROLE
écrit

Titre/Title Signaux et systèmes I, II / Signals and systems I, II								
Enseignant	Michael	UNSER,	professeur	$\begin{gathered} \text { EPFL/SMT } \\ \text { oblig. } \end{gathered}$	et Thierr	BLU,	chargé de cours	EPFL/SMT
Section (s)			Semestre		Option	STS	Heures totales	84
Microtechniqu		I	hiver	区	\square	\square	Par semaine:	
		II	été	区	\square	\square	- Cours	$3 / 3$
				\square	\square	\square	- Exercices	-
				\square	\square	\square	- Pratique	-

OBJECTIFS

Ce cours présente la théorie et la pratique des signaux et systèmes avec applications au traitement du signal, aux télécommunications et à l'instrumentation. Ces notions doivent permettre à l'étudiant de reconnaitre les caractéristiques essentielles des signaux et de concevoir les systèmes aptes à les traiter; elles doivent également lui faciliter l'étude de la littérature et des ouvrages spécialisés.

CONTENU

1. Introduction - Notions fondamentales Structure d'un système de communication.
2. Analyse de Fourier appliquée à la représentation des signaux et aux opérations fondamentales de traitement.
3. Systèmes analogiques linéaires.
4. Transformation de Fourier à court terme.
5. Echantillonnage des signaux continus Signaux discrets et numériques Transformation en Z.
6. Systèmes discrets et numériques linéaires.
7. Transformation de Fourier discrète et algorithmes de la transformation de Fourier rapide.
8. Convolution et corrélation discrètes Algorithmes rapides.
9. Techniques de modulation du signal.
10. Codage de source et de canal.
11. Signaux aléatoires et détection de signaux dans le bruit.

GOALS

This course presents the theory and practice for signals and systems applied to signal processing, telecommunications, and instrumentation. Based on the presented notions, the students shall be able to recognize the characteristic features of specific signals, and to design systems to process these signals. The course will also provide the necessary basis for rendering the study of specialized literature and books easier.

CONTENTS

1. Introduction - Fundamental notions Structure of a communication system.
2. Fourier analysis applied to signal representation and to fundamental signal processing operations.
3. Linear analog systems. Definition and properties. Particular linear analog systems.
4. Short-term Fourier Transform.
5. Sampling of continuous signals - Timediscrete and digital signals - Z-Transform.
6. Linear discrete-time and digital systems
7. Discrete Fourier Transform and Fast Fourier Transform algorithms.
8. Discrete convolution and correlation - Fast algorithms.
9. Signal modulation techniques.
10. Source and Channel Coding.
11. Noise and signal detection within noise.

FORME DE L'ENSEIGNEMENT

Exposé oral, exercices dirigés et répétitions

BIBLIOGRAPHIE

Cours polycopié Signaux et systèmes I et II (édité par l'EPFL)
LIAISON AVEC D'AUTRES COURS
Préalable requis. ler cycle
Préparation pour:

NOMBRE DE CREDITS

SESSION D'EXAMEN
Eté ou automne

FORME DU CONTROLE

TitreTitle Circuits et systèmes électroniques I/ Electronic circuits \& systems I						
Enseignant Michel DECLERCQ, professeur EPFL/SEL						
Section (s) Microtechnique	Semestre	Oblig.	Option	STS	Heures totales	42
	hiver	\triangle	\square	\square	Par semaine:	
		\square	\square	\square	- Cours	2
		\square	\square	\square	- Exercices	1
		\square	\square	\square	- Pratique	-

OBJECTIES

Maitriser la compréhension, la conception et la mise en oeuvre des circuits et systèmes électroniques, sous forme discrète ou intégrée.

CONTENU

Etude de circuits et systèmes électroniques
Amplis différentiels : Introduction, schéma et principe de fonctionnement, fonction de transfert "grands signaux", comportement "petits signaux de l'ampli différentiel à charges résistives, ampli différentiel à charges actives
Multiplieur analogique: ampli différentiel à transconductance variable, multiplieur quatrequadrants : circuit de base, circuit évolué à gamme dynamique étendue
Réaction négative: définitions et propriétés générales, réaction négative idéale, réaction négative "non-idéale" ou réelle, exemples
Amplis de puissance : notions fondamentales relatives au calcul des circuits de puissance, amplis de classe A, B et $\mathrm{AB}, \mathrm{C}, \mathrm{D}$, introduction aux transistors de puissance, évacuation de la puissance dissipée
Alimentation stabilisée: introduction générale, alimentations stabilisées à régulateur série, à découpage, à transformateur.

GOALS
Acquiring skills in understanding, design and use of electronic circuits and systems, either discrete or integrated.

CONTENTS

Study of electronic circuits and systems
Differential amplifiers : Introduction, circuit schematics and circuit behavior, large-signal transfer function, small-signal analysis of resistive-load and active-load differential amplifiers.
Analog Multiplier : differential amplifier with variable transconductance, four-quadrant multiplier : basic circuit, advanced circuits with extended dynamic range
Negative Feedback: definitions and properties. the simplified or "ideal" negative feedback. non-ideal negative feedback, examples
Power Amplifiers: basic theory and analytical relations used in power circuits calculation, power amplifiers of class $A, B, A B, C$ and D. introduction to power transistors, power dissipation
Regulated power supplies : continuous serial regulator, switching-type regulators.

FORME DE L'ENSEIGNEMENT
cours ex cathedra et exercices
BIBLIOGRAPHIE
notes de cours polycopiées, articles techniques récents
LIAISON AVEC D'AUTRES COURS
Préalable requis.
Préparation pour: Electronique, Labo

NOMBRE DE CREDITS

SESSION D'EXAMEN
printemps
FORME DU CONTROLE

TitrefTitle Electronique, labo / Electronic Lab. Experiments	Electronique, labo / Electronic Lab. Experiments					
Enseignant Michel DECLERCQ, professeur EPFL/SEL						
Section (s)	Semestre	Oblig.	Option	STS	Heures totales	28
Microtechnique	été	区	\square	\square	Par semaine:	
		\square	\square	\square	- Cours	
		\square	\square	\square	- Exercices	-
		\square	\square	\square	- Pratique	2

OBJECTIES

Acquerir la pratique des notions apprises aux cours dElectronique I et II par la conception, la réalisation et la mesure de petits systèmes électroniques.

GOALS

Acquiring practical skills in the field of electromic circuits covered by the courses Electronique I and In. The lab experience involve the design, realization and measurement of small electronic systems.

FORME DE L'ENSEIGNEMENT

travaux pratiques en laboratoire
BIBLIOGRAPHIE
notice de laboratoire. Notes relatives aux cours d'Electronique I et II. Polycopiés du cours Circuits et Systèmes Electroniques.

LIAISON AVEC D'AUTRES COURS
Préalable requis. Circuits et systèmes électroniques I
Préparation pour:

NOMBRE DE CREDITS

SESSION D'EXAMEN

FORME DU CONTROLE
continu

Titre/Title Optique / Optics						
Enseignant René DANDLIKER, prof. EPFL et UNI-NE / René SALATHE, prof. EPFL/SMT						
Section (s)	Semestre	Oblig.	Option	STS	Heures totales	42
Microtechnique	été	\triangle	\square	\square	Par semaine:	
		\square	\square	\square	- Cours	3
		\square	\square	\square	- Exercices	-
		\square	\square	\square	- Pratique	-

OBJECTIFS

A la fin du cours Optique, l'étudiant aura les connaissances de base (principes et composants) en optique moderne appliquée dans des systèmes microtechniques.

gOALS

At the end of the course Optics the students will have the basic knowledge (concepts and components) of modern optics used in micro-engineering systems.

CONTENU

Interférence et diffraction: cohérence, fréquences spatiales, faisceaux gaussien, modes. résonateurs
Ondes guidées et fibres optiques: principe, modes, dispersion, applications (télécommunications, senseurs à fibres optiques)
Détection optoélectronique: sensibilité spectrale, sources de bruit (SNR), photodiodes et cameras (CCD) Optique quantique: absorption et émission, photons (Planck, Einstein), lumière cohérente et incohérente, principe du laser
Lasers: exemples (HeNe, diodes laser) et applications (interférométrie, télécom, CD, DVD, imprimantes)

CONTENTS

Interference and diffraction: coherence, spatial frequencies, Gaussian beams, modes, resonators Guided-wave optics and optical fibers: concepts, modes, dispersion (communications, fiber-optical sensors)
Opto-electronic detection: spectral sensitivity, noise sources (SNR), photodiodes and cameras (CCD) Quantum optics: absorption and emission, photons (Planck, Einstein), coherent and incoherent light, concept of the laser
Lasers: examples (HeNe, diode lasers) and applications (interferometry, telecommunication CD, DVD, laser printers)

FORME DE L'ENSEIGNEMENT

ex cathedra, exercices en classe

BIBLIOGRAPHIE

R. Dändliker, Polycopié EPFL, "Optique Appliquée I \& II";
B. A. Saleh, M .C. Teich, "Fundamentals of Photonics", John Wiley \& Sons;
A. K. Ghatak, K.Thyagarajan, "Optical Electronics", Cambridge Univ. Press;
R. Dändliker, "Les Lasers", Presses Polytechniques, Lausanne;
J. W. Goodman, "Introduction to Fourier Optics", McGraw-Hill, New York A. Yariv, "Optical Electronics in Modern Communications", Oxford University Press

LIAISON AVEC D'AUTRES COURS

Préalable requis.
Préparation pour:

SESSION D'EXAMEN

Eté ou automne

FORME DU CONTROLE

Titre/Title Microélectronique I / Microelectronics I						
Enseignant Mare ILEGEMS, professeur EPFL/SPH						
Section (s) Microtechnique	Semestre	Oblig.	Option	STS	Heures totales	42
	été	\triangle	\square	\square	Par semaine:	
		\square	\square	\square	- Cours	2
		\square	\square	\square	- Exercices	1
		\square	\square	\square	- Pratique	

OBJECTIFS

Présenter les principes de fonctionnement des composants semiconducteurs, leurs procédés de fabrication, et leur description en termes de modeles électriques.

CONTENU

Propriétés électroniques du silicium.
Modèle de bandes, statistique des porteurs libres.
Propriétés de transport, mobilité, durée de vie, longueur de diffusion. Processus de recombinaison. Equations de continuité.
Diode à jonction et contact métalsemiconducteur.
Jonction p-n à l'équilibre et hors équilibre.
Caractéristiques courant-tension. Barrières de potentiel.
Etats de surface Capacité de jonction. Modèles statiques et dynamiques.
Transistor bipolaire à jonction.
Equations de fonctionnement. Caractéristiques statiques. Modèles grand-signal et petit-signal.
Transistor à effet de champ à hétérojonction. Structures JFET, MESFET et HFET. Principes et équations de fonctionnement.
Interface métal-oxyde-silicium et capacité MOS.
Diagramme des bandes d'interfaces. Accumulation, déplétion et inversion. Caractéristiques capacité-tension. Transistor MOS.
Caractéristiques courant-tension en forte inversion. Modèles de mobilité, saturation de vitesse. Contrôle de la tension de seuil. Comportement à canal court. Circuit équivalent et réponse en fréquence.

GOALS

To establish the physical principles of operation of integrated semiconductor devices, their fabrication process, and their characteristics in terms of electrical models.

CONTENTS

Electronic properties of Silicon.
Band structure, carrier statistics. Transport properties, mobility, lifetime, diffusion length. Recombination processes, continuity equations.
Junction diode and metal-semiconductor contacts
p-n junction under equilibrium and applied bias. Current-voltage characteristics. Barrier potentials.
Surface states. Junction capacitance. Static and dynamic models.

Bipolar transistor.

Intrinsic transistor model. Current-voltage characteristics. Large signal and small signal models.
Heterojunction field effect transistors.
JFET, MESFET and HFET structures. Principles and basic equations.
Metal-oxide-semiconductor structures
Interface band diagrams. Accumulation, depletion and inversion regimes. Capacitance-voltage characteristics. MOS transistors.
Current-voltage characteristics in strong inversion. Effective channel mobility, velocity saturation effects. Threshold considerations. Short channel effects. Smallsignal equivalent circuit and frequency response.

FORME DE L'ENSEIGNEMENT

Exposé oral avec exercices
BIBLIOGRAPHIE
Notes polycopiées

LIAISON AVEC D'AUTRES COURS

Préalable requis. Cours d'introduction en Électronique et Physique du solide
Préparation pour: Microélectronique II, Optoélectronique, Microsystèmes silicium, Laboratoire et projets

NOMBRE DE CREDITS

SESSION D'EXAMEN

Eté ou automne
FORME DU CONTROLE

Titre/tite Microinformatique I / Microinformatics I						
Enseignant Pierre LAMON, chargé de cours EPFL/SMT						
Section (s)	Semestre	Oblig.	Option	STS	Heures totales	42
Microtechnique	hiver	区	\square	\square	Par semaine:	
		\square	\square	\square	- Cours	1
		\square	\square	\square	- Exercices	
		\square	\square	\square	- Pratique	2

OBJECTIFS

L'étudiant devra avoir assimilé les principes de base de la structure et de la programmation des microordinateurs. Il devra être capable d'écrire un programme complexe en langage d'assemblage et de le déverminer. Il devra savoir extraire l'information importante dans la documentation générale relative à un système micro-ordinateur.

CONTENU

Architecture des processeurs et évolution. Outils de développement de programmes.
Nombres, représentation des nombres négatifs, flottants.
Assembleur pour M68xxx: représentation des données, nombres, chaînes, tableaux, manipulation des données,
Modes d'adressage, notion de pile, transfert de paramètres.
Interfaces, interruptions et accès direct en mémoire.

Les travaux pratiques permettront de consolider les notions importantes pour la programmation en assembleur.

GOALS

The student should have understood the basic principles of microprocessor programming. He will be able to write a complex program in assembly language and debug it. He will be able to read the documentation relative to an 8 and 16 bit microprocessor and will have a good understanding of the assembly and compilation process.

CONTENTS

Processor architecture and evolution.
Development tools.
Number representation, floating point. M68xxx assembler: addressing modes, data types, stack, parameter passing.
Interfaces, interrupts and DMA
Hands-on will consolidate important notions for programming in assembly language.

FORME DE L'ENSEIGNEMENT	NOMBRE DE CREDITS
ex cathedra et pratique	Cf. Microinformatique II
BIBLIOGRAPHIE	SESSION D'EXAMEN
Polycopiés	
LIAISON AVEC D'AUTRES COURS	
Préalable requis.Microcontrôleurs Préparation pour: Systèmes informatiques	FORME DU CONTROLE

Titre/Title Microinformatique II / Microinformatics II						
Enseignant Yves PIGUET, chargé de cours EPFL/SMT						
Section (s) Microtechnique	Semestre	Oblig.	Option	STS	Heures totales	42
	été	区	\square	\square	Par semaine:	
		\square	\square	\square	- Cours	1
		\square	\square	\square	- Exercices	-
		\square	\square	\square	- Pratique	2

OBJECTIFS

Ce cours donne aux étudiants la connaissance des techniques de programmation orientées objets et des outils de développement pour les systèmes embarqués.

CONTENU

Différence entre C et C++
Définition de nouveaux types en C++ Concept d'objet
Concept de classe
Concept de constructeur et de destructeur
Bibliothèque standard du $\mathrm{C}++$
Concept d'héritage
Concept polymorphisme
Outils de développement haut-niveau
(Matlab, SysQuake)
Mini-projet

GOALS

This course gives to students the knowledge about object oriented programming and developpment tools for embedded systems.

CONTENTS

Difference between C and $\mathrm{C}++$
Definition of new types in C++
Concept of object
Concept of class
Constructors and destructors
C++ standard library
Inheritance
Polymorphism
High-level development tools
(Matlab, SysQuake)
Mini-project

FORME DE L'ENSEIGNEMENT
Cours, labos intégrés
BIBLIOGRAPHIE
Laboratoires C, WWW
LIAISON AVEC D'AUTRES COURS
Préalable requis. Microinformatique I
Préparation pour: Microprocesseurs, Périphériques

NOMBRE DE CREDITS
Microinformatique I + II

Titre/Title Méthodes de production / Production methods						
Enseignant Jacques JACOT, professeur EPFL/SMT						
Section (s) Microtechnique	Semestre	Oblig	Option	STS	Heures totales	42
	hiver	区	\square	\square	Par semaine:	
		\square	\square	\square	- Cours	2
		\square	\square	\square	- Exercices	-
		\square	\square	\square	- Pratique	1

OBJECTIFS

Apprendre à analyser et à choisir judicieusement des techniques de production et leur mise en ocuvre en fonction du problème à résoudre et du contexte industriel.
Se familiariser avec la prise en compte de facteurs économiques dans des problèmes techniques.

CONTENU

Les étudiants analysent par groupe de deux une technique de production en suivant une démarche imposée.
Les sujets sont choisis parmi les principales techniques de production telles que par exemple: découpage au jet deau, soudage laser, électroérosion, injection, microusinage, frittage, décolletage, etc, ..., sont abordées sur le plan technologique, productivité, mise en oeuvre, etc,..., à travers des cas dapplications dans la fabrication de produits tels que: montres, robotsménager, capteurs de pression, lentilles de contact, prothèses auditives, briquets, disques compacts, vannes thermostatiques, etc, ...

REMARQUES

Chaque groupe de 2 étudiants prépare un document d'une quinzaine de pages sur son sujet et le présente en 20 minutes. L'ensemble des documents constitue les notes de cours.
Evaluation combinée du document de référence, de l'exposé et de l'examen oral.

gOALS

- Leam to assess production technology in the industrial context
- Getting used to mind economic aspects of technical problems

CONTENTS

Analysis of one or two production technologies in groups of two students along a prescribed method.
examples : EDM, injection, micro-machining, sintering, laser welding, etc.
products such as watches, sensers, lensis, hearing aids, lights, Cds, etc.

Titre/Title Industrialisation / Industrialization						
Enseignant Jacques JACOT et Peter RYSER, professeurs EPFL/SMT						
Section (s) Microtechnique	Semestre	Oblig.	Option	STS	Heures totales	28
	été		\square	\square	Par semaine:	
		\square	\square	\square	- Cours	2
		\square	\square	\square	- Exercices	-
		\square	\square	\square	- Pratique	-

OBJECTIFS

Ce cours est une initiation à la notion d'industrialisation d'un produit. Il a pour but d'apprendre aux ingénieurs comment aborder le processus d'industrialisation de produits en prenant en compte à la fois les aspects scientifiques de la conception et les contraintes techniques et économiques qui sont associées.

GOALS

This is an introductory course to the notion of product industrialization. The goal is to strengthen the awareness of the future engineer of the importance of product conception and industrialization and to provide him with a set of indispensable toolsfor engineers in industry.

CONTENU

Introduction à la production industrielle

- organisation d'une entreprise
- coût de production
- flux financiers
- analyse fonctionnelle
- analyse de la valeur

Gestion d'un projet d'industrialisation. Comment passer de l'idée à la fabrication en séries, puis à l'introduction sur le marché

Management de la qualité

- analyse causes/effets, diagramme en arêtes de poisson
- analyse des défaillances
- plans d'expériences

La conception de produits pour l'assemblage (Design For Assembly)

CONTENTS

- Introduction to industrial production
- From marketing to delivery
- Product life cycle
- Choice of production technology
- Quality management
- Design for assembly

FORME DE L'ENSEIGNEMENT

Exposé oral par deux professeurs illustré d'exemples, exercices intégrés dans le cours. Examen par étude de cas en groupes et exposés individuels.

BIBLIOGRAPHIE

Polycopié
Les plans d'expériences par la méthode Taguchi de M. Pillet
LIAISON AVEC D'AUTRES COURS
Préalable requis. Méthodes de production
Préparation pour: \quad Techniques d'assemblage II et III

Eté ou automne
FORME DU CONTROLE

Titre/Title	Conception de produits et syst. I, II / Conceptual design of products and systems I, II						
Enseignant $\begin{gathered}\mathrm{R} a\end{gathered}$	Radivoje POPOVIC, Roland chargé de cours EPFL/SM		SIEGWART, profs EPFL/SMT et Pierre-André BESSE,				
Section (s)		Semesire	Oblig.	Option	STS	Heures totales	84
Microtechnique	I	hiver	区	\square	\square	Par semaine:	
		été	\triangle	\square	\square	- Cours	4/-
			\square	-	\square	- Exercices	-
			\square	\square	\square	- Pratique	-12

OBJECTIFS

Les étudiants seront capables de planifier et de conduire systématiquement la conception de produits microtechniques en appliquant des méthodes appropriées et les connaissances de plusieurs disciplines.

CONTENU

Introduction: Analyse de produits et de systèmes, cycle de vie, conception-développement-recherche, méthodes de conception.
Eléments du marketing: Création de valeurs, marketing mix, part de marché, qualité totale, portfolio, différencier l'offre, nouveaux produits.
Idée de produit et son élaboration: Formulation d'idée, clarifier les objectifs, établir les fonctions, schéma bloc des fonctions, cahier des charges, méthodes QFD.
Recherche des solutions de principe: Recherche des informations, l'arbre d'idées, catalogue des solutions, analyse morphologique, stimulation de la créativité.
Systèmes et microsystèmes: Eléments constitutifs, fonction, relations systémiques, synergies, structures fondamentales, exemples.
Optimisation de la solution: Evaluation des variantes, choix, amélioration de détails, méthodes formalisées.
Méthodes de prévision: Etablissement du modèle, méthodes numériques, simulations par ordinateur.
Fiabilité: Loi de survie, taux de défaillance, analyse de fiabilité, fiabilité des composants, essais accélérés.
Gestion de projet: Organisation, collaborateurs, stimulation de la créativité, gestion de temps et de l'argent, revues et audits.
Elaboration d'un projet de conception, à partir d'une idée jusqu'au début de la construction détaillée.
Les projets se dérouleront par groupes de 4 ou 6 étudiants. Chaque groupe sera responsable de la gestion de son projet. Un assistant, jouant le rôle du chef de développement, supervisera le déroulement du projet. Les résultats du travail seront présentés sous forme d'un rapport final et d'un exposé.

GOALS

The students will be able to planify and conduct the conceptual design of microtechnology products by applying appropriate methods and the knowledge of several disciplines.

CONTENTS

Introduction: Analysis of products and sytems, life cycle, design - development - research, design methods.
Basics of marketing: Creation of values, marketing mix, marketing share, total quality, portfolio matrix, differentiating the offer, new products.
Idea of product and its development: Formulate ideas, clarify the objectives, define the functions, block diagram of the functions, specifications, QFD methods.
Search for generic solutions: Search for informations, idea tree, catalogue of solutions, morphological analysis, stimulation of creativity.
Systems and microsystems: Constituent elements, function, system realtionships, synergies, fundamental structures, examples.
Optimisation of the solution: Evaluation of the possible variants, choice, improvement of details, formalized methods.
Methods of prediction: Elaboration of the model, numerical methods, computer simulations.
Reliability: Surviving law, failure rate, reliability analysis, reliability of components, accelerated tests.
Project management: Organization, people, stimulation of creativity, time and money management, project reviews and audits.
Realization of a conceptual design project, from the basic idea to the beginning of the detailed design. The project work will be done in groups of 3 or 4 students. Each group will be responsible for the management of its project. An assistant, playing the role of head of development, will surpervise the development of the project. The results of the work will be presented in a final report.

FORME DE L'ENSEIGNEMENT

Projets par groupes de 3 ou 4 étudiants

BIBLIOGRAPHIE

N. Cross "Engineering design methods", John Wiley \& Sons, 1994. Feuilles
polycopiées. Documentation professionnelle, Bibliothèque centrale et de l'Institut
LIAISON AVEC D'AUTRES COURS
Préalable requis.
Préparation pour: Analyse de produits et systèmes (pas donnée en été 2002)

NOMBRE DE CREDITS

SESSION D'EXAMEN

FORME DU CONTROLE
continu

Titrefitle Capteurs et microsystèmes I, II / Sensors and microsystems I, II						
Enseignant Philippe RENAUD, Prof. EPFL/SMT						
Section (s) Microtechnique	Semestre	Oblig.	Option	STS	Heures totales	56
	I hiver	区	\square	\square	Par semaine:	
	II été	区	\square	\square	- Cours	$2 / 2$
		\square	\square	\square	- Exercices	-
		\square	\square	\square	- Pratique	-

OBJECTIFS

Comprendre les principes physiques utilisés dans les capteurs et les microsystèmes. Vue générale des differents principes de transduction et de lélectronique associée.
Montrer des exemples d'application

CONTENU

Caractéristiques métrologiques de transducteurs
Capteurs mécaniques: jauges de contrainte, piézorésistances. Applications: force, pression. Capteurs thermiques: résistance, thermocouples, semiconducteurs, thermopile. Applications: température, rayonnement IR , anémométrie, débit.
Capteurs capacitifs: Conditionneur de signal capacitif. Exemples d'applications: proximité, position, pression, accélération, microphone.
Capteurs inductifs: LVDT, réluctance variable, proximité.
Capteurs magnétiques: Effet Hall, magnétostriction, magnétorésistance.
Capteurs piézoélectriques: Matériaux, effet piézoelectrique, conditionneurs de signal. Applications: accélération, microphone, capteurs pyroélectriques.
Capteurs résonnants: Principe, interfaçage, oscillateurs à quartz. Applications: force, pression, température, micro-balances, gyroscopes, débit.
Capteurs chimiques: catalytiques, conductance, électrochimiques.
Capteurs optiques: Vue d'ensemble. Applications: encodeurs, optiques intégrées.

GOALS

To get a basic understanding of physical principles which can be used in sensors. Overview of the main applications by selected examples.
Introduction to microsystems.

CONTENTS

Metrological characteristics of transducers
Mechanical sensors: strain gages, piezoresistance. Applications: force, pressure.
Thermal sensors: resistance, thermocouples, semiconductor, thermopile. Applications: temperature, IR radiation, anamometry, mass flow.
Capacitive sensors: Capacitive readout interfaces. Applications: proximity, position, pressure, acceleration, microphone.
Inductive sensors: LVDT, variable reluctance, proximity.
Magnetic sensors: Hall, magnetostrictive, magnetoresistive.
Piezoelectric sensors: Materials, piezoelectric effect, readout interfaces. Applications examples: acceleration, microphone, pyroelectric sensors.
Resonant sensors: Principles, interfacing, quartz oscillators applications: force, pressure, temperature, micro-balances, gyroscopes, flow sensors.
Chemical sensors: Catalytic, conductance, electrochemical.
Optical sensors: General overview. Applications: encoder, integrated optics.

FORME DE L'ENSEIGNEMENT

Exposé oral + discussions

BIBLIOGRAPHIE

A. Khazan: "Transducers and their Elements", Prentice Hall 1994
G. Asch: "Les Capteurs en Instrumentation Industrielle", DUNOD 1991

LIAISON AVEC D'AUTRES COURS

Préalable requis. Physique générale et électronique de base
Préparation pour: Capteurs et microsystèmes III
Projets de semestres et diplôme

NOMBRE DE CREDITS

SESSION D'EXAMEN

Eté ou automne
FORME DU CONTROLE oral

Titre/Title Technologies des microstructures I / Microstructure fabrication technologies I						
Enseignant Martin GIJS, professeur EPFL/SMT						
Section (s) Microtechnique	Semestre	Oblig.	Option	STS	Heures totales	42
	hiver/été	\square	\square	\square	Par semaine:	
		\square	\square	\square	- Cours	2/1
		\square	\square	\square	- Exercices	-1-
		\square	\square	\square	- Pratique	- $1-$

OBJECTIFS

Les technologies de microfabrication sont à la base de chaque réalisation ou application de microsystèmes. Ce cours vise à donner les notions de base des techniques, procédés et technologies de microfabrication utilisés en salle blanche.

CONTENU

1. Introduction aux travaux pratiques en salle propre
2. Histoire de la technologie IC Technologie planaire
3. Techniques de déposition des couches minces
4. Lithographie
5. Gravure humide - micro-usinage surfacique et volumique du Si
6. Gravure sèche
7. Plans d'expériences pour l'optimalisation de procédés

GOALS

Microfabrication technologies are at the heart of every realisation or application of microsystems. This course aims to provide the basic knowledge of the techniques, procedures and technologies of microfabrication, as practised in a clean room.

CONTENTS

1. Introduction to the practical work in the clean room
2. History of IC technology - Planar technology
3. Layer deposition techniques
4. Lithography
5. Wet etching - bulk and surface micromachining of Si
6. Dry etching
7. Statistical experimental design for process optimisation

FORME DE L'ENSEIGNEMENT

Cours ex cathedra

BIBLIOGRAPHIE

Notes polycopiées
M. Madou, Fundamentals of Microfabrication, CRC Press, Boca Raton (1998). S. Wolf and R.N. Tauber, Silicon processing for the VLSI area I \& II, Lattice Press, Sunset Beach (1986)

NOMBRE DE CREDITS

FORME DU CONTROLE

LIAISON AVEC D'AUTRES COURS
Préalable requis:
Préparation pour: Projets de semestre et diplôme

Titre/Title Travaux pratiques en salle blanche (par groupes) / Clean room practical work (in groups)	Travaux pratiques en salle blanche (par groupes) / Clean room practical work (in groups)					
Enseignant Martin GIJS, professeur EPFL/SMT						
Section (s)	Semestre	Oblig.	Option	STS	Heures totales	14
Microtechnique	hiverlété	区	\square	\square	Par semaine:	
		\square	\square	\square	- Cours	
		\square	\square	\square	- Exercices	
		\square	\square	\square	- Pratigue	

OBJECTIFS

En groupes de 4 étudiants et accompagné par un assistant, l'étudiant apprendra en pratique des procédés et manipulations de base de la salle blanche.

CONTENU

1. Introduction à la salle blanche et au transistor MOS. (1 séance)

L'environnement de la salle blanche, aspects de sécurité, le suivi de procédé (feuille de route), le transistor MOS.
2. Procédés de base de la microélectronique et des microsystèmes. (2 séances)

Une des étapes de fabrication VLSI avec reprise d'un historique de procédé :

- une déposition de résine photosensible
- une photolithographie avec alignement
- une gravure sèche ou humide.

Caractérisation de procédé VLSI, mesure sur couches minces et un traitement statistique des résultats.

GOALS

In groups of 4 students and accompanied by an assistant, each student will learn basic procedures and manipulations, as practiced in a clean room.

CONTENTS

1. Introduction to the clean room and the transistor MOS. (1 session)

Clean room environment, security aspects, process flow chart, transistor MOS.
2. Basic micro-electronic and microsystem procedures (2 sessions)

A VLSI fabrication stage continuing a flow chart:

- photoresist deposition process
- a photolithography step with alignment
- a wet or dry etching step

Characterisation of a VLSI stage, thin film measurements and statistical data analysis.

```
FORME DE L'ENSEIGNEMENT
Travaux pratiques
BIBLIOGRAPHIE
Notes polycopiées
S. Wolf and R.N. Tauber, Silicon processing for the VLSI area I \& II, Lattice Press, Sunset Beach (1986)
LIAISON AVEC D'AUTRES COURS
Préalable requis:
Préparation pour: Projets de semestre et diplôme
```

NOMBRE DE CREDITS

SESSION D'EXAMEN

Evaluation pendant l'année
SESSION D'EXAMEN
Compléter correctement une feuille de route et un questionnaire on-line sur le déroulement du TP, rapport court el précis sur une tache de caractérisation

Titre/Title Projet STS / STS Project						
Enseignant Max HONGLER, professeur et coordinateur STS, EPFL-SMT						
Section (s) Microtechnique	Semestre	Oblig.	Option	STS	Heures totales	56
	hiver	\square	\square	\triangle	Par semaine:	
	été	\square	\square	区	- Cours	-
		\square	\square	\square	- Exercices	*
		\square	\square	\square	- Pratique	2

OBJECTIES

Il s'agit d'approfondir une réflexion sur la relation entre Sciences-Technique-Société.

CONTENU

Travail personnel en relation avec les cours du livret STS.

L'étudiant contactera l'enseignant responsable ou le coordinateur STS pour choisir un sujet de projet et pour définir son travail.

GOALS

The aim of the STS project is to stimulate a reflection dealing with the relationship between the fields of Science-Technology-Society.

CONTENTS

Personal work in relationship with the lectures proposed in the STS booklet.

The student is asked to contact one of the professors or the STS supervisor in order to choose and define the way he will approach his subject.

FORME DE L'ENSEIGNEMENT

Travail personnel sur un sujet choisi par l'étudiant. Rapport en fin de projets.

BIBLIOGRAPHIE

LIAISON AVEC D'AUTRES COURS
Préalable requis.
Préparation pour:

SESSION D'EXAMEN

FORME DU CONTROLE

Titre/Title Optique appliquée I/ Applied optics I						
Enseignant René DÄNDLIKER, professeur EPFL/SMT et UNI-NE						
Section (s)	Semestre	Oblig.	Option	STS	Heures totales	42
Microtechnique/PA	hiver	区	\square	\square	Par semaine:	
		\square	\square	\square	- Cours	3
		\square	\square	\square	- Exercices	-
		\square	\square	\square	- Pratique	-

OBJECTIFS

A la fin des deux cours Optique appliquée I+II, l'étudiant sera capable de composer et d'analyser des systèmes optiques et électrooptiques contenant des éléments passifs et actifs.

CONTENU

Ondes guidées (fibres optiques et optique intégrée)

Micro-optiques (éléments diffractants, microlentilles)

Ondes couplées, concept et applications (réseaux de phase, effet de Bragg, miroir de Bragg, modulateurs acousto-optiques, couplage de modes en optique intégrée)

Effets de polarisation (fibres optiques, cristaux biréfringents, modulateurs électro-optiques, affichage à cristaux liquides)

Optique non-linéaire (fréquences harmoniques, couplage paramétrique)

GOALS

At the end of the two courses Applied Optics I $+I I$ the students should be capable to design and to analyze optical and electro-optical systems containing passive and active components.

CONTENTS

Guided-wave optics (optical fibers and integrated optics)

Micro-optics (diffractive optical elements, micro-lenses)

Coupled waves, concept and applications (phase gratings, Bragg effect, Bragg mirrors, acousto-optical modulators, mode-coupling in integrated optics)

Polarization effects (optical fibers, birefringent crystals, electro-optical modulators, liquidcrystal displays)

Non-linear optics (harmonic generation, parametric coupling)

FORME DE L'ENSEIGNEMENT

ex cathedra, exercices en classe
BIBLIOGRAPHIE
R. Dändliker, Polycopié EPFL, "Optique Appliquée I+II;
B.A. Saleh, M.C. Teich, "Fundamentals of Photonics", J. Wiley \& Sons;
A.K. Ghatak, K.Thyagarajan, "Optical Electronics", Cambridge Univ. Press
A. Yariv, "Optical Electronics", Holt-Saunders International

NOMBRE DE CREDITS
Cf. Optique appliquée II
SESSION D'EXAMEN
diplôme
FORME DU CONTROLE

Titre/Title Optique appliquée II / Applied Optics II						
Enseignant Théo LASSER, professeur EPFL/SMT						
Section (s)	Semestre	Oblig.	Option	STS	Heures totales	42
Microtechnique/PA	été	区	\square	\square	Par semaine:	
		\square	\square	\square	- Cours	3
		\square	\square	\square	- Exercices	-
		\square	\square	\square	- Pratique	-

OBJECTIES

A la fin des deux cours Optique I \& II, l'étudiant sera capable de composer et d'analyser des systèmes optiques et électro-optiques contenant des éléments passifs et actifs.

CONTENU

Conception de systèmes optiques (raytracing, aberrations) Formation d'image (cohérente et incohérente) Optique de Fourier
Microscopie
Holographie
Interférométrie
Spectroscopie

GOALS

At the end of the two courses Applied Optics I \& II the student should be able to design and to analize optical and electro-optical systems containing passive and active components.

CONTENTS

Design of optical systems
Imaging theory (coherent, incoherent)
Fourier optics
Microscopy
Holography
Interferometry
Spectroscopy

FORME DE L'ENSEIGNEMENT

ex cathedra, exercices en classe

BIBLIOGRAPHIE

R. Dändliker, Polycopié EPFL, "Optique Appliquée I \& II";
B.A. Saleh, M.C. Teich, "Fundamentals of Photonics", J. Wiley \& Sons;
A.K. Ghatak, K.Thyagarajan, "Optical Electronics", Cambridge Univ. Press; J.W. Goodman, "Introduction to Fourier Optics", McGraw-Hill;
A. Yariv, "Optical Electronics", Holt-Saunders International

NOMBRE DE CREDITS
Optique appliquée I + II

FORME DU CONTROLE

LIAISON AVEC D'AUTRES COURS

Préalable requis. Optique appliquée I
Préparation pour:

Titrefitle Lase	Lasers / Lasers					
$\text { Enseignant } \begin{aligned} & \text { René } \\ & \\ & \\ & \text { EPFL } \end{aligned}$	René SALATHE, professeur EPFL/SMT	Markus	POLLNAU et Thomas SIDLER, chargés de cours			
Section (s)	Semestre	Oblig.	Option	STS	Heures totales	28
Microtechnique/PA	hiver	区	\square	\square	Par semaine:	
		\square	\square	\square	- Cours	2
		\square	\square	\square	- Exercices	-
		\square	\square	\square	- Pratique	-

OBJECTIFS

Comprendre le fonctionnement d'un laser. Acquérir et approfondir des connaissances sur les différents types de lasers utilisés en microusinage et en médecine.

GOALS

To understand how lasers work. Obtain and deepen the knowledge about different types of lasers applied in micro-machining and medicin.

CONTENU

1. Introduction

Rappel de quelques éléments optiques, description des faisceaux laser

2. Principes de laser

Amplificateurs optiques, résonateurs, seuil laser, propriétés de la lumière

3. Comportement dynamique

Oscillations de relaxation, mode déclanché, Cavity dumping, mode locking
4. Lasers à corps solides

Excitation par lampe flash, excitation par diodes laser, laser rubis et néodyme
5. Laser à gaz

Lasers He-Ne et CO_{2}, lasers à ions (Ar, Kr), lasers excimer
6. Diodes laser

Excitation par jonction p-n, diodes à hétérostructures, diodes artay

7. Laser accordable

Laser à colorant, laser à Ti:saphire

CONTENTS

1. Introduction

Reminder of some elementary optics. Description of laser beams

2. Laser principles

Optical amplifier, resonator, laser threshold, properties of laser light
3. Dynamic behaviour

Relaxation oscillations, Q-switching, cavity dumping, mode-locking
4. Solid state lasers

Flash lamp pumping, diode laser pumping, ruby and Neodymium lasers
5. Gas laser
$\mathrm{He}-\mathrm{Ne}$ and CO 2 lasers, ion lasers (Ar, Kr), excimer lasers.
6. Diode lasers

Excitation in a p-n junction, heterostructure diodes, diode arrays,
7. Tunable lasers

Dye lasers, Ti:saphire laser

FORME DE L'ENSEIGNEMENT

Ex cathedra, expériences et exercices

BIBLIOGRAPHIE

B.A. Saleh, M.C. Teich, «Fundamental of Photonics», John Wiley \& Sons
R. Dändliker, Les lasers, principe et fonctionnement, PPUR 1996
R. Poprawe, Laser Technik, CD Rom RwTH Aachen, 1998
D. Dangoisse, D. Hannequin, V.Zehnle-Dhaoui, Les lasers, Dunod 1998

NOMBRE DE CREDITS

SESSION D'EXAMEN
diplôme
FORME DU CONTROLE

LIAISON AVEC D'AUTRES COURS

Préalable requis.
Préparation pour: Instrumentation biomédicale, Micro-usinage

Titre/Title Optique TP / Optics lab.						
Enseignant René-Paul SALATHE, professeur EPEL/SMT						
Section (s) Microtechnique/PA	Semestre	Oblig.	Option	STS	Heures totales	42
	été	区	\square	\square	Par semaine:	
		\square	\square	\square	- Cours	-
		\square	\square	\square	- Exercices	-
		\square	\square	\square	- Pratique	3

OBJECTIFS

Ces TP doivent permettre aux étudiants d'approfondir leurs connaissances des instruments optiques, des composants optoélectroniques et des méthodes d'analyse de l'optique moderne.

GOALS

This laboratory work allows students to deepen the understanding of optical instruments, optoelectronic devices and diagnostic methods.

CONTENU

1. Optique paraxiale
2. Biréfringence
3. Fibres optiques
4. Eléments optiques holographiques
5. Interférométrie holographique
6. Photodétecteurs
7. Sources à semi-conducteurs

CONTENTS

1. paraxial optics
2. birefringence
3. fiber optics
4. holographic optical elements
5. holographic interferometry
6. photodetectors
7. semiconductor LEDs and lasers

FORME DE L'ENSEIGNEMENT

Laboratoire

BIBLIOGRAPHIE

Fiches descriptives et polycopiés
B.A. Saleh, M.C. Teich, «Fundamental of Photonics», John Wiley \& Sons

LIAISON AVEC D'AUTRES COURS
Préalable requis. Optique appliquée I et II (II suivi en même temps)

NOMBRE DE CREDITS

SESSION D'EXAMEN

FORME DU CONTROLE
continu

Titre/Title Microélectronique II / Microelectronics II						
Enseignant Radivoje POPOVIC, professeur EPFL/SMT						
Section (s)	Semestre	Oblig.	Option	STS	Heures totales	28
Microtechnique/PI	hiver		\square	\square	Par semaine:	
		\square	\square	\square	- Cours	2
		\square	\square	\square	- Exercices	-
		\square	\square	\square	- Pratique	-

OBJECTIFS

Les étudiants seront capables d'analyser les relations entre la structure des principaux dispositifs microélectroniques, la technologie de fabrication utilisée et leurs caractéristiques externes, ainsi que d'analyser le rôle et le comportement des dispositifs dans un circuit intégré.

CONTENU

Transistor MOS : Faible inversion, miniaturisation, champ électrique élevé, modèles, CMOS.
Contact métal - semiconducteur et hétérojonctions : Equilibre, caractéristique couranttension, capacité, diode Schottky, contact ohmique.
Transistor à effet de champ : JFET, MESFET, à hétérojonction, HEMT, modèles.
Transistor bipolaire : Comportement aux courants faibles et élevés, claquage, miniaturisation, transistor à hétérojonctions, modèles.
Dispositif passifs et parasites : Résistances, condensateurs, diodes, effets parasites et leur prévention.

Bruit : Bruit thermique, de grenaille, de générationrecombinaison, $1 / f$, bruit dans les circuits, détectivité de systèmes sensoriels.
Mémoires : Principes de ROM, PROM, EPROM, EEPROM, DRAM, SRAM.
Dispositifs à couplage de charge : Principes, applications, limites.
Limites technologiques et physiques à la densité d'intégration : Lithographie, isolation des composants, effets du champ électrique élevé, électromigration, dissipation de chaleur, rendement, fiabilité.
Conception de circuit intégré : Déroulement du projet, layout, règles de design, modélisation et

GOALS

The students will be able to analyze the relationship between the structural properties of the most important microelectronic devices, their fabrication process, and their electrical characteristics. They will also be able to understand the function and the behaviour of these devices in integrated circuits.

CONTENTS

MOS transistor : Weak inversion, down scaling, high electric field, electrical models, CMOS.
Heterojunction and Metal-Semiconductor contact : Equilibrium, current-voltage caracteristics, capacitance, Schottky diode, ohmic contact.
Field-effect transistors : JFET, MESFET, heterojunction FETs, HEMT, electrical models.
Bipolar transistor : Low and high current behaviour, breakdown, down scaling, heterojonction bipolar transistor, electrical models.
Passive and parasitic devices : resistances, capacitors, diodes, parasitic effects and how to avoid them.
Noise : Thermal noise, shot noise, generationrecombination noise, 1/f noise, noise in circuits, detectivity of sensing systems.
Memories : working principles of ROM, PROM, EPROM, DRAM, SRAM.
Charge-coupled devices : Principles, applications, limitations.
Technological and physical limits to integration density : Lithography, device isolation, high electric field effects, electromigration, heat dissipation, yield, reliability
Integrated circuit design : project outline, layout, design rules, numerical modeling and simulation, CAD .

FORME DE L'ENSEIGNEMENT

Exposé oral, exercices, séminaires

BIBLIOGRAPHIE

Notes polycopiées
M. Hegems : "Dispositifs à semiconducteurs", Polycopié EPFL
S.M. Sze "Semiconductor Devices", J. Wiley \& Sons, 1985

LIAISON AVEC D'AUTRES COURS
Préalable requis. Microélectronique I
Préparation pour: Microélectronique et microsystèmes, labo

NOMBRE DE CREDITS

SESSION D'EXAMEN

diplôme
FORME DU CONTROLE

Titre/Title Capteur	Capteurs et microsystèmes III / Sensors and microsystems III					
Enseignant Philippe	RENAUD, professeur	EPFL/	MT			
Section (s)	Semestre	Oblig.	Option	STS	Heures totales	28
Microtechnique/PI	été	区	\square	\square	Par semaine:	
		\square	\square	\square	- Cours	2
		\square	\square	\square	- Exercices	
		\square	\square	\square	- Pratique	-

OBJECTIFS

Présentation générale des effets physiques dominants et des lois d'échelle (scaling laws) qui s'appliquent lors de la miniaturisation des capteurs et des actionneurs dans les microsystemes. Montrer les limites dans le petites dimensions. Plusieurs exemples tirés d'articles de recherche sont présentés pour chaque cas.

CONTENU

Introduction aux lois d'échelle

Effets de taille dans le systèmes mécanique et électriques classiques, limites des lois d'échelle, limite quantique.

Effets thermiques

Conduction, convection, dynamique, limites, microactionneurs thermiques, micro-réacteurs

Dispositifs mécaniques

Modèle masse-ressort, bruit mécanique, effets "squeeze film"

Dispositifs électriques

Micro-actionneurs electrostatiques, limites, capteurs "tunnel", bobines et inducteurs, micro-actionneurs électromagnétiques, magnétostriction, "beads" magnétiques

Micro-fluidique

Liquides, gaz, mélanges, tension de surface, "trappe" d'entropie

Electrocinétique

Diélectrophorèse, pompes EHD et MHD, électroosmose, électrophorèse capillaire

* le contenu peut être complété en cours de semestre

GOALS

Overview of the dominant physical effects and scaling of laws that applies when downsizing sensors and actuators in microsystems. Show the limits and breakdown of scaling laws in miniaturization.
Several examples taken from research articles are presented for each case.

CONTENTS

Introduction to scaling laws
Scaling of classical mechanical systems, scaling of classical electrical systems, breakdown in scaling, quantum breakdown

Thermal effects

Conduction, convection, dynamics, breakdown, thermal micro-actuators, microreactors

Mechanical devices

Mass-spring model, mechanical noise, squeeze film effects

Electrical devices

Electrostatic micro-actuators, electrostatic breakdown, tunnel sensors, coils and inductors, electromagnetic micro-actuators, magnetostriction, magnetic beads

Microfluidics

Liquid flow, gas flow, mixing, surface tension, entropy trapping

Electrokinetics

Dielectrophresis, EHD and MHD pumps, electrowetting, electroosmosis, capillary electrophoresis

* additional topics can be introduced during the semester

FORME DE L'ENSEIGNEMENT

Exposé oral + discussions

BIBLIOGRAPHIE

Résumé de notes de cours (en anglais) et copies d'articles scientifiques
G. Kovacz, Micromachined transducers handbook, McGrawHill, 1998
M. Madoux, fundamentals of microfabrication, CRC Press, 1998

LIAISON AVEC D'AUTRES COURS

Préalable requis. Capteurs et microsystèmes I, II
Préparation pour: Projet de diplôme et doctorat dans le domaine "microsystèmes"

NOMBRE DE CREDITS

Titre/Title Technologies des microstructures II / Microstructure fabrication technologies II	Technologies des microstructures II / Microstructure fabrication technologies II					
Enseignant Martin GIJS, professeur EPFL/SMT						
Section (s)	Semestre	Oblig.	Option	STS	Heures totales	42
Microtechnique/PI	hiver	\triangle	\square	\square	Par semaine:	
		\square	\square	\square	- Cours	3
		\square	\square	\square	- Exercices	-
		\square	\square	\square	- Pratique	-

OBJECTIFS

Les technologies de microfabrication sont à la base de chaque réalisation ou application de microsystèmes. Ce cours vise à donner les notions de base de la vaste palette de procédés et technologies de microfabrication qui existent aujourd'hui, notamment les technologies de pointe utilisées hors salle blanche, ainsi que les techniques pour réaliser des dispositifs miniaturisés dans le domaine biomédical.

CONTENU

1. Eléments de technologie du Si 'mainstream'
2. Micro-usinage de multicouches de polySi et optimalisation des procédés
3. Technologies de soudage et collage
4. Electrodéposition et technique LIGA
5. Technologies de fabrication de biocapteurs
6. Microdispositifs de bioséparation
7. Microsystèmes biomédicaux industriels

GOALS
Microfabrication technologies are at the heart of every realisation or application of microsystems. This course aims to provide the basic knowledge of the vast area of existing techniques, procedures and technologies of microfabrication, thereby going beyond classical clean room technologies. Also various techniques for the realisation of miniaturised systems for biomedical applications will be discussed.

CONTENTS

1. Elements of mainstream Si technology
2. Multilayer poly-Si micromachining and process optimisation
3. Bonding and gluing technology
4. Electroplating and the LIGA technique
5. Technologies for biosensor fabrication
6. Bioseparation microdevices
7. Industrial biomedical microsystems

NOMBRE DE CREDITS

LIAISON AVEC D'AUTRES COURS
Préalable requis: Cours Technologie des microstructures I
Préparation pour: Projets de semestre et diplôme

OBJECTIFS

Acquérir une expérience pratique des techniques expérimentales en microélectronique et en microsystèmes. Exercer le sens critique par des simultations numériques des procédés de fabrication et du comportement électrique de composants intégrés. Apprendre à présenter un travail personnel.

CONTENU

1. Technologie:

- Fabrication d'une cellule solaire. (élaboration de couches minces, photolithographie, tests)
ou Réalisation d'un micro-actionneur thermique (couches minces, photolithographie, usinage chimique du silicium, tests)

2. Composants microélectroniques (simulation et caractérisation électrique):

- MOSFET
- Transistor bipolaire
- Cellule de mémoire EEPROM
- Effet Hall

3. Conception:

- Layout et simulation analogique de circuits intégrés
- Simulation par éléments finis de composants micromécaniques

4. Composants micromécaniques (simulation et mesures):

- Microactionneurs
- Capteur de pression piézorésistif
- Accéléromètre capacitif

GOALS

Getting a practical expenience of microelectronics and microsystems techniques. Training the mind to make critical analysis by numerical simulations of the fabrication processes and electrical behaviour of integrated components. Leaming to present your own work properly.

CONTENTS

1. Technology:

- Manufacturing of a solar cel (thin layer manufacturing, photolithography, tests)
or Realization of a thermal micro-actuator (thin layers, photolithography, chemical etching of silicon, tests)

2. Microelectronic components (simulation and electrical characterization):

- MOSFET
- Bipolar transistor
- EEPROM memory cell
- Hall effect

3. Conception:

- Layout and analog simulation of integrated circuits.
- Finite element analysis of micromechanical components.

4. Micromechanical components (simulation and characterization)

- Microactuators
- Piezoresistive pressure sensor
- Capacitive acceleration sensor

FORME DE L'ENSEIGNEMENT

Laboratoire, groupes de 2 étudiants, rapports écrits

BIBLIOGRAPHIE

Notices d'introduction d'expériences

LIAISON AVEC D'AUTRES COURS

Préalable requis. Capteurs et microsystèmes I, II, Microélectronique I
Préparation pour:

NOMBRE DE CREDITS

Titre/Title Robotique - Microrobotique / Robotics - Microrobotics						
Enseignant Hannes	BLEULER, Reymond	CLAVEL, Oblig.	RolandOption	SIEGWART, professeurs		$\frac{\text { EPFL/SMT }}{70}$
Section (s)	Semestre			STS	Heures totales	
Microtechnique/TPr	hiver	区	\square	\square	Par semaine:	
	été	\square	\square	\square	- Cours	$3 / 2$
		\square	\square	\square	- Exercices	-
		\square	\square	\square	- Pratique	-

OBJECTIFS

Donner les bases de la robotique nécessaires pour une compréhension approfondie de ce domaine. Un accent particulier sera mis sur les aspects robotique industrielle et robotique de haute précision (microrobotique); les secteurs robotique de service et robotique médicale sont abordés pour créer des ouvertures vers d'autres secteurs d'application prometteurs.
Les étudiants seront aptes à évaluer les situations pour lesquelles les systèmes robotiques seront avantageusement mis en oeuvre; ils seront capables de définir le cahier des charges et de proposer des solutions originales et de choisir le matériel nécessaire (robots, alimentations, préhenseurs, capteurs, ...). Ils seront capables de concevoir des robots ou microrobots nouveaux pour des applications particulières ou pour des secteurs en devenir; ils seront aptes à modéliser et à contrôler ces machines. Ces notions permettront à l'étudiant de travailler créativement en robotique.

CONTENU

Introduction

Définitions, domaines d'application, poids économique
Robots sériels
Robots parallèles et hybrides
Bases théoriques: modélisation et contrôle
Cinématique,
Dynamique, contrôle
Composants
Conception mécanique, périphérie
Actionneurs
Capteurs, vision
Commande, programmation
Installations industrielles
Conception d'installations,évaluation des coûts, sécurité
Autres domaines d'applications
Microrobotique
Applications médicales
Ouverture sur l'avenir

OBJECTIVES

To give the basics necessary for a deeper understanding of the field. Emphasis will be on industrial robotics, high precision and micro robotics. Service and medical robotics are introduced as examples of promising new application fields.
The course should enable students to identify the situations where robots can bring in their full advantages, set up a list of specifications and make creative proposals for robotized installations including peripherial equipment such as sensors, end-effectors, power supplies etc.
They should be up to the task of designing new robots or microrobots for specific applications or for emerging fields. They should know how to establish mathematical models and how to design robot controllers.
The topics of the course will enable a student to work creatively in the field of robotics.

CONTENTS

Introduction

Definitions, application areas, economic aspects
Serial link robots
Parallel link and hybrid robots
Mathematical modeling and control
Kinematics
Dynamics and control
Components
Mechanical design; peripherials
Actuators
Sensors, vision
Control, programming
Industrial robotics
Design of an installation, cost estimation, security
Other application fields
Microrobotics
Medical applications
Outlook, future trends

FORME DE L'ENSEIGNEMENT

NOMBRE DE CREDITS
Cours ex cathedra + exercices

OBJECTIFS

Ce cours porte sur 2 semestres.
Les objectifs de cet enseignement sont les suivants:

- donner des connaissances sur les principales techniques utilisées dans l'asssemblage de produits microtechniques
- sensibiliser les étudiants aux problèmes des flux des matériaux et des composants dans une fabrication de produits industriels
- former les étudiants à des méthodes rigoureuses de conception et d'analyse d'installations de fabrication et d'assemblage

CONTENU

Introduction à l'assemblage industriel
Les spécificités de l'assemblage en microtechnique
Les techniques d'attachement
Les manipulateurs et les robots d'assemblage
Les systèmes de transfert destinés aux chaînes d'assemblage
Les distributeurs de composants
Les flux de produits dans les installations d'assemblage Les spécificités du micro-assemblage, comment construire un modèle idoine
La maîtrise des coûts de production
Pendant la seconde partie du second semestre, nous réalisons par groupes de 3 à 4 étudiants des petits projets d'application de conception d'installations d'assemblage pendant les heures de cours, avec présentation des étudiants sur transparents et débats des idées proposées

Le cours est illustré par des videos dinstallations d'assemblage qui servent de bases aux exercices de groupes

GOALS

Build up knowledge in

- Assembly techniques for microengineering products
- Production flux problems
- Systematic planning and design methods for assembly lines

CONTENTS

(see french description)

- Elements of production management
- Cost aspects

Project teams of 3-4 students in second part of course

FORME DE L'ENSEIGNEMENT

Exposé oral, étude de cas
BIBLIOGRAPHIE
Polycopié
LIAISON AVEC D'AUTRES COURS
Préalable requis. Industrialisation
Préparation pour:

NOMBRE DE CREDITS
4
SESSION D'EXAMEN
diplôme
FORME DU CONTROLE

Titre/Title Assemblage et robotique TP / Assembly \& robotics lab.						
Enseignant Hannes BLEULER et Jacques JACOT, professeurs EPFL/SMT						
Section (s)	Semestre	Oblig.	Option	STS	Heures totales	28
Microtechnique/TPr	hiver	区	\square	\square	Par semaine:	
		\square	\square	\square	- Cours	-
		\square	\square	\square	- Exercices	-
		\square	\square	\square	- Pratique	2

OBJECTIFS

Mettre en pratique et donner un aspect concret aux notions vues au cours "Assemblage I, II" ef "Robotique I, II". Dispenser un minimum de savoir-faire dans le domaine de la mise en ouvre d'installations automatisées.

GOALS

Concretize the topics of lectures "Assemblage I, II" and "Robotique I, II". Some base basics of practical realizations of automated assembly lines.

CONTENU

- Réalisation d'une série d'opérations d'assemblage avec un robot industriel.
- Commande de robot; application au robot parallèle DELTA
- Commande de robot; mouvements dans l'espace à 6 degrés de liberté avec robot $A B B$
- Assemblage élémentaire avec un robot industriel
- Optimisation de soudage par robot
- Repérage de position par système de vision et programmation d'un robot ADEPT.
- Mise en évidence des possibilités et des limites des systèmes de vision.
- Modélisation et pilotage d'un stock tampon.
- Etude expérimentale du comportement d'un bol vibrant : types de marche, comportement des pièces.
- Simulation par simulateur événementiel SIMAS d'une ligne d'assemblage donnée.

CONTENTS

- Basic assembly operations
- Robot control applications
- Elementary assembly with robot
- Robot welding
- Position reference for vision system
- Buffer stock
- Vibrating conveyor
- Simulation of assembly line

FORME DE L'ENSEIGNEMENT

Travail par groupe de 2 personnes sur des installations du LSRO et du LPM à raison d'une séance de 4 h chaque 2 semaines. Evaluation principale dans la dernière demi-heure du $\mathrm{TP}+$ rapport écrit à rendre 1 semaine après la fin du travail.

BIBLIOGRAPHIE

Notice dintroduction pour chaque manipulation
LIAISON AVEC D'AUTRES COURS
Préalable requis. Composants de la microtechnique, Conception de produits et systèmes, Industrialisation, Capteurs et microsystèmes
Préparation pour:

Titre/Title	Analyse de produits et systèmes / Conceptual design of products and systems				
Enseignant	Radivoje POPOVIC, professeur	EPFL/SMT			
Section (s)	Semestre	Oblig.	Option	STS	Heurestotales
Microtechnique/PI	été	\square	\square	\square	Par semaine:
		\square	\square	\square	. Cours

OBJECTIFS

Les étudiants seront capables d'analyser et d'évaluer des produits microtechniques complexes (identification des éléments d'un système et de leurs fonctions, relation et organisation mutuelles).

CONTENU

Chapitres choisis de systèmes microtechniques sous forme d'études de cas. Les cas présentés sont des produits industriels récents et concrets. L'analyse de ces produits demande une synthèse et l'application des connaissances de plusieurs disciplines que les étudiants ont acquises au cours de leurs études (physique, mécanique, matériaux, électronique, optique, informatique, méthodologie de conception, etc.).

GOALS

The students will be able to analyse and evaluate complex microtechnology products (identification of the components of a system and their functions, mutual relation and organization).

CONTENTS

Analysis of selected topics of microtechnology systems in the form of case studies. the presented cases are recent and concrete industrial products. the analysis of these products requires a synthesis and the application of interdisciplinary knowledge that the students have aquired during their studies (physics, mecanics, material sciences, electronics, optics, computer science, design methodology, etc.).

BIBLIOGRAPHIE

Feuilles polycopiées

Titre/Title Audio I / Audio engineering I						
Enseignant Mario ROSSI, professeur EPFL/SEL						
Section (s) Microtechnique/PI	Semestre	Oblig.	Option	STS	Heures totales	28
	hiver	\square	区	\square	Par semaine:	
		\square	\square	\square	- Cours	2
		\square	\square	\square	- Exercices	-
		\square	\square	\square	- Pratique	-

OBJECTIFS

Maitriser les bases fondamentales, les modèles et les méthodes de l'Audio.
Etre capable de modéliser et de dimensionner un dispositif ou un système Audio.
Connaitre les principales techniques de l'Audio et savoir en concevoir et réaliser les différents dispositifs, appareils et transducteurs.

CONTENU

L'Audio est l'ensemble des techniques du son et concerne les différents procédés, appareils et systèmes pour la production, la transmission, la mesure et l'enregistrement des sons. Ce cours propose de solides bases pour l'étude et la conception des systèmes audio. Un juste équilibre entre théories et applications permet la maîtrise des problèmes sous leurs principaux aspects. Des exemples et démonstrations illustrent les techniques et méthodes proposées. Les applications et procédés, des classiques aux plus modernes, sont décrits, des concepts de base aux réalisations pratiques.

Ce premier semestre est consacré aux aspects essentiels des chapitres suivants:

- Notions fondamentales
- Homme et sons
- Enregistrement du son
- Audionumérique

gOALS

Master the audio basics, models and methods.
Be able to model and design an audio device or system.
Acquire knowledge of the main audio techniques and know how to conceive and design different devices, apparatus and transducers.

CONTENTS

Audio is the whole range of techniques related to sounds and involves the different processes, equipment and systems for the production, transmission, measurement and recording of sound. This course provides a solid basis for the design of audio equipment. An appropriate balance between theory and applications leads to a thorough grasp of the main aspects of the problems. Examples and demonstrations illustrate the techniques and methods proposed. The applications and processes, from classical methods to the most recent ones, are described from the basic concept right up to the practical applications.

This first semester is devoted to the essential aspects of the following chapters:

- Fundamental concepts
- Humans and sound
- Sound recording
- Digital audio

FORME DE L'ENSEIGNEMENT

Ex cathedra avec démonstrations, exemples et exercices
BIBLIOGRAPHIE
"Electroacoustique " volume XXI du Traité d'Electricité de l'EPFL

LIAISON AVEC D'AUTRES COURS

Préalable requis.

Préparation pour: Audio II

NOMBRE DE CREDITS
Cf. Audio II
SESSION D'EXAMEN

FORME DU CONTROLE

Titre/Title Audio II / Audio engineering II						
Enseignant Mario ROSSI, professeur EPFL/SEL						
Section (s)	Semestre	Oblig.	Option	STS	Heures totales	28
MicrotechniquelPI	été	\square	区	\square	Par semaine:	
		\square	\square	\square	- Cours	2
		\square	\square	\square	- Exercices	-
		\square	\square	\square	- Pratique	-

OBJECTIFS

Maitriser les bases fondamentales, les modèles et les méthodes de l'Audio.
Etre capable de modéliser et de dimensionner un dispositif ou un système Audio.
Connaitre les principales techniques de l'Audio et savoir en concevoir et réaliser les différents dispositifs, appareils et transducteurs.

CONTENU

L'Audio est l'ensemble des techniques des sons audibles et concerne les différents procédés, appareils et systèmes pour la production, la transmission, la mesure et l'enregistrement des sons. Ce cours propose de solides bases pour l'étude, la conception et la réalisation des dispositifs audio. Un juste équilibre entre théories et applications concrètes, permet la maitrise des problèmes sous leurs principaux aspects. De nombreux exemples et démonstrations illustrent les techniques et méthodes proposées. Les applications et procédés, des classiques aux plus modernes, ainsi l'audionumérique, sont décrits, des concepts de base aux réalisations pratiques.

Ce second semestre est consacré aux aspects essentiels des chapitres suivants:

- Transducteurs électroacoustiques
- Haut-parleurs et systèmes haut-parleurs
- Microphones

GOALS

Master the audio basics, models and methods.
Be able to model and design an audio device or system.
Acquire knowledge of the main audio techniques and know how to conceive and design different devices, apparatus and transducers.

CONTENTS

Audio Engineering is the whole range of techniques related to audible sounds and involves the different processes, equipment and systems for the production, transmission, measurement and recording of sound. This course provides a solid basis for the study, conception and design of audio equipment. An appropriate balance between theory and practical applications leads to a thorough grasp of the main aspects of the problems. Numerous examples and demonstrations illustrate the techniques and methods proposed. The applications and processes, from classical methods to the most recent ones, such as digital audio, are described from the basic concept right up to the practical applications.

This second semester is devoted to the essential aspects of the following chapters:

- Electroacoustic transducers
- Loudspeakers and loudspeaker systems
- microphones

FORME DE L'ENSEIGNEMENT

Ex cathedra avec exemples et démonstrations

BIBLIOGRAPHIE

"Electroacoustique " volume XXI du Traité d'Electricité de l'EPFL
LIAISON AVEC D'AUTRES COURS
Préalable requis. Audio I

NOMBRE DE CREDITS

Audio I,II
4
SESSION D'EXAMEN

FORME DU CONTROLE
oral

| Titre/Title | Biotechnologie Moléculaire et Cellulaire I, II - Introduction / Molecular
 and Cellular Biotechnology |
| :--- | :---: | :---: | :---: | :---: | :--- | :--- |
| I, II | - Introduction |

OBJECTIFS

L'objectif de ce cours est de donner une introduction et une vue d'ensemble de la Biotechnologie Moléculaire et Cellulaire par des exemples précis, qui sont appliqués actuellement dans les différents secteurs de l'économie comme la pharmacie, l'agriculture, l'environnement, la communication et l'intelligence artificielle.

CONTENU

Le cours comprendra initialement une introduction sur les principes fondamentaux, les structures et fonctionnalités des systèmes biologiques. Une grande partie de ce cours est basée sur la connaissance actuelle de la biologie moléculaire de la cellule. Cette connaissance vient d'un nombre restreint de découvertes de pointe qui ont été faites en biologie (structure et fonction de l'ADN, techniques de clonage de l'ADN, culture de cellules mammiferes et clonage des animaux, analyse de l'ADN et des protéines, transfert des gènes aux cellules et organismes). Ces découvertes de pointe qui comprennent certaines expériences et spécimens biologiques clé seront également traités en classe. Les trois domaines suivants ont donné des concepts nouveaux à la Biotechnologie Moléculaire et Cellulaire : le génie génétique, le proteomic/ genomic et la biologie moléculaire et cellulaire et la biologie du développement.

Les divers produits et services créés et émergeants de ces industries seront discutés et élaborés en classe.

GOALS

The goal of the course is to give an introduction and an overview by example of selected fields in Molecular and Cellular Biotechnology, that find applications in today's economy in industries as diverse as Pharma, Agriculture, Environmental, Communication and Artificial Intelligence.

CONTENTS

The course will initially provide an introduction into the most profound principles, structures and functionalities of biological systems. A strong emphasis in the course is put on todays knowledge of the molecular biology of the cell. This knowledge is based on a small number of breakthrough discoveries in Biology (DNA-structure and function, DNA cloning technologies, mammalian cell culture and animal cloning, DNA and protein analytics and gene transfer to cells and organisms), that will be treated and transmitted to the students using also demonstrative experiments and biological specimen and in the classroom. Three important and and interlinked areas of work provide new concepts to molecular and cellular Biotechnology: a)genetic engineering, b) genomics/proteomics and c) cellular and developmental biology. Clearly distinguishable, yet interlinked industries have been established based on these fields.

Products and services recently created and emerging from these industries will be discussed and elaborated on.

FORME DE L'ENSEIGNEMENT
 ex cathedra

BIBLIOGRAPHIE

Glick, Pasternak: Molecular Biotechnology, ASM Press
Campbell: Biology, Benjamin Cummings
LIAISON AVEC D'AUTRES COURS
Préalable requis. Connaissances en chimie organique
Préparation pour:

NOMBRE DE CREDITS

Titre/Title Cellules solaires et macroélectronique / Solar cells and macro-electronics						
Enseignant Arvind SHAH, professeur EPFL/SMT et UNI*NE						
Section (s)	Semestre	Oblig.	Option	STS	Heures totales	28
Microtechnique/PI	hiver	\square	区	\square	Par semaine:	
		\square	\square	\square	- Cours	2
		\square	\square	\square	- Exercices	-
		\square	\square	\square	- Pratique	-

OBJECTIFS

- Approfondir les cellules solaires photovoltaïques, leur fonctionnement et leurs applications
- Introduire dautres applications existantes ou potentielles de la "macro-électronique" basées sur des couches minces semi-conductrices.
- Montrer quelques propriétés physiques fondamentales liées aux semi-conducteurs en couches minces amorphes (et polycristallines).
- Donner une introduction à la déposition de couches minces et aux méthodes assistées par plasma

CONTENU

Cellules solaires photovoltaïques :

Principe de fonctionnement, limitations, rendement de conversion, procédés et coûts de fabrication, énergie grise, cellules solaires en couches minces (notamment en silicium amorphe et microcristallin).

"Macro-électronique":

- Couches minces photoconductrices:

Principes, limitations, application en xérographie (photocopieuses et imprimantes laser).

- Autres applications :
des couches minces de silicium : transistors à couches minces, affichages et écrans à cristaux liquides avec matrice active, valves optiques, matrices de photodiodes, détecteurs de rayons X .

Bases physiques:

Structures amorphe et polycristalline; quelques principes des matériaux amorphes : transition vitreuse, désordre structurel et queues de bande, liaisons brisées; absorption optique.

Fabrication de couches minces :

"Physical Vapour Deposition (PVD)" et "Chemical Vapour Deposition" (CVD) avec accent sur les méthodes assistées par plasma; introduction brève aux "plasmas froids"; techniques pour la production industrielle (sputtering, plasma-CVD, attaque sèche) y.c. aspects économiques de la production.

GOALS

- In-depth study of photovoltaic solar cells, their functioning and their applications
- Introduction of existing and potential applications of "macro-electronics", i.e. of large-area electronics based on semiconductor thin-films
- Demonstration of certain fundamental physical properties of thin-film semiconductors and especially of amorphous semiconductors
- Introduction to principles of thin-film deposition, with emphasis on plasma-assisted methods.

CONTENTS

Photovoltaic solar cells :

Principles of operation, limitations, conversion efficiency, fabrication processes, cost and energy payback time, thin-film solar cells (especially with amorphous and microcrystalline silicon).
Large area electronics ("macro-electronics") :

- Photoconductive thin-films:

Principles and limitations, application in xerography (for photocopiers and laser printers)

- Other applications of thin-film silicon: thin-film transistors (TFT's), liquid crystal displays with active matrix, optical "image amplifiers" (optically addressed spatial light modulators), photodiode arrays, X-ray detectors

Physical Fundamentals :

Amorphous and polycrystalline material structures; some physical concepts pertaining to amorphous materials: glass transition, structural disorder and bandtails, dangling bonds, optical absorption.

Fabrication of Thin Films :

Physical Vapour Deposition (PVD) and Chemical Vapour Deposition (CVD), with special emphasis on plasma-assisted methods; elementary introduction to cold plasmas; methods used in Industrial production (sputtering, plasma-CVD, plasma etching) incl. Economical aspects of large-scale production.

FORME DE L'ENSEIGNEMENT

Cours ex cathedra avec quelques exercices en classe et visite(s) de laboratoire(s)

BIBLIOGRAPHIE

Polycopié "Matériaux électroniques amorphes"
(surtout Vol. 2 - "Cellules solaires et Macroélectronique")

NOMBRE DE CREDITS

2

SESSION D'EXAMEN printemps

FORME DU CONTROLE

Titre/Title Circuits intégrés analogiques I / Analog integrated circuits 1						
Enseignant Eric VITTOZ, professeur EPFL/SEL						
Section (s) Microtechnique/PI	Semestre	Oblig.	Option	STS	Heures totales	28
	hiver	\square	区	\square	Par semaine:	
		\square	\square	\square	- Cours	2
		\square	\square	\square	- Exercices	*
		\square	\square	\square	- Pratique	-

OBJECTIFS

Létudiant sera capable de concevoir des circuits intégrés analogiques (et les parties analogiques de circuits VLSI). Pour cela, il mantrisera les structures des dispositifs et les circuits de base utilisés en technologies bipolaire et MOS, ainsi que les principes à respecter lors de leur implantation dans le layout.

CONTENU

Composants intégrés

Transistors bipolaires: technologie standard, structures possibles, modèles grands et petits signaux, limites aux faibles et forts courants, comportement thermique et bruit
Transistors MOS: structure modes de fonctionnement, modèles grands et petits signaux, comportement thermique et bruit ; fonctionnement en transistor bipolaire;technologie standard et plans de masques
Composants passifs: capacités et résistances; transistor MOS utilisé en résistance et en pseudorésistance; diodes et interconnexions
Composants et effets parasites : capacités et résistances parasites; courants de fuite et canaux parasites; effet thyristor ("latch-up"). Claquage des grilles et protections d'entrée.

GOALS

The student will be able to design analog integrated circuits (and the analog parts of VLSI circuits). He will master the device structures and the basic circuits used in bipolar and MOS technologies, as well as the basic principles underlying their correct layout.

CONTENTS

Integrated components

Bipolar transistors: standard process, available structures, large and small signal models, limits at low and high currents, thermal behaviour and noise
MOS transistors: structure and modes of operation, large and small signal models, thermal behaviour and noise; operation in bipolar mode; standard process and layout
Passive devices: capacitors and resistors; MOS transistor used as a resistor and as a pseudo-resistor; diodes and interconnections
Parasitic devices and parasitic effects: parasitic capacitors and resistors; leakage currents and parasitic channels; Latch-up. Gate breakdown and gate protections.

FORME DE L'ENSEIGNEMENT

Cours ex cathedra
BIBLIOGRAPHIE
Notes de cours, articles techniques
LIAISON AVEC D'AUTRES COURS
Préalable requis.
Préparation pour: $\quad \mathrm{CI}$ analogiques II

Titre/Title Circuits intégrés analogiques II / Analog integrated circuits II	Circuits intégrés analogiques II / Analog integrated circuits II					
Enseignant Eric VITTOZ, professeur EPFL/SEL						
Section (s)	Semestre	Oblig.	Option	STS	Heures totales	28
Microtechnique/PI	été	\square	区	\square	Par semaine:	
		\square	\square	\square	- Cours	2
		\square	\square	\square	- Exercices	-
		\square	\square	\square	- Pratique	-

OB.JECTIFS

L'étudiant sera capable de concevoir des circuits intégrés analogiques (et les parties analogiques de circuits VLSI). Pour cela, il maitrisera les structures des dispositifs et les circuits de base utilisés en technologies bipolaire et MOS, ainsi que les principes à respecter lors de leur implantation dans le layout.

CONTENU

Circuits élémentaires

Principes fondamentaux: représentation des signaux, insensibilité aux paramètres physiques et technologiques, principe de similitude et règles d'appariement.
Miroirs de courant: réalisation en transistors MOS et bipolaires, réalisation de grands rapports, réduction de la conductance de sortie, précision, comportement dynamique et bruit. Techniques pour haute précision.
Interrupteur analogique: principe, limitation en basse tension, bruit d'échantillonnage et injection de charge.
Amplifcateurs élémentaires: configuration source/émetteur commun et drain/collecteur commun; paire différentielle, montage cascode; ampli opérationnel simple.
Source de tension de référence: tensions à disposition et circuits permettant de les extraire.
Sources de courant de référence: circuits basés sur différents principes; convertisseurs tension-courant.
Capacités commutées: principe, insensibilité aux capacités parasites et à la tension d'offset.
Circuits translinéaires: principe et réalisation en technologies bipolaire et MOS.

GOALS

The student will be able to design analog integrated circuits (and the analog parts of VLSI circuits). He will master the device structures and the basic circuits used in bipolar and MOS technologies, as well as the basic principles underlying their correct layout.

CONTENTS

Elementary circuits
Fundamental principles: signal representation, insensibility to process and to physical parameters, principle of similarity and rules for optimum matching.
Current mirrors: MOS and bipolar transistor implementations, realization of large ratios, reduction of output conductance; precision, dynamic behavior and noise. Techniques to achieve high precision.
Analog switch: principle, low-voltage limitation, sampling noise and charge injection.
Elementary amplifiers: grounded source/emitter and grounded drain/collector configurations, cascode; simple operational transconductance amplifier (OTA).
Voltage reference: available voltage sources and ciruits to extract them.
Current references: circuits based on various principles; voltage to current converters.
Switched capacitors: principle, insensitivity to parasitic capacitors and to amplifier offset.
Translinear circuits: principle and realization in bipolar and MOS technologies.

FORME DE L'ENSEIGNEMENT

Cours ex cathedra

BIBLIOGRAPHIE

Notes de cours, articles techniques
LIAISON AVEC D'AUTRES COURS
Préalable requis. Cl analogiques I
Préparation pour:

Titre/Title Conception de systèmes optiques I / Optical system design I						
Enseignant Théo LASSER, professeur EPFL/SMT						
Section (s)	Semestre	Oblig.	Option	STS	Heures totales	28
Microtechnique/PA	hiver	\square	囚	\square	Par semaine:	
		\square	\square	\square	- Cours	2
		\square	\square	\square	- Exercices	-
		\square	\square	\square	- Pratique	-

OBJECTIFS

Cours d'introduction. Initiation à la modélisation des systèmes d'optique et d'imagerie.
Conception des systèmes d'optique à l'aide d'un logiciel (ZEMAX, etc.) - exercices en groupes.

Les étudiants apprendront pas à pas grâce à des exemples concrets, la conception, lanalyse et l'optimisation des systèmes optiques à laide des outils CAD

CONTENU

1. Introduction. Rappel optique paraxiale. Eléments optiques et classification (lentilles, prismes, miroirs, etc.) Rayon principal. Ouverture, apertures, pupilles etc. ABCD-algorithm - analyse et simulation de systèmes simples.
2. Ray-tracing - Notion de base - Introduction avec simulation et exercices.
3. Chromatisme - dispersion. Les verres et leurs propriétés optiques.
4. Aberrations. Définition, classification et importance pour les systèmes optiques (focale, qualité d'images, etc.). Exercices.
5. Spécifications d'éléments optiques. Normes. Comment spécifier ? Design to Cost!
6. Qualité d'image. Analyse et optimisation.
7. Système optique. Autofocus, microscope, télescopes, couplage fibre optique, etc.

GOALS

Basics of optical systems. Modeling and designing of optical systems including optical CAD design tools. Introduction to ray tracing based on advanced design tools.
'learning by doing' - a step-by-step approach with well-balanced exercises and computer simulations are proposed.

CONTENTS

1. Introduction. Basic concepts and elements of paraxial optics. Analysis and simulation of simples systems based on $A B C D$-algorithm.
2. Basics Ray-tracing including simulation
3. Chromatic aberrations - dispersion. Glass optical material properties
4. Aberrations. Definitions, classification and impact on optical systems (focus, image quality, etc.). Exercises
5. Specifications. Standards. How to specify? Design to Cost!
6. Image quality. Analysis and optimization
7. Optical systems. Autofocus, microscope, telescope, fiber coupling etc.

FORME DE L'ENSEIGNEMENT

Cours ex cathedra avec exercices

BIBLIOGRAPHIE

Notes polycopiées et livres de référence

LIAISON AVEC D'AUTRES COURS

Préalable requis.
Préparation pour: Conception de systèmes optiques II

Titre/Title Concep	Conception de systèmes optiques II / Optical system design II					
Enseignant Théo LA Christian	Théo LASSER, professeur EPFL/SMT, Pierre JACQUOT, professeur EPFL/SEL, Christian DEPEURSINGE, chargé de cours EPFL/SMT					
Section (s)	Semestre	Oblig.	Option	STS	Heures totales	28
Microtechnique/PA	été	\square		\square	Par semaine:	
		\square	\square	\square	- Cours	2
		\square	\square	\square	- Exercices	-
		\square	\square	\square	- Pratique	

OBJECTIFS

Mâtrise des techniques de base. Analyse, conception et optimisation des systèmes optiques et d'imageries.
L'étudiant sera apte à concevoir et à spécifier des systèmes optiques à l'aide d'un logiciel professionnel (ZEMAX,etc.) - exercices en groupes.

CONTENU

1. Système optique. Analyse et conception. Autofocus, microscopes, télescopes, Couplage fibre optique etc.
2. Notions. Point spread function PSF, MTF, OTF, fréquences spatiales.
3. Multi-Configuration. Systèmes combines (multiples path etc.). Scanner, ZOOM.
4. Critères d'optimisation et fonction de mérite (ZEMAX-Concept).
5. Notions opto-mécaniques.
6. Exercices systèmes optiques

GOALS

Understanding and applying the basic concepts of optical system design.
The students should be able to design and specify optical systems.

CONTENTS

1. Optical systems. Analysis and design. Autofocus, microscopes, telescopes, fiber-coupling etc.
2. Concepts. Point spread function PSF, optical transfer function OTF, MTF, spatial frequencies
3. Multi-configurations. Combined systems multiple path etc. Scanner, ZOOM, etc.
4. Optimization and merit-function definitions based on ZEMAX-Concept
5. Basics in opto-mechanical design
6. Advanced exercises

FORME DE L'ENSEIGNEMENT

Cours ex cathedra avec exercices

BIBLIOGRAPHIE

Notes polycopiées et livres de référence

LIAISON AVEC D'AUTRES COURS

Préalable requis. Conception de systèmes optiques I
Préparation pour:

NOMBRE DE CREDITS

SESSION D'EXAMEN

FORME DU CONTROLE
à fixer au plus tard 3 semaines après le début du cours

Titre/Title Conception des CI numériques / Integrated digital circuits						
Enseignant Betrand HOCHET, chargé de cours EPFL/SEL						
Section (s) Microtechnique/PI	Semestre	Oblig.	Option	STS	Heures totales	42
	été	\square	区	\square	Par semaine:	
		\square	\square	\square	- Cours	2
		\square	\square	\square	- Exercices	1
		\square	\square	\square	- Pratique	-

OBJECTIFS

Ce cours donne les notions de base permettant de faire le lien entre la conception dun circuit électronique classique et son intégration sur silicium. A la fin du cours, létudiant a une vue globale du domaine, et est capable d'identifier les problèmes liés à la conception de blocs fonctionnels élémentaires et de dimensionner les portes CMOS utilisées.

GOALS

This course addresses the basic notions allowing the design of digital electronic systems in their integrated form in a CMOS process. Upon completion, the student has a global view of the domain, and is able to design functional blocks, as well as optimize their constitutive gates.

CONTENTS

Introduction
CMOS process
Design styles and design flows
Passive and parasitic elements in CMOS integrated circuits
CMOS static inverter
CMOS static combinational logic
Dynamic logic
Timing in VLSI systems
Macrocells
Introduction to VHDL for synthesis purposes
Input-output circuits

Practical exercises

Based on a circuit level simulator such as SPICE.
Design and analysis of the reading circuitry in a RAM memory.

FORME DE L'ENSEIGNEMENT

Cours ex cathedra et exercices en salle DIA04
BIBLIOGRAPHIE
Notes de cours polycopiées, articles techniques récents
LIAISON AVEC D'AUTRES COURS
Préalable requis. Electronique I, II
Préparation pour:

NOMBRE DE CREDITS

Titre/Title Conception VLSI (pratique) / (practical) VLSI design						
Enseignant Yusuf Leblebici, professeur EPFL/SEL						
Section (s) Microtechnique/PI	Semestre	Oblig.	Option	STS	Heures totales	28
	été	\square	区	\square	Par semaine:	
		\square	\square	\square	- Cours	2
		\square	\square	\square	- Exercices	-
		\square	\square	\square	- Pratique	-

OBJECTIFS

Ce cours a pour but de familiariser les étudiants à la conception de circuits intégrés en utilisant des logiciels spécialisés. On développera plusieurs blocs fonctionnels (additionneur, multiplieur, filtre) en appliquant une méthodologie de conception enseignée par la pratique. Les travaux appliqués se feront en groupes.

CONTENU

1. Introduction à la CAO pour la VLSI

Revue des systèmes CAO. Flot de conception automatique. Approches descendante et montante. Aspects pratiques de l'utilisation d'outils CAO.

2. Conception physique automatique

Partitionnement au niveau systeme et plan de masses. Partitionnement logique. Algorithmes de placement de modules. Algorithmes de routage global et de détail. Méthodologies de compaction. Conception de layout dirigée par les performances.

3. Conception d'une cellule additionneur

Choix du type de circuit. Simulation au niveau du transistor. Dimensionnement des transistors. Conception du layout. Extraction des éléments parasites. Simulation post-layout et optimisation. Conception d'un additionneur 8 bits.
4. Conception d'un multiplieur série-parallèle

Description VHDL d'un multiplieur 8×8 bits. Vérification fonctionnelle. Synthèse logique à base de cellules standard. Simulation au niveau des portes. Placement et routage automatiques. Simulation post-layout. Optimisation.

5. Conception d'un filtre digital à 2
 dimensions

Description VHDL. Vérification fonctionnelle. Possibilité 1 (approche cellules standard): synthèse logique, simulation logique au niveau portes, placement et routage automatiques, post-layout simulation. Possibilité 2 (approche manuelle): création et simulation des blocs de base, plan de masse des modules, placement et routage manuels, simulation post-layout.

GOALS

This course aims to make the students familiar with the design of integrated circuits with dedicated electronic design automation tools. Several functional blocks (adders, multipliers, filters) will be designed using a practical design methodology. The design work will be done in teams.

CONTENTS

1. Introduction to VLSI CAD

Overview of CAD systems. Concept of automated design flow. Top-down and bottom-up design approaches. Practica aspects of using CAD systems in design.
2. Architecture-level design of digital systems System-level partitioning and floorplanning. Logic partitioning. Module placement algorithms. Global and detailed routing algorithms. Design compaction methodologies. Performance-driven physical layout design.

3. Full-custom design of a binary adder cell

 Choice of circuit style and circuit topology. Transistorlevel simulation. Transistor sizing for optimum performance. Layout design. Extraction of circuit parasitics and design optimization. Design of a 8 -bit ripple-carry adde using the cell.4. Std cell design of a serial-parallel multiplier VHDL description of a 8×8 bit multiplier architecture. Functional verification. Logic synthesis of gate-level netlist. Gate-level simulation. Automatic placement and routing. Post-layout simulation. Design optimization.
5. Design of a 2 -dimensional FIR filter

VHDL description. Functional verification. Alternative I (std cells approach): logic synthesis and logic gate-level simulation, automatic placement and routing, post-layout simulation. Alternative 2 (full-custom approach): creation and simulation of full-custom modules, floorplanning, manual placement and routing, post-layout simulation.

FORME DE L'ENSEIGNEMENT

Ex cathedra avec exercices pratiques

BIBLIOGRAPHIE

Notes polycopiées
LIAISON AVEC D'AUTRES COURS
Préalable requis. Systèmes numériques intégrés, Modélisation de systèmes numériques intégrés
Préparation pour:

NOMBRE DE CREDITS
2

SESSION D'EXAMEN

FORME DU CONTROLE
continu

Titre/Title Détection optique / Optical radiation detection

Enseignant $\begin{aligned} & \text { R. P } \\ & \text { de }\end{aligned}$	$\begin{aligned} & \text { P. SAL } \\ & \text { MT } \end{aligned}$		PFL/S		BESSE, N.	
	Semestre hiver	Oblig	Option	STS	Heures totales	42
Microtechnique/PA		\square	区	\square	Par semaine:	
		\square	\square	\square	- Cours	3
		\square	\square	\square	- Exercices	
		\square	\square	\square	- Pratique	

OBJECTIFS

Introduire des notions de base en détection de la lumière et acquérir les connaissances nécessaires pour la mise en oeuvre des systèmes de détection. Le cours est donné partiellement en anglais.

CONTENU

1. Introduction

Radiations électromagnétiques, quantités radiométriques, sources de radiations, interactions lumière/matière, classification des détecteurs, sources de bruit, détectivité.

2. Détecteurs thermiques

Relations de base, bolomètres, thermocouples, cellules de Golay, détecteurs pyroélectriques, limites ultimes de détection, interface électronique, applications.

3. Détecteurs photoémissifs

Photoeffet externe, photodiode à vide, photomultiplicateurs, microcanaux, applications.

4. Détecteurs Photovoltaïcs

Photoeffet interne, photodiodes ($p-n, p-i-n$, shottky), photodiodes avalanches, sources de bruit, limites ultimes pour les détecteurs photovoltaics, interface électronique, systèmes de détection, applications

5. Photoconducteurs

Photoconductivité, photoconducteurs, sources de bruit, applications.

6. Capteurs d'images en ligne ou en réseau.

 Capacités MOS, détecteurs CID, principes des CCD, traitement des signaux, principes APS et imagerie CMOS, capteurs commerciaux, fonctions additionnelles, limites ultimes des senseurs d'image solides.
GOALS

To familiarize the students with the basics of photodetection. To learn how to realize an optical detection system. A part of the cours is taught in English.

CONTENTS

1. Introduction

Electromagnetic radiation, radiometric quantities, radiation sources, interaction of light with matter, classification of detectors, noise sources, detector figures of merit.

2. Thermal detectors

Basic relationships, bolometers, thermocouples, Golay cells, pyroelectric detectors, ultimate limits of thermal photodectection, interface electronics. applications.
3. Photoemissive detectors

External photoeffect, vacuum photodiodes, photomultipliers, microchannels, applications.

4. Photovoltaic detectors

Internal photoeffect, photodiodes ($p-n$ diodes, $p-i-n$ diodes, Schottky diodes), avalanche photodiodes, noise sources, ultimate limits of photovoltaic photodectection, interface electronics, detection systems, applications.

5. Photoconductive detectors

Photoconductivity, photoconductors, noise sources, applications.

6. Line and area image sensors

MOS capacitors (CCD building blocks), CID detectors (charge injection devices), CCD principles, signal processing, APS principles and CMOS imaging, state-of-the-art commercial image sensors, additional functionality for custom "smart image sensors", ultimate limits of solid-state image sensing.

FORME DE L'ENSEIGNEMENT

Exposé oral, exercices, séminaires

BIBLIOGRAPHIE

B.A. Saleh, M.C. Teich, «Fundamental of Photonics», John Wiley \& Sons, S.M. Sze «Semiconductor Devices», J. Wiley \& Sons, 1985
D. Wood «Optoelectronic Semiconductor Devices», Prentice Hall, 1994

LIAISON AVEC D'AUTRES COURS
Préalable requis: Microélectronique I
Préparation pour:

NOMBRE DE CREDITS
printemps
FORME DU CONTROLE

Titre/Title Génie médical I: Physique du système cardio-vasculaire / Biomedical engineering I: Physics of the cardiovascular system	Génie médical I: Physique du système cardio-vasculaire / Biomedical engineering I: Physics of the cardiovascular system					
Enseignant N. STERGIOPULOS, professeur EPFL/SPH						
Section (s)	Semestre	Oblig.	Option	STS	Heures totales	42
Microtechnique	hiver	\square	区	\square	Par semaine:	
		\square	\square	\square	- Cours	2
		\square	\square	\square	- Exercices	1
		\square	\square	\square	- Pratique	-

OBJECTIFS

Familiariser l'étudiant aux concepts et méthodes de la physique de la matière vivante.
Présenter les phénomènes physiques observés dans le système cardio-vasculaire et les modeles utiles à leur interprétation.

CONTENU

Introduction

Physique de la matière vivante et génie médical; éléments d'anatomie et de physiologie du système cardio-vasculaire

Propriétés physiques du sang

Constituants et rhéologie du sang; propriétés mécaniques des globules rouges; propriétés électriques du sang

Electrophysiologie et biomécanique cardiaques

Electrophysiologie, structure fractale et processus chaotique; activité mécanique du coeur; biomécanique du muscle cardiaque; éjection dans le système artériel, effet Windkessel

Physique du système artériel

Structure, propriétés biomécaniques passives et actives de la paroi artérielle; écoulement pulsé dans un tube rigide, modèle de Womersley; propagation des ondes de pression et de vitesse dans un tube élastique; atténuation et réflexions d'ondes dans un réseau artériel; modèles du système artériel; interactions sang-paroi artérielle
Physique du système veineux
Biomécanique de la paroi; écoulement dans un tube collabable; phénomène "Waterfall".

GOALS

To provide the students with a presentation of the concepts and principles of the physics of the living matter.
To describe the physical phenomena observed in the cardiovascular system and to present the models used for their interpretation.

CONTENTS

Introduction

Physics of living matter and biomedical engineering; anatomy and physiology of the cardiovascular system

Biophysics of the blood

Blood rheology; mechanical properties of red blood cells; electrical properties of blood
Electrophysiology and mechanics of the heart Electrophysiology, fractal structure and chaotic processes; mechanical activity of the heart; biomechanics of the cardiac muscle; blood ejection in the arterial system, Windkessel effect

The physics of the arterial system

Structure, passive and active mechanical properties of the arterial wall; pulsatile blood flow in a rigid tube, model of Womersley; propagation of pressure and flow waves in an elastic tube; reflection and attenuation of waves in arteries; physical models of the arterial system; blood-vessel wall interactions
The physics of the venous system
Biomechanics of the venous wall; flow in collapsible tubes; "Waterfall" phenomenon

FORME DE L'ENSEIGNEMENT
Ex cathedra et exercices dirigés en classe

BIBLIOGRAPHIE

Cours polycopié et corrigés d'exercices
LIAISON AVEC D'AUTRES COURS
Préalable requis.
Préparation pour: Génie médical II

NOMBRE DE CREDITS

SESSION D'EXAMEN

printemps
FORME DU CONTROLE
écrit

Titre/Title Génie médical II: Principes physiques des techniques biomédicales / Biomedical engineering II: Physical principles of biomedical techniques						
Enseignant J.-J. MEISTER, professeur EPFL/SPH						
Section (s) Microtechnique	Semestre	Oblig.	Option	STS	Heures totales	42
	été	\square	区	\square	Par semaine:	
			\square	\square	- Cours	2
		\square	\square	\square	- Exercices	1
		\square	\square	\square	- Pratique	

OBJECTIFS

Familiariser l'étudiant aux principes physiques des méthodes de mesure et d'imagerie utilisées en médecine.

CONTENU

Interaction ondes électromagnétiques - matière vivante
Absorption, diffusion, fluorescence; modèles de propagation de la lumière; applications médicales des lasers
Interaction ondes acoustiques . matière vivante
Onde de pression dans un tissu biologique; absorption, diffusion, réflexions et effets non-linéaires; champ ultrasonore; effet Doppler; applications médicales des ultrasons
Méthodes de mesure de paramètres physiques
Pression artérielle; débit sanguin; activité électrique et magnétique

Radiologie RX

Système radiographique; tomographie computérisée; algorithme de rétroprojection filtrée

Imagerie par résonance magnétique

Interactions entre moment magnétique et champ magnétique; relaxation du moment magnétique; construction d'une image; séquences dexcitation; mesures de débit; applications cliniques
Echographie ultrasonore
Echographie en mode A, TM, B et Duplex; résolution en amplitude des images ultrasonores (speckle)

Tomographie par émission de positrons

Principes physiques; instrumentation; reconstruction d'une image fonctionnelle; applications médicales

GOALS

To provide the students with a presentation of the physical principles of medical instrumentation and imaging systems.

CONTENTS

Interaction between living matter and electromagnetic waves
Absorption, scattering, fluorescence; propagation of light in tissue; medical applications of lasers

Interaction between biological tissue and acoustic waves
Pressure waves in a biological tissue; absorption, scattering, reflection and nonlinear effects; acoustic fields; Doppler effect; medical applications of ultrasound

Techniques to measure physical parameters

Arterial pressure; blood flow; electrical activity of cells and organs and related electromagnetic fields
X-ray imaging methods
X-ray system; computed tomography; filtered backprojection reconstruction algorithm
Magnetic resonance imaging
Interaction of a magnetic moment with a magnetic field; relaxation of magnetic moments; imaging reconstruction method; pulse sequences; flow velocity measurement; clinical applications
Ultrasonic imaging methods
A, TM, B and Duplex mode echography; speckle in ultrasound images
Positron emisson tomography
Physical principles; instrumentation; functional imaging reconstruction; medical applications

FORME DE L'ENSEIGNEMENT

NOMBRE DE CREDITS

SESSION D'EXAMEN

FORME DU CONTROLE

Titrefitle Gestion de production I/ Production management I						
Enseignant Rémy GLARDON, professeur EPFL/SGM						
Section (s)	Semestre	Oblig.	Option	STS	Heures totales	28
Microtechnique/TPr	hiver	\square	\triangle	\square	Par senaine:	
		\square	\square	\square	- Cours	2
		\square	\square	\square	- Exercices	-
		\square	\square	\square	- Pratique	-

OBJECTIFS

L'étudiant doit être capable de

1. Comprendre les aspects principaux du fonctionnement de l'entreprise de production en tant que système et reconnâtre les principaux types d'organisations de la production.
2. Maitriser les bases des éléments fondamentaux de la production et de la logistique interne (nomenclatures, gestion des besoins, gestion des stocks, méthodes de planification, de suivi et d'ordonnancement)
3. Comprendre le fonctionnement et les critères d'optimisation de la gestion de stock. Connaître les méthodes de réapprovisionnement et dimensionner les paramètres de gestion sur une base statistique.
4. Maîtriser les principes de fonctionnement de la planification de production sur une base MRP. Comprendre et appliquer les méthodes de planification des ressources.

GOALS

The student should be capable of

1. Understanding the main characteristics of the manufacturing enterprise as a system and the major types of production organizations.
2. Mastering the basic elements of the production and internal logistic (bill of material, demand and inventory management, planification, control and scheduling)
3. Understanding the working principles and the optimization criteria of inventory management. Using the replenishment methods and calculating the parameters on a statistical basis.
4. Mastering the working principles of production planning on an MRP basis. Understanding and applying the capacity planning methods.

CONTENU

\leftarrow 1'entreprise de production en tant que système ; les flux de matière, d'information et financier; les défis technico-écomiques; les types d'organisations de production
\leftarrow la structure des coûts et des produits, nomenclatures et codification
\leftarrow la gestion des stocks; methodes de réapprovisionnement, dimensionnement statistique des niveaux de gestion, bases d'optimisation, mesure des performances
\leftarrow planification et suivi de la production; niveaux de gestion, plan industriel et commercial, méthodes MRP, plan directeur de production.

CONTENTS

\leftarrow the manufacting enterprise as a system ; material, information and financial flows ; the technical and economical challenges; the various production organization types
\leftarrow the product and cost structures; bill of material and codification
\leftarrow inventory management; replenishment methods, statistical determination of the control levels, optimization and performance criteria.
\leftarrow production planning and control ; planification levels, general industrial plan, the mrp method, master production scheduling plan.

FORME DE L'ENSEIGNEMENT

cours ex cathedra, travaux de groupe, présentation d'étudiants, exercices et lectures individuelles hors cours, visite d'entreprises

BIBLIOGRAPHIE

notes polycopiées et livres de références

NOMBRE DE CREDITS

Cf. Gestion de production II
SESSION D'EXAMEN

FORME DU CONTROLE

LIAISON AVEC D'AUTRES COURS

Préalable requis.
Préparation pour: Gestion de production II

Titre/Title Gestion de production II / Production management II						
Enseignant Rémy Glardon, professeur EPFL/SGM						
Section (s)	Semestre	Oblig.	Option	STS	Heures totales	28
Microtechnique/TPr	été		区	\square	Par semaine:	
		\square	\square	\square	- Cours	2
		\square	\square	\square	- Exercices	-
		\square	\square	\square	- Pratique	

OBJECTIFS

L'étudiant doit être capable de :

1. Comprendre le fonctionnement de la génération des besoins, ses enjeux et ses limites. Choisir et appliquer les méthodes mathématiques de prévision.
2. Comprendre les principes et les limites des méthodes de gestion des flux basées sur les principes du juste à temps. Dimensionner des systèmes KANBAN.
3. Comprendre les nouveaux défis et les développements récents en gestion de production et logistique interne. Identifier les avantages, inconvénients, limites et contraintes de méthodes mixtes de gestion de la production.
4. Comprendre et appliquer les principes et la méthodologie de la modélisation et de la simulation par ordinateur en gestion de production. Modéliser, simuler et interpréter les résultats d'un système de production simple à l'aide d'outils logiciels existants.

CONTENU

\leftarrow la génération des besoins, objectifs, moyens, constraintes; types de prévisions, méthodes mathématiques de prévision; méthodes mixtes.
\leftarrow le juste à temps, objectifs, principes de base; la méthode KANBAN, dimensionnement des systèmes KANBAN, heuristiques; conditions de fonctionnement et limites des méthodes JIT.
\leftarrow évolution de la gestion de production, les nouveux defis; méthodes mixtes de gestion de la production; nouveaux dévéloppement et perspectives.
\leftarrow la modelisation et la simulation par ordinateur, objectifs, principes de base de la simulation par événement discrets; méthodologie, contraintes et limites de la simulation en gestion de production; types de logiciels. application au dimensionnement de systèmes de production et aux outils d'aide à la décision.

GOALS

The student should be capable of

1. Understanding the working principles of the demand determination, its challenges, constrains and limitations. Choosing and applying the mathematical forecasting methods.
2. Understanding the characteristics and limitations of production planning and control methods based on the just in time principle. Designing and dimensioning KANBAN systems.
3. Understanding the new challenges of and the most recent developments in production planning and control and in inbound logistic. Identifying the advantages, disadvantages, limitations and constrains of mixed production planning methods.
4. Understanding and applying the principles and methodologies of computer modelling and simulation in production planning and control. Modelling, simulating and interpreting the results of a simple production system using existing software tools.

CONTENTS

\leftarrow demand managment, goals, methods, constraints; types of forecasts, mathematical forecasting methods; mixed methods.
\leftarrow just in time: objectives, basic principles; the KANBAN method, dimensionning of KANBAN systems, heuristics; functionning conditions and filmitations of JIT methods.
\leftarrow evolution of production planning and control ; the new challenges; mixed methods in production planning and control; new developments and future trends
\leftarrow computer modelling and simulation, goals, basic principles of the discret event simulation; methodology, constrains and limitations of computer simulation in production planning and control; families of software tools. Application to the dimensioning of production systems and in decision support tools.

FORME DE L'ENSEIGNEMENT

Cours ex cathedra, travaux de groupe, présentation d'étudiants, exercices et lectures individuelles hors cours, visite d'entreprises

BIBLIOGRAPHIE

notes polycopiées et livres de références

LIAISON AVEC D'AUTRES COURS

Préalable requis. Gestion de production I
Préparation pour:

NOMBRE DE CREDITS
Gestion de production I, II
SESSION D'EXAMEN
été
FORME DU CONTROLE

OBJECTIFS

L'étudiant apprendra à modéliser des systèmes dynamiques sur la base de mesures entrée-sortie. II maîtrisera les possibilités offertes par certains logiciels modernes d'analyse et didentification (MATLAB).

CONTENU

- Types de modèles dynamiques
- Méthode de corrélation
- Analyse spectrale
- Modèles paramétriques
- Identification des paramètres
- Validation du modèle
- Aspects pratiques de l'identification
- Projet individuel

GOALS

This course covers the identification of dynamic systems, i.e., the modeling of these systems on the basis of input/output data. The possibilities offered by modern software packages such as MATLAB for both system identification and control system analysis will be discussed.

CONTENTS

- Model types
- Correlation method
- Spectral analysis
- Parametric models
- Parameter identification
- Model validation
- Practical aspects of identification
- Individual project

FORME DE L'ENSEIGNEMENT

Cours avec exemples, exercices et et projet individuel

BIBLIOGRAPHIE

Cours polycopié "Identification de systèmes dynamiques"
LIAISON AVEC D'AUTRES COURS
Préalable requis. Automatique I, II
Préparation pour: Identification et commande II

NOMBRE DE CREDITS
Cf. Identification et commande II

SESSION D'EXAMEN

FORME DU CONTROLE
été
oral

Titre/Title Identification et commande II / Identification and control II						
Enseignant Roland LONGCHAMP, professeur EPFL/SGM						
Section (s)	Semestre	Oblig.	Option	STS	Heures totales	28
Microtechnique/TPr	cté	\square	区	\square	Par semaine:	
		\square	\square	\square	- Cours	2
		\square	\square	\square	- Exercices	-
		\square	\square	\square	- Pratique	

OBJECTIFS

L'étudiant sera en mesure de synthétiser des régulateurs polynomiaux. Il pourra réaliser des régulateurs adaptatifs et maîtrisera des algorithmes d'auto-ajustement des régulateurs PID.

GOALS

The student will be able to design polynomial controllers. Moreover, he will know to implement adaptive controllers and how to automatically tune PID controllers.

CONTENU

- Régulateur RST polynomial
- Commande adaptative
- Auto-ajustement des régulateurs PID

CONTENTS

- RST polynomial controller
- Adaptive control
- Auto-tuning of PID controllers

FORME DE L'ENSEIGNEMENT	NOMBRE DE CREDITS	
Ex cathedra. Démonstrations et exercices intégrés	Identification et commande I+II	4
BIBLIOGRAPHIE	SESSION D'EXAMEN	
R. Longchamp, Commande numérique de systèmes dynamiques, PPUR, 1995		été
LIAISON AVEC D'AUTRES COURS	FORME DU CONTROLE	
Préalable requis. Automatique I, II, Identification et commande I Préparation pour: oral		

OBJECTIFS

Le cours permet d'introduire les notions physiques qui gouvernent l'interaction de la lumière avec les tissus biologiques, et présente de nombreux exemples dapplications de la lumiere laser comme outil de diagnostic, de traitement ou d'imagerie. Il illustre aussi l'apport de l'optique dans le domaine de l'instrumentation biomédicale par quelques exemples.

CONTENU

1. Propagation de la lumière dans les tissus biologiques
2. Processus d'interaction lumière-tissu
3. Exemples s'application de la lumière comme outil de diagnostic, de traitement ou d'imagerie. Sujets traités sous forme de séminaires, choisis par les étudiants.

Exemples de sujets (liste non exhaustive) :

- lasers médicaux
- techniques microscopiques
- techniques endoscopiques
- tomographie optique
- micro-holographie digitale
- chirurgie ablative de la cornée

GOALS

The course introduces the physical concepts governing the interaction of light with biological tissues, and discusses numerous examples of application of light for diagnostic, treatment or imaging. The use of optics in biomedical instrumentation is illustrated through the discussion of a few examples.

CONTENTS

1. Light propagation in biological tissue
2. Light-tissue interaction process
3. Examples of application of light as diagnosis, treatment or imaging tool. The different subjects are covered through seminars presented and chosen by the students.

List of potential subjects (indicative)

- medical lasers
- microscopy techniques
- endoscopy techniques
- optical tomography
- digital micro-holographie
- ablative surgery of the cornea

FORME DE L'ENSEIGNEMENT cours ex cathedra et présentation d'exposés par les étudiants	NOMBRE DE CREDITS 2
BIBLIOGRAPHIE polycopiés et références à la littérature	SESSION D'EXAMEN été
LIAISON AVEC D'AUTRES COURS Préalable requis. Préparation pour:	FORME DU CONTROLE exposé + examen oral

Titre/Title L'ingénieur dans R\&D industriels I, II / The engineer in the industriel R\&D I, II						
Enseignant Peter RYSER, professeur EPFL/SMT						
Section (s) Microtechnique	Semestre	Oblig.	Option	STS	Heures totales	56
	I hiver	\square	区	\square	Par semaine:	
	II été	\square	区	\square	- Cours	$2 / 2$
		\square	\square	\square	- Exercices	-
		\square	\square	\square	- Pratique	-

OBJECTIFS

Sensibilisation aux aspects social et économique du travail d'ingénieur.

CONTENU

I
1 : Introduction, concepts de base
2: Gestion des projets
3 : Éléments juridiques
4 : Concepts de qualité
5 : Les transferts de technologie

II

6 : Entreprises et prestations en technologie
7 : Les ressources humaines dans le contexte tech-nologique
8: Aspects financiers en technologie
9 : Technologie et stratégie
10 : Les programmes nationaux et internationaux en RTD

GOALS

To make aware of the not technical aspects of work. To prepare oneself to the real context of the engineer-work.

CONTENTS

I

1: Introduction, basic concepts
2: Project Management
3: Legal aspects
4: Quality concepts
5: Transfer of technology

II

6: Entrepreneurship and services in technology
7: Human resources in the technological context

8: Financial aspects in technology
9: Technology and Strategy
10: National and international programmes in RTD
FORME DE L'ENSEIGNEMENT
Interactif + exercices intégrés (en groupes)
BIBLIOGRAPHIE
Polycopiés du cours
LIAISON AVEC D'AUTRES COURS
Préalable requis.
Préparation pour: Complémentaire à Industrialisation

NOMBRE DE CREDITS
4
SESSION D'EXAMEN

FORME DU CONTROLE

Titre/Tille Machines adaptatives bio-inspirées / Bio-inspired machines						
Enseignant Dario Floreano, professeur EPFL/SMT						
Section (s) Microtechnique	Semestre	Oblig.	Option	STS	Heures totales	42
	été	\square	区	\square	Par semaine:	
		\square	\square		- Cours	3
		\square	\square	\square	- Exercices	
		\square	\square	\square	- Pratique	

OBJECTIFS

Le cours décrira de nouvelles approches et technologies pour concevoir des systemes logiciels et matériels inspirés des mécanismes biologiques et pouvant s'adapter à des environnements imprévisibles et dynamiques. L'accent sera mis sur les systèmes embarqués et autonomes capables de fonctionner en temps réel. De tels systèmes incluent les robots mobiles, les circuits électroniques adaptatifs et les capteurs/actuateurs bioinspirés. Ce cours a pour but de stimuler la curiosité et d'apporter aux étudiants de nouveaux outils pour la conception logicielle et matérielle. Chaque cours est suivi par des exercises afin d'acquérir de l'expérience pratique. Généralement le cours est donné en français, parfois en anglais.

CONTENU

1. Evolution artificielle
2. Réseaux de neurones
3. Realisation analogique et digitale des réseaux de neurones
4. Robotique comportementale
5. Robotique évolutive
6. Combinaison de l'évolution et l'apprentissage des systèmes
7. Co-évolution compétitive des systèmes
8. Electronique évolutive
9. Systèmes cellulaires et morphogénétiques
10. Creation évolutive en ingénierie, art et vie artificielle
11. Système immunitaire artificiel
12. Intelligence collective et comportements d'essaims
$13+14$. Présentation et discussion de papiers de recherches clés et des développements les plus récents

GOALS

The course will describe new approaches and technologies for designing software and hardware systems that are inspired upon biological mechanisms and that can adapt to unpredictable and dynamic environments. Emphasis will be put on embedded and autonomous systems capable of operating in real-time. Such systems include mobile robots, adaptive chips, and bio-inspired sensors and actuators. This course intends to stimulate scientific curiosity and provide students with new tools useful for software and hardware engineering. Each lecture is followed by a laboratory session to gain practical experience. Most lectures are given in French, some in English.

CONTENTS

1. Evolutionary Computation
2. Neural Networks
3. Analog and Digital Implementation of Neural

Networks
4. Behavior-Based Robotics
5. Evolutionary Robotics
6. Combining Evolution and Learning Systems
7. Competitive Co-evolutionary Systems
8. Evolvable Electronics
9. Cellular and Morphogenetic Systems
10. Evolutionary Design in Engineering, Art. Artificial Life
11. Artificial Immune Systems
12. Collective and Swarm Intelligence
$13+14$. Presentation and discussion of key research papers and most recent developments

FORME DE L'ENSEIGNEMENT

Ex cathedra, exercices pratiques, présentations d'éudiants

BIBLIOGRAPHIE

- Nolfi \& Floreano (2001). Evolutionary Robotics. The Biology, Intelligence, and

Technology of Self-Organizing Machines. MIT Press (2nd print).

- Research articles distributed during the course.

LIAISON AVEC D'AUTRES COURS
Préalable requis:
Préparation pour:

NOMBRE DE CREDITS

SESSION D'EXAMEN

FORME DU CONTROLE
continu

Titre/Title Micro-usinage / Micro-engineering						
Enseignant Patrik hoffmann, Mer, EPFL/SMT						
Section (s) Microtechnique	Semestre	Oblig.	Option	STS	Heures totales	28
	eté	\square	区	\square	Par semaine:	
		\square	\square	\square	- Cours	2
		\square	\square	\square	- Exercices	
		\square	\square	\square	- Pratique	-

OBJECTIFS

Comprendre linteraction d'un laser avec la matière. Acquérir et approndir des connaissances sur les différents types d'applications des lasers utilisés pour le microet nano-usinage industriel.

CONTENU

1. Introduction

Interaction lumière/matière

2. Interaction physique

Pliage
Soudure
Découpage
UV-ablation

3. Interaction avec changement chimique

Photodéposition
Etching
4. Autres applications
p.ex. Lithographie

GOALS

Understanding the interactions of lasers with matter. Obtain and improve the knowledge of different applications of lasers in industrial micro- and nano-engineering.

CONTENTS

1. Introduction

Interaction ligh-matter

2.Physical interactions

Bending
Welding
Cutting
UV-ablation
3. Interaction with chemical changes

Photodeposition
Etching
4. Other applications
e.g. Lithography

Titre/Title Optique intégrée / Integrated Optics						
Enseignant R.P. SALATHE, professeur EPFL/SMT et R.E. KUNZ, chargé de cours EPFL/SMT						
Section (s) Microtechnique/PA	Semestre	Oblig.	Option	STS	Heures totales	42
	été	\square	区	\square	Par semaine:	
		\square	\square	\square	- Cours	3
		\square	\square	\square	- Exercices	-
		\square	\square	\square	- Pratique	-

OBJECTIFS

Connaître quelques composants de base en optique intégrée et les technologies de fabrication en vue de comprendre le comportement des circuits d'optique integrée. Le cours est donné partiellement en anglais.

GOALS

To introduce some basic elements of integrated optics and to discuss some technological issues in view of understanding the characteristics of optical integrated circuits. The lectures will be given partly in English.

CONTENU

1. Introduction
2. Guide d'ondes
3. Coupleurs
4. Eléments actifs
5. Circuits d'optique intégrée

CONTENTS

1. Introduction
2. Waveguides
3. Waveguide couplers
4. Active devices
5. Integrated optical circuits

FORME DE L'ENSEIGNEMENT

ex cathedra, expériences et exercices pendant le cours
BIBLIOGRAPHIE
notes polycopiées et références à la littérature
B.A. Saleh, M.C. Teich, «Fundamental of Photonics», John Wiley \& Sons

LIAISON AVEC D'AUTRES COURS
Préalable requis.
Préparation pour:

NOMBRE DE CREDITS

SESSION D'EXAMEN

FORME DU CONTROLE

TitreTitle Opto-électronique / Optoelectronics						
Enseignant Benoît DEVEAUD-PLEDRAN, professeur EPFL/SPH (sous réserve)						
Section (s)	Semestre	Oblig.	Option	STS	Heures totales	28
Microtechnique/PA,PI	hiver	\square	\triangle	\square	Par semaine:	
		\square	\square	\square	- Cours	2
		\square	\square	\square	- Exercices	-
		\square	\square	\square	- Pratique	-

OBJECTLFS

Présenter les principes de fonctionnement et les principales applications des dispositifs optoélectroniques à base de matériaux semiconducteurs.

CONTENU

1. Notions de base, Rappels :
à la fois en optique et en physique des semi-
conducteurs. Avec des rappels de mécanique quantique
2 - Principes de base de l'effet laser :
Relations d'Einstein, gain, émission stimulée,
Oscillation laser, blocage de modes...
3 - Lasers à semiconducteurs et diodes électroluminescentes :
DEL, spectre d'émission, puissance, rendement- Laser à hétérojonction, à puits quantique,..

4 - Photodétecteurs :

Photoconducteur, photodiode p-n, p-i-n-, à avalanche, fréquence de coupure, bruit...

5- Modulateurs de lumière :
Biréfringence, Électro-absorption, effets Pockels,
Kerr, acousto-optique, Stark confiné...
6 - Guides optiques - Fibres optiques : Guides d'onde plans, diélectriques, modes, couplage de la lumière -Fibres à saut d'indice, à gradient d'indice, modes, dispersion

7 - Systèmes de télécommunication optique : Fibres optiques, sources, détecteurs- Modulation, multiplexage, systèmes, bilan de liaison

8 - Ecrans et modulateurs de lumière :

Ecrans à cristaux liquides, polarization, biréfringence, écrans actifs

GOALS
Get to know and understand the basics and main applications of optoelctronic devices based on semiconductor materials.

CONTENTS

1. Basics :

Both in optics and semiconductor physics, some selected topics in quantum mechanics.

2 - Basics of laser effect :

Einstein's relations, gain, stimulated emission, laser oscillations, modelocking...

3 - Light emitting diodes, semiconductor lasers:
LEDs, emission spectrum, output power, Lasers, DHS, quantum well, GRINSCH...

4 - Photodetectors :

Photoconductor, photodiode: p-n, p-i-n-, avalanche, frequency, noise...

5. Light Modulators :

Birefringence, Electro-absorption, Pockels, Kerr, acousto-optic, quantum confined Stark effects...

6 - Waveguides, optical fibers :
Planar waveguides, dielectrics, modes, light coupling, Optical fibers, step-gradient index, dispersion...

7 - Optical telecommunication systems : Sources, optical fibers, detectors, modulation, multiplexing, systems, links...

8 - Displays and light modulators :
LCDs, Polarization, birefringence, active displays

FORME DE L'ENSEIGNEMENT

Cours ex cathedra avec exercices
BIBLIOGRAPHIE
Polycopié, Photonics, Saleh \& Teich, J Wiley
LIAISON AVEC D'AUTRES COURS
Préalable requis. Microélectronique I
Préparation pour:

NOMBRE DE CREDITS

SESSION D'EXAMEN
printemps
FORME DU CONTROLE

Titre/Title Robots mobiles / Mobile robots						
Enseignant Roland SIEGWART, professeur EPFL/SMT						
Section (s)	Semestre	Oblig.	Option	STS	Heures toiales	42
Microtechnique/TPr	hiver	\square	区	\square	Par semaine:	
		\square	\square	\square	- Cours	3
		\square	\square	\square	- Exercices	-
		\square	\square	\square	- Pratique	-

OBJECTIFS

Les systèmes totalement autonomes, et spécialement les robots mobiles autonomes, restent encore un rêve et attirent des milliers de chercheurs.
L'objectif de ce cours est de donner les bases nécessaires au développement de robots mobiles et systèmes autonomes. L'accent est porté sur la locomotion, la perception, la modélisation de l'environnement et la navigation de robots mobiles. En plus des méthodes conventionnelles, des systèmes basés sur des comportements seront présentés. La théorie sera approfondie par des exercices et principalement par l'application sur des robots réels à l'EPFL.

CONTENU

1. Introduction: notations, énoncé des problèmes
2. Concepts de Locomotion: robots à roues, robots à pattes, autres principes de locomotion
3. Cinématique de Robots Mobiles
4. Capteurs pour Robots Mobiles: capteurs, fusion de capteurs, perception, extraction de caractéristiques
5. Modélisation de l'Environnement: types de modèles, représentation de l'incertitude
6. Navigation: Où suis-je? Où vais-je? Par quel moyen? odométrie, dead reckoning, localisation, planification de mission et de trajectoire, évitement d'obstacles, contrôle de position
7. Construction de Cartes: intégration de connaissances, exploration, interprêtation de scènes
8. Approches Basées Comportements
9. Sécurité, Fiabilité: supervision de l'action avec incertitudes, traitement d'exceptions, selfdiagnostic
10. Autres Aspects de Systèmes Autonomes: source d'énergie, ...
11. Applications: robots mobiles pour l'intérieur et l'extérieur, robots guidés par l'homme, micro robots mobiles, robots spatiaux

GOALS

Fully autonomous systems, especially autonomous mobile robots, are still a dream, attracting thousands of researchers.
The objective of this course is to provide the basics required to develop autonomous mobile robots and systems. Main emphasis is put on mobile robot locomotion, perception, environment modeling and navigation. In addition to the more conventional approaches, behavior based systems will be presented Theory will be deepened by exercises and mainly by application to real robots at EPFL

CONTENTS

1. Introduction: notations, problem statements
2. Locomotion Concepts: wheeled robots, legged robots, other locomotion principles
3. Mobile Robots Kinematics
4. Sensors for Mobile Robots: sensors, sensor fusion, perception, feature extraction
5. Environment Modeling: model types, uncertainty representation
6. Navigation: Where am I? Where am I going? How do I get there? odometry, dead reckoning, localization, mission planning, path planning, obstacle avoidance, position control
7. Map Building: knowledge incorporation, exploration, scene interpretation
8. Behavior Based Approaches
9. Safety, Reliability: action supervision with uncertainties, exception handling, self diagnosis
10. Other Aspects of Autonomous Systems: energy supply,
11. Applications: mobile robots for indoor and outdoor environments, human guided robots, mobile micro robots, space robots

FORME DE L'ENSEIGNEMENT

Cours ex cathedra, exercices, travail sur robots mobiles

BIBLIOGRAPHIE

Polycopié: Autonomous mobile robots and systems

LIAISON AVEC D'AUTRES COURS

Préalable requis.
Préparation pour:

NOMBRE DE CREDITS
3

SESSION D'EXAMEN

printemps
FORME DU CONTROLE

Titre/Title $\begin{aligned} & \text { Simulation multi-corps assistée par ordinateur / Computer-aided multi- } \\ & \text { body simulation }\end{aligned}$	Simulation multi-corps assistée par ordinateur / Computer-aided multibody simulation					
Enseignant Paul XIROUCHAKIS, professeur EPFl/SGM						
Section (s)	Semestre	Oblig.	Option	STS	Heures totales	28
Microtechnique/TPr	été	\square		\square	Par semaine:	
		\square	\square	\square	- Cours	2
		\square	\square	\square	- Exercices	-
		\square	\square	\square	- Pratique	-

OB.JECTIFS

L'objectif de ce cours est de transmettre aux étudiants les concepts, modèles, algorithmes et méthodes de base de la modélisation et simulation cinématique et dynamique assistee par ordinateur des systèmes multi-corps. Equations de contraintes sont développées pour exprimer le comportement des liaisons cinématiques comme des liaisons de pivot, de translation, des engrenages et des cames. Des méthodes assistées par ordinateur sont développées pour la prévision des configurations singuliers. Les équations de mouvement dynamiques sont développées pour des systèmes multi-corps. Les étudiants travaillent sur des exercices théoriques et assistées par ordinateur pour apprendre la théorie et la modélisation et analyse cinématique et dynamique.

CONTENU

1. Introduction à la simulation multi-corps assistée par ordinateur
2. Cinématique multi-corps assistée par ordinateur :

- Contraintes absolues et relatives
- Engrenages et mécanismes de Cames
- Contraintes de guidage
- Analyse de position, vitesse et accélération
- Modélisation et simulation cinématique

3. Dynamique multi-corps assistée par ordinateur: - Equations de mouvement des systèmes multicorps

- Multiplicateurs de Lagrange
- Efforts généralisés
- Efforts de contraintes de réaction

4. Projets : mécanismes Cames et à courroie

GOALS

The objective of this course is to introduce to the student the basic computer-aided concepts, models, algorithms and methods for the kinematic and dynamic analysis of multi-body systems. Constraint equations are developed for various types of kinematic joints such as revolute, translational, gears and cams. Computeraided methods are developed for the position, velocity and acceleration analysis using the joint constraint equations. Computer aided methods are also developed for the numerical prediction of singular configurations. Dynamical equations of motion are developed for constrained multi-body systems. Theoretical exercises as well computer-aided projects allow the students to learn the theory and get experience in modeling and simulation of constrained multi-body systems.

CONTENTS

1. Introduction to constrained multi-body dynamics
2. Computer-aided kinematics:

- Absolute, relative and driving constraints
- Gears and Cam-followers
- Position, velocity and acceleration analysis
- Kinematic modeling and analysis

3. Computer-aided dynamics:

- Equations of motion of constrained systems
- Lagrange multipliers and generalized forces
- Constraint reaction forces

4. Projects: Cam and belt driven mechanisms

FORME DE L'ENSEIGNEMENT

NOMBRE DE CREDITS

SESSION D'EXAMEN

FORME DU CONTROLE

Titrefitle Systèmes de CAO/CAD systems						
Enseignant Ian STROUD, chargé de cours EPFL/SGM						
Section (s) Microtechnique/TPr	Semestre	Oblig.	Option	STS	Heures totales	56
	été	\square	\triangle	\square	Par semaine:	
		\square	\square	\square	- Cours	2
		\square	\square	\square	- Exercices	-
		\square	\square	\square	- Pratique	2

OBJECTIFS

Le but du cours est de transmettre aux étudiants les concepts de base de la modélisation assistée par ordinateur, ainsi que les méthodologies et applications du domaine de la CAO. Les techniques de modélisation feature-based sont présentées, ainsi que leur importance dans le processus de conception interactive. De plus, les étudiants mettent leurs connaissances en pratique avec des logiciels de CAO interactifs et modernes.

CONTENU

Opérations de modélisation
Géométrie non-manifold
Bases de la modélisation " feature-based "
Echange de données CFAO
Modélisation d'assemblages mécaniques
Modélisation de tolérancement mécanique

GOALS

The goal of this course is to expose the student to the basic computer-aided modeling concepts, methodologies and their application in the area of CAD (computer-aided design). Featurebased modeling techniques will be presented together with their importance in the interactive design process. Furthermore, students will practice their knowledge with modern interactive CAD software.

CONTENTS

Modeling Operations
Non-manifold Geometry
Fundamentals of Feature Based Modeling
CAD/CAM Data Exchange
Mechanical Assembly Modeling
Mechanical Tolerancing Modeling

FORME DE L'ENSEIGNEMENT

cours et exercices

BIBLIOGRAPHIE

polycopié et références du cours
LIAISON AVEC D'AUTRES COURS
Préalable requis.
Préparation pour:

NOMBRE DE CREDITS

SESSION D'EXAMEN

FORME DU CONTROLE

Titre/Title Systèmes de FAO/CAM systems						
Enseignant Paul XIROUCHAKIS, professeur EPFL/SGM						
Section (s)	Semestre	Oblig.	Option	STS	Heures totales	56
Microtechnique/TPr	hiver	\square	区	\square	Par semaine:	
		\square	\square	\square	- Cours	4
		\square	\square	\square	- Exercices	-
		\square	\square	\square	- Pratique	-

OBJECTIFS

Le but du cours est de transmettre aux étudiants les concepts, les modèles, les algorithmes mathématiques pour la simulation, vérification et optimisation et les méthodologies pour la FAO (fabrication assistée par ordinateur). De plus, les étudiants mettent leurs connaissances en pratique avec des logiciels de FAO interactifs et modernes.

GOALS

The goal of this course is to expose the student to some basic computer-aided manufacturing (CAM) modeling concepts, basic mathematical simulation, verification and optimization algorithms and methodologies and their applications. Furthermore, students will practice their knowledge with modern interactive CAM software.

CONTENTS

Introduction to CAM (computer aided manufacturing)
Process Planning
Process Planning Modeling and Optimization
The Petri-Net Approach
Setup Planning
The mathematics of toolpath generation (3 axis)

The mathematics of toolpath generation (5 axis)
CAM for rapid prototyping
Reverse engineering
Design for Assembly
CAM Projects

```
FORME DE L'ENSEIGNEMENT
cours, exercices et projets
BIBLIOGRAPHIE
polycopié et références du cours
LIAISON AVEC D'AUTRES COURS
Préalable requis.
Préparation pour:
```

NOMBRE DE CREDITS

SESSION D'EXAMEN
printemps
FORME DU CONTROLE
oral

Titre/Title Systèmes numériques intégrés / Integrated digital systems						
Enseignant Daniel Mlynek, Yusuf leblebicl, professeurs EPFl/SEl						
Section (s) Microtechnique/PI	Semestre hiver	Oblig.	Option	STS	Heures totales	28
		\square	区	\square	Par semaine:	
		\square	\square	\square	- Cours	2
			\square	\square	- Exercices	-
		\square	\square	\square	- Pratique	-

OBJECTIFS

Les systèmes intégrés s'ouvrent vers l'ère du submicronique. On passera en revue les idées fondamentales propres aux systèmes intégrés complexes. La modélisation des systèmes sera abordée succinctement et des architectures multimédias seront présentées. L'architecture de la télévision numérique sera exposée. Ce cours s'adresse à tous les étudiants soucieux d'approfondir les architectures des systèmes intégrés.

CONTENU

1. Revue de la technologie

Introduction. Avantages, limitations et problemes des technologies CMOS/BiCMOS submicroniques. Aspects économiques des choix technologiques, de la conception et de la fabrication de circuits intégrés.

2. Conception architecturale

Concepts généraux, conception des parties opératives et de contrôle. Architectures de microprocesseurs et de DSP. Conception en vue du test. Concepts de conception conjointe matérielle/logicielle. Modélisation VHDL de haut niveau.
3. Blocs de base

Modules arithmétiques (additionneurs, multiplieurs, MACs, critères de sélection, comparaison de performances). Architectures de filtres numériques (caractérisation matérielle, réalisations pipeline et parallèle). Systèmes intelligents (réseaux de neurones artificiels, systèmes à logique floue et neuro-floue, applications pratiques).
4. Modélisation et optimisation d'architectures Approches de haut niveau (VHDL, C), vérification dalgorithmes et de systèmes. Optimisation des performances (vitesse, surface), compromis.
Consommation de puissance, problèmes de basse consommation. Outils CAO.
5. Architectures multimédia

Traitement dimages (besoins et contraintes matérielles). Principes de TV numérique, architectures MPEG. Intégration de systèmes et mesures de performances (matérielles et logicielles).

GOALS

Integrated digital systems are now going into the submicron era. This course will review the fundamental ideas relative to complex integrated systems. The modeling of systems will be briefly presented and multimedia architectures will be reviewed in more details, in particular digital television architectures. This course targets students willing to get a deep understanding of integrated systems architectures.

CONTENTS

1. Technology review

Introduction. Advantages, limitations and problems of submicron and deep-submicron CMOS/BiCMOS technologies. Economic aspects of technology choice, chip design and manufacturing.
2. Architecture-level design of digital systems General concepts, data-path design, control issues. Microprocessor and DSP architectures. Design-fortestability issues in digital systems. Hardware / software co-design concepts. VHDL-based high-level modeling of system architectures.
3. Main building blocks of digital systems Arithmetic modules (adders, multipliers, MACs, selection criteria, performance comparisons). Digital filter architectures (hardware characterization, pipeline and parallel implementations). Intelligent systems (artificial neural networks, fuzzy and neuro-fuzzy systems, practical applications).
4. Modeling and optimization of architectures

High-level approaches (VHDL, C). Algorithms and systems verification. Speed-performance optimization. Area minimization, trade-offs, examples. Power dissipation, low-power design issues. CAD tools. 5. Multimedia architectures

Image processing (basic requirements, hardware constraints). Digital TV principles, future trends and demands. MPEG architectures. System integration issues, combined system performance (hardware/software).

FORME DE L'ENSEIGNEMENT

Ex cathedra

BIBLIOGRAPHIE

Notes polycopiées
LIAISON AVEC D'AUTRES COURS
Préalable requis.
Préparation pour: Conception VLSI (pratique)

NOMBRE DE CREDITS

SESSION D'EXAMEN

printemps

FORME DU CONTROLE

Titrefitle Systèmes périphériques / Peripheral systems (pas donné en 2003-04)	Systèmes périphériques / Peripheral systems (pas donné en 2003-04)					
Enseignant Roger HERSCH, professeur EPFL/SIN						
Section (s)	Semestre	Oblig.	Option	STS	Heures totales	42
Microtechnique	été	\square	区	\square	Par semaine:	
		\square	\square	\square	- Cours	2
		\square	\square	\square	- Exercices	1
		\square	\square	\square	- Pratique	-

OBJECTIFS

Maitrise des algorithmes pour périphériques d'affichage, dimpression et de reproduction couleur (scanners, écrans, imprimantes couleur), génération d'images en demi-tons, expérimentation et calcul à laide du logiciel Mathematica.

CONTENU

Avec le développement d'applications entièrement numériques telles que le multimédia, la photographie et l'imagerie numérique, les périphériques d'affichage et d'impression couleur ont acquis une importance accrue. Cours et laboratoires offrent aux étudiants la possibilité de maîtriser les éléments nécessaires à la reproduction couleur.

Outil d'expérimentation

Etude du langage Mathematica pour l'expérimentation, la solution de problèmes et la visualisation de résultats.
Algorithmes de tracé sur plans de bits
Architectures d'écrans et d'imprimantes, organisation de la mémoire image, conversion ponctuelle et remplissage de formes pour dispositifs matriciels (écrans, imprimantes).
Fondements de la colorimétrie
Sensibilité spectrale des récepteurs rétinaux, égalisation colorimétrique, le systèmes CIE XYZ, xyY, L*a* ${ }^{*}$, RGB, YIQ, CMYK, systèmes additifs et soustractifs, loi de Beer.
Périphériques couleur
Modélisation de scanners, écrans et imprimantes, impression noir/blanc et couleur, calibration d'une chaine de reproduction couleur, mise en correspondance de volumes couleur (gamut mapping), modèles prédictifs de Neugebauer et de Clapper-Yule, procédés de génération d'images tramées (halftoning).

GOALS

Knowledge and use of display and prining algorithms, knowledge of colorimetry, understanding and mastering the problems of color reproduction, calibration, gamut mapping and halftoning.

CONTENTS

Due to the growing impact of digital imaging and multimedia, colour displays and printers are of increasing importance.
The course is coupled with laboratories which enable exercising the concepts presented during the lectures.

Mathematica programming language: for experimentation, modelization and visualization.

Scan-conversion and filling algorithms: synthesis of discrete shapes on displays and printers

Color theory: spectral sensibility of the eye, Grassman laws, colorimetric egalization, the CIEXYZ, xyY, L* $a^{*} b^{*}$, RGB, YIQ, CMYK systems, additive and substractive systems, Beer's law.

Color peripherals: Modellization of scanners, displays and printers, black-white and color printing, predictive color printing models (Neugebauer, Clapper-Yule) device calibration (scanner, display, printer), gamut mapping, halftoning methods.

FORME DE L'ENSEIGNEMENT

Cours, laboratoires sur ordinateur (Mathematica)

BIBLIOGRAPHIE

Périphériques de tracé, d'affichage et d'impression 2-D, cours polycopié et notes de laboratoire

LIAISON AVEC D'AUTRES COURS

Préalable requis.
Préparation pour:

NOMBRE DE CREDITS

SESSION D'EXAMEN été

FORME DU CONTROLE

Titre/Title	Technologies des capteurs et des actionneurs intégrés /					
Enseignant	Nico DE ROOIJ, professeur EPFL/SMT et UNI-NE					
Section (s)	Semestre	Oblig.	Option	STS	Heurestotales	28
MicrotechniquelPI	hiver	\square	\square	\square	Par semaine:	
		\square	\square	\square	•Cours	2
		\square	\square	\square	.Exercices	-

OBJECTIFS

Présenter le fonctionnement, la fabrication et les applications des capteurs miniaturisés en silicium.
A la fin du cours, létudiant sera capable de comprendre et de suivre les développements décrits dans la littérature dans le domaine des actionneurs ainsi que de les mettre en pratique.

CONTENU

CAPTEURS INTEGRES

1. Introduction : classification des processus de conversion de signaux tels qu'ils pourront être utilisés pour la conception des capteurs.
2. Capteurs pour signaux de rayonnement : processus physique dans les dispositifs sensibles à la lumière: conducteurs photosensibles, diodes, transistors, dispositifs couplés par charges (ChargeCoupled Device - CCD).
3. Capteurs pour signaux chimiques : diodes et transistors sensibles aux gaz; diodes et transistors sensibles aux ions.
4. Capteurs pour signaux magnétiques : effet de Hall dans les semiconducteurs de type \mathbf{p} et \mathbf{n}; résistances et transistors sensibles aux champs magnétiques.
5. Capteurs pour signaux thermiques : couples thermo-électriques, résistances, transistors.
6. Capteurs pour signaux mécaniques : capteurs de pression et d'accélération, mesure de débit.

ACTIONNEURS INTEGRES

Entre autres:

- moteurs électrostatiques
- micropompes
- vannes
etc.

GOALS

To introduce the operation, fabrication and applications of silicon miniaturized sensors).
At the end of this course, the student will be able to understand and to follow the actuators development described in the literature as well as to put them into practice.

CONTENTS

INTEGRATED SENSORS

1. Introduction : classification of the processes of signal conversion, as they will be used for sensor design.
2. Radiation sensors : Physical processes in light sensitive devices: photosensitive conductors, diodes, transistors, Charge-Coupled Devices (CCD).
3. Chemical sensors : gas sensitive diodes and transistors; ion sensitive diodes and transistors.
4. Magnetic sensors : Hall effect in p-type and ntype semiconductors; resistances and transistors sensitive to magnetic fields.
5. Thermal sensors : thermocouples, resistances, transistors.
6. Mechanical sensors : pressure and acceleration sensors, flowsensors.

INTEGRATED ACTUATORS

Among other things :

- electrostatic motors
- micropumps
- valves
etc.

FORME DE L'ENSEIGNEMENT

Titre/Title Traitement d'images I / Image Processing I						
Enseignant Michael UNSER, professeur EPEL/SMT						
Section (s) Microtechnique	Semestre	Oblig.	Option	STS	Heures totales	28
	hiver	\square	区	\square	Par semaine:	
		\square	\square	\square	- Cours	3
		\square	\square	\square	- Exercices	\sim
		\square	\square	\square	- Pratique	-

OBJECTIFS

Introduction aux techniques de base du traitement d'images. Initiation au développement en JAVA et à la mise en oeuvre d'algorithmes de traitement d'images; application à des exemples concrets en vision industrielle et en imagerie biomédicale.

CONTENU

Introduction. Traitement et analyse d'images. Applications. Eléments d'un système de traitement.

Caractérisation des images de type continu. Classe d'images. Transformée de Fourier 2D. Systèmes invarriants par translation.

Acquisition d'images. Théorie d'échantillonnage. Systèmes d'acquisition. Histogramme et statistiques simples. Quantification linéraire et Max-Lloyd.

Caractérisation des images discrètes et filtrage linéaire. Transformée en z. Convolution. Séparabilité. Filtrage RIF et RII.

Opérations de traitement d'images. Opérateurs ponctuels (seuillage, modification d'histogramme). Opérateurs spatiaux (lissage, rehaussement, filtrage non-linéaire). Opérateurs morphologiques simples.

Introduction à l'analyse d'image et à la vision par ordinateur. Segmentation, détection de contours, détection d'objets, comparaison d'images.

GOALS

Introduction to the basic techniques of image processing. Introduction to image processing software development and prototyping in JAVA; application to real-world examples in industrial vision and biomedical imaging.

CONTENTS

Introduction. Image processing versus image analysis. Applications. System components.

Characterization of continuous images. Image classes. 2D Fourier transform. Shift-invariant systems.

Image acquisition. Sampling theory. Acquisition systems. Histogram and simple statistics. Linear and Max-Lloyd Quantization.

Characterization of discrete images and linear filtering. z-transform. Convolution. Separability. FIR and IIR filters.

Image processing operations. Point operators (thresholding, histogram modification). Spatial operators (smoothing, enhancement, non-linear filtering). Morphological operators.

Introduction to image analysis and computer vision. Segmentation, edge detection, objet detection, image comparison.

FORME DE L'ENSEIGNEMENT

NOMBRE DE CREDITS
Cours ex cathedra, exercices et travaux pratiques sur ordinateur

BIBLIOGRAPHIE

Notes polycopiées
LIAISON AVEC D'AUTRES COURS
Préalable requis. Signaux et systèmes I, II
Préparation pour: Traitement d'images II + projets

Titre/Title Traitement d'images II / Image Processing II						
Enseignant Michael UNSER, professeur EPFL/SMT						
Section (s)	Semestre	Oblig.	Option	STS	Heures totales	28
Microtechnique	été	\square	区	\square	Par semaine:	
		\square	\square	\square	- Cours	3
		\square	\square	\square	- Exercices	-
		\square	\square	\square	- Pratique	-

OBJECTIFS

Compréhension et maitrise des techniques de base du traitement d'images. Développement en JAVA et mise en oeuvre d'algorithmes de traitement d'images; application à des exemples concrets en vision industrielle et en imagerie biomédicale.

CONTENU

Revue des notions fondamentales.
Transformée de Fourier multi-dimensionnelle. Convolution. Echantillonnage. Filtres numériques.

Représentation continue de données discrètes. Splines. Interpolation. Transformations géométriques. Décompositions multi-échelles.

Transformations d'images. Transformation de Karhunen-Loève (KLT) et en cosinus (DCT). Codage JPEG. Pyramides. Décomposition en ondelettes.

Reconstructions à partir de projections.
Scanners aux rayons X. Transformée de Radon. Rétro-projection filtrée. Méthodes itératives.

Méthodes statistiques de classification. Critères de décision. Classification Bayesienne. Estimation. Apprentissage supervisé. Coalescence.

Analyse d'images. Classification de pixels. Extraction et représentation de contours. Forme. Texture. "Snakes" et contours actifs.

GOALS

Understanding the basics of image processing. Image processing software development and prototyping in JAVA; application to real-world examples in industrial vision and biomedical imaging.

CONTENTS

Review of fundamental notions. Multidimensional Fourier transform. Convolution. Sampling theory. z-transform. Digital filters.

Continuous representation of discrete data. Splines. Interpolation. Geometric transformations. Multi-scale decomposition (pyramids and wavelets).

Image transforms. Karhunen-Loève transform (KLT). Discrete cosine transform (DCT). JPEG coding. Image pyramids. Wavelet decomposition.

Reconstruction from projections. X-ray scanners. Radon transform. Central slice theorem. Filtered backprojection. Iterative methods.

Statistical pattern classification. Decision making. Bayesian classification. Parameter estimation. Supervised learning. Clustering.

Image analysis. Pixel classification. Contour extraction and representation. Shape. Texture. Snakes and active contours.

FORME DE L'ENSEIGNEMENT

Cours ex cathedra, exercices et travaux pratiques sur ordinateur.
BIBLIOGRAPHIE
Notes polycopiées
LIAISON AVEC D'AUTRES COURS
Préalable requis. Traitement dimages I
Préparation pour: Projets de semestre et travail pratique de diplôme

NOMBRE DE CREDITS	
Traitement d'images I, II	6
SESSION D'EXAMEN	
	été
FORME DU CONTROLE	
	écrit

Titre/Title Transducteurs et entraînements intégrés / Integrated transducers and drives	Transducteurs et entraînements intégrés / Integrated transducers and drives					
Enseignant Alain CASSAT, chargé de cours EPFL/SEL						
Section (s)	Semestre	Oblig.	Option	STS	Heures totales	28
Microtechnique/TPr	hiver	\square	\triangle	\square	Par semaine:	
		\square	\square	\square	- Cours	2
		\square	\square	\square	- Exercices	-
		\square	\square	\square	- Pratique	-

OBJECTIFS

Les étudiants seront capables de choisir un système dentrainement électrique adapté à une application. Il s'agira aussi bien du choix du moteur que des périphériques d'alimentation, de protection et de réglage. Ils seront également à même de choisir une modélisation adéquate

CONTENU

Introduction

Objectif de l'enseignement. Champ d'application. Aspect synthétique.
Organe entraîné
Caractéristiques externes, démarrage, charge-vitesse, puissance, inertie.

Transmission

Système de transmission. Optimisation du rapport de transmission: accélération, résolution.
Caractérisation. Lissage du couple.
Aspects thermiques
Caractérisation thermique. Résistance thermique équivalente. Constante de temps thermique.
Alimentation et commande
Réseau. Adaptation de tension. Adaptation de courant.
Démarrage, freinage. Redresseurs.
Convertisseurs à commutation. Commandes de commutation. Protection et réglage.

Caractérisation des moteurs

Caractéristiques de couple. Relation couple-inertie. Prédimensionnement.
Caractéristiques externes des principaux moteurs
Caractéristiques de couple, de puissance et de rendement. Caractéristiques de réglage. Moteurs synchrones, autosynchrones, courant-continu, asynchrones, spéciaux. Moteurs piézo-électriques.
Caractérisation d'un entraînement
Méthodologie de choix.
Synthèse des paramètres de choix Exemples.

GOALS

The students will be able to choose an electric drive system adapted to an application. It will be as well about the choice of the motor as of the peripherals of the power supply, the protection and control. They will be also capable to choose an adequate modeling.

CONTENTS

Introduction

Teaching goal. Field of application. Synthetic aspect.

Load

External characteristics, starting, load-speed, power, inertia.

Transmission

Transmission system. Transmission ratio optimization: Acceleration, resolution.
Characterization. Torque ripple.

Thermal aspects

Thermal characterization. Equivalent thermal resistances.
Thermal time constant.
Drive and control
Main. Voltage adaptation. Current adaptation.
Starting, braking. Rectifiers.
Commutation converters. Commutation control.
Protection and regulation.

Motor characterization

Torque characteristics. Torque inertia. Pre-design.
External characteristics of the main motors
Torque, power and efficiency characteristics. Torquespeed regulation. Synchronous, brushless DC, DC, induction and special motors. Piezoelectric motors.
Electric drive characterization
Choice methodology.
Synthesis
Examples.

FORME DE L'ENSEIGNEMENT

ex cathedra avec démonstration expérimentale et exercices
BIBLIOGRAPHIE
notes polycopiées

LIAISON AVEC D'AUTRES COURS

Préalable requis. Conversion électromécanique I, II, Automatique I, II
Préparation pour: Transducteurs et entraînements directs

NOMBRE DE CREDITS

SESSION D'EXAMEN printemps

FORME DU CONTROLE

Titre/Title	Transducteurs et entrainements directs / Transducers and direct drives				
Enseignant	Nicolas WAVRE, professeur	EPFL/SEL			
Section (s)	Semestre	Oblig.	Option	STS	Heurestotales
Microtechnique/TPr	été	\square	\square	\square	Par semaine:
		\square	\square	\square	. Cours
		\square	\square	\square	. Exercices

OBJECTIFS

Donner aux étudiants la capacité de choisir un système d'entraínement direct adapté à une application. Il s'agira aussi bien du choix du moteur (compte tenu de son principe de fonctionnement) que des périphériques d'almentation et de réglage. Les notions de coût et de frabilité seront toujours étroitement associées aux solutions techniques proposées.

CONTENU

1. Introduction

Analyse des entraînements électriques directs selon la puissance, le couple et la vitesse. Comparaison avec les systèmes pneumatiques et hydrauliques.

2. Entraînements synchrones

Le moteur à réluctance synchrone ou différentielle. Caractéristiques externes et applications. Le moteur pas à pas réluctant, hybride ou à aimant. Caractéristiques externes, alimentation et applications. Le moteur synchrone à excitation séparée et à aimants permanents. Le moteur synchrone auto-commuté et à courant continu sans collecteur. Variantes de construction et applications. Le moteur à hystérésis. Applications industrielles.

3. Entrainements linéaires

Situation des entrainements linéaires directs par rapport aux entrainements indirects. Notions de rigidité. Moteur linéaire à induction. Effet pelliculaire, de bords et d'extrémités. Caractéristiques externes et applications industrielles. Moteur linéaire pas à pas. Servo moteurs linéaires à courant continu avec et sans collecteur. Moteur linéaire pour faible courses, électrodynamique (voice-coil), électromagnétique et réluctant. Applications industrielles.

4. Synthèse

Critères de choix entre une solution traditionnelle et spéciale. Prise en compte de l'environnement industriel.

GOALS

Students will be taught how to select an electrical direct drive fitting with many applications. The selection will be done at motor level (considering its working principle) but also at the electronics driver level. Cost and reliability problems will always be associated with the proposed technical solution.

CONTENTS

1. Introduction

Analysis of the electrical direct drive VS power, torque and speed. Comparison with hydraulic and pneumatic systems.

2. Synchronous motors

The variable reluctance motor. External behaviour and application. The stepper motor, with variable reluctance, with permanent magnet or hybrid. External behaviour, electronics drivers and application. The synchronous motor with wound rotor or with permanent magnets. The self commutated synchronous motor (brushless DC motor). Overview of possible design with their specific applications. The hysteresis motor. Industrial application.

3. Linear Motors

Linear Direct drive VS rotary motor with mechanical transmission, limits and stiffness. The induction linear motor. Skin effects, board-effects and end-effects. External behaviour and industrial application. The stepper linear motor. The synchronous linear motor with and without collector. Linear motor with small stroke, like voice coil, moving magnet and with variable reluctance (electromagnet). Industrial application.

4. Synthesis

How to select a traditional drive VS new or innovative solution, considering the usual industrial constraints.

FORME DE L'ENSEIGNEMENT

NOMBRE DE CREDITS

SESSION D'EXAMEN

FORME DU CONTROLE

[^0]: RS 414.110.422.1
 RS 414.110
 2 Non publiées au RO

[^1]: RS 172.021
 RS 414.138 .2

[^2]: 5 Non publiće au RO

