SEMESTER PROJECT PRESENTATION:

ONLINE OPTIMIZATION OF LOCOMOTION CONTROLLER FOR ROOMBOTS

Student: Nguyen The Anh

Supervisors:

Rico Möckel, Stéphane Bonardi, Massimo Vespignani, Soha Pouya

Professor: Auke Jan Ijspeert

BIOROBOTICS LABORATORY

June 15, 2012

Outline

- Motivation
- Introduction
- Implementation
- Experiments
- Results
- Conclusion

Motivation

- Online learning of optimal locomotion pattern
- Adaptation to arbitrary structures and environmental conditions

10/2/2012 INTRODUCTION **4**

Previous works

- Online learning using CPG and Powell optimization method on YAMOR by A. Sproewitz et. al [1]
- Offline optimization using CPG and Particle Swarm Optimization (PSO) on Roombots in simulation by S. Pouya et. al [2]
- First steps towards online learning using CPG and PSO on Roombots without tracking system by F. Wilhelm [3]

≻This project:

Online learning using CPG and PSO on Roombots with Kinect tracking system and GUI experiment software.

Roombots

- Modular self-reconfigurable robots
 - Designed for adaptive furniture
- A module:
 - 3 degrees of freedom (DOF)
 - 2 types of movement: Oscillation and Rotation

- Two modules connected
- 6 degrees of freedom (DOFs)
- 4 configurations: PAR, PER, SRS, SRZ

Roombots Module

Roombots 3 DOFs

Four configurations of a meta-module

Locomotion control and optimization

- Controlled by Central Pattern Generator (CPG)
 - Network of coupled phase oscillators
 - 1 oscillator per 1 degree of freedom
- A meta-module with 6 DOFs
 - Only PER configuration used
 - 6 DOFs corresponds to 6 oscillators
- One oscillator can generate:
 - Oscillation
 - Rotation
 - Locked

- Stochastic, population-based optimization method based on collaboration
- Robust against local minima
- Optimize the Euclidean distance between initial and final position of Roombots after travelling in 30s

Source: F. Wilhelm

Experimental environment

Experimental Setup with Kinect

3 types of surface material:

Cork mat (high friction)

Paper (medium friction)

Plastic rubber (low friction)

Software

- Calculate fitness values
 - Tracking System
- Control Roombots
 - Commands via Bluetooth
- Roombots
 - · CPG, PSO

Kinect

Experiment software

- · GUI
- 3 main control sections:
 - Tracking
 - Communication with Roombots
 - Control of optimization experiment
 - Other sections:
 Visual monitor,
 Software status,
 Bluetooth Data log
- Convenient tool used for conducting experiments.

Tracking & location detection algorithm

Optimization and control parameters

- Fitness: Distance travelled in 30s (average over 3 trials), zero if collision
- The 3rd Experiments:
- Reduction of number of CPG parameters:
 - 1 and 6 has little impact:
 - $R_1 = R_6 = X_1 = X_6 = 0$
 - Then, 2 and 5 become axial rotation invariant
 - $X_2 = X_5 = 0$
 - Assume symmetric amplitudes of 2,3,4,5
 - $R_2 = R_3 = R_4 = R_5 = R$
- 6 CPG parameters
 - 1. Amplitude R
 - 2. Offset X₃
 - 3. Offset X₄
 - 4. Coupling phase ϕ_{23}
 - 5. Coupling phase ϕ_{34}
 - 6. Coupling phase ϕ_{45}
- The parameters and their ranges are set via XML file.
 - Software reads XML file and sends automatically commands to Roombots for settings.

Parameter	Value
$R_2 = R_3 = R_4 = R_5 = R$	$[0,\pi]$
X_3	[-2, 2]
X_4	[-2, 2]
ϕ_{23}	$[-\pi,\pi]$
ϕ_{34}	$[-\pi,\pi]$
ϕ_{45}	$[-\pi,\pi]$

Results

Fitness values of particles along iterations

Results

 A good gait: fitness value of 324 in average or 121.5cm (i.e a speed of 4.05cm/s).

Trajectory of the good gait

Video of the good gait

 $R_2 = R_3 = R_4 = R_5 = 1.448, X_3 = 0.708, X_4 = 0.044, \phi_{23} = 1.375, \phi_{34} = 3.102, \phi_{45} = 0.057$

Results

 The current best gait: fitness value of 395 in average or 150cm (i.e a speed of 5cm/s).

Trajectory of the best gait

Video of the best gait

$$R_2 = R_3 = R_4 = R_5 = 2.065, X_3 = 0.407, X_4 = -0.03, \phi_{23} = 2.418, \phi_{34} = 3.103, \phi_{45} = 0.407, X_{10} = 0.407, X_{$$

Gaits evaluations

- Gait vs. Friction
 - 3 materials, same initial state:

- Different frictions affect the performance of a gait
 - The difference depends on how much the gait uses friction to move

Gaits evaluations

- Gait vs. Initial states
 - 4 initial states, 2 materials:

Four initial states (4 orientations) of Roombots

Good Gait vs. Initial states

- Different initial states can ruin the performance of a gait
 - Because the gait was learnt from a certain initial state.
 - Due to the mechanical symmetry in Roombots the difference of the gait performances within two pairs: side 1 & side 2, and side 3 & side 4 is small.

Gaits evaluations

- Gait vs. Obstacles
 - Gait was learnt in the condition where there is no obstacle but a learnt gaits can be still robust against obstacle.
 - The distance to an obstacle affects the performance of a gait
 - The friction can improve the robustness of gait over obstacle
- The best gait is robust against obstacles.

Gaits evaluations

- Gait vs. Slope
 - Gait was learnt in the condition where the surface is flat but it still works when there is a slope.
 - A high friction can improve the performance of gait over slope
 - Roombots tends to fall down the slope when the surface is slippy

The good gait can reach the top, but the best gait fell down the slope

Conclusion

- Implemented an efficient tracking system for locomotion online learning experiment.
- The user-friendly software with the tracking system makes the experiment more convenient, time-saving, and energysaving.
 - Fully supports loading experiment settings, setting CPG parameters for a gait, setting CPG parameters' ranges
 - Load and save PSO particles from file to Roombots and reversely.
- Debugged critical bugs in CPG firmware code in Roombots.
- Added many commands and a feature allowing users to select CPG parameters used in PSO without modifying firmware.
- Found two interesting gaits.
- Various gait evaluations were conducted.
 - Initial state and surface friction are two main factors that affect to the performance of a particular gait.

Future works

- PSO with velocity (vector) rather than speed (scalar).
- Ability to return the initial state and position automatically based on vision data
- Use internal sensors such as accelerometers or gyroscopes to compute the fitness value

Thank you for your attention

QUESTIONS???

References

- [1] A. Sproewitz, R. Moeckel, J. Maye, and A. Ijspeert, "Learning to move in modular robots using central pattern generators and online optimization," The International Journal of Robotics Research, vol. 27, no. 3-4, pp. 423–443, 2008.
- [2] S. Pouya, J. Van Den Kieboom, A. Sprowitz, and A. Ijspeert, "Automatic gait generation in modular robots: to oscillate or to rotate? that is the question," Proceedings of IEEE/RSJ IROS 2010, Taipei, Taiwan, October 18, vol. 22, 2010.
- [3] F. Wilhelm, "Online optimization for the locomotion of roombots structures."
- [4] S. Murata, E. Yoshida, A. Kamimura, H. Kurokawa, K. Tomita, and S. Kokaji, "M-tran: Selfreconfigurable modular robotic system," Mechatronics, IEEE/ASME Transactions on, vol. 7, no. 4, pp. 431–441, 2002.
- [5] R. Moeckel, C. Jaquier, K. Drapel, E. Dittrich, A. Upegui, and A. Ijspeert, "Yamor and bluemovean autonomous modular robot with bluetooth interface for exploring adaptive locomotion," Climbing and Walking Robots, pp. 685–692, 2006.
- [6] A. Ijspeert, "Central pattern generators for locomotion control in animals and robots: a review," Neural Networks, vol. 21, no. 4, pp. 642–653, 2008.
- [7] A. Sprowitz, S. Pouya, S. Bonardi, J. Van den Kieboom, R. Mockel, A. Billard, P. Dillenbourg, and A. Ijspeert, "Roombots: reconfigurable robots for adaptive furniture," Computational Intelligence Magazine, IEEE, vol. 5, no. 3, pp. 20–32, 2010.
- [8] A. Sprowitz, P. Laprade, S. Bonardi, M. Mayer, R. Moeckel, P.-A. Mudry, and A. Ijspeert, "Roombots-Towards Decentralized Reconfiguration with Self-Reconfiguring Modular Robotic Metamodules," in Proceedings of IEEE IROS 2010, 2010.
- [9] J. Kennedy and R. Eberhart, "Particle swarm optimization," in Neural Networks, 1995. Proceedings., IEEE International Conference on, vol. 4, pp. 1942–1948, IEEE, 1995.

10/2/2012 EXPERIMENTS **22**

Experiment procedures

- Load experiment Settings
- Load PSO particles (resume exp) or Init PSO particles (new exp)
- 3. Run CPG simulation to detect collision
 - 1. If there is a collision, f = 0, go to 5
 - 2. If there is no collision, go to 4
- 4. Run CPG controller-based for 30s, fitness value(f) = travelled distance
- 5. Set the fitness value of current particle and Go to next particles
- 6. Repeat step 3 until we want to pause or terminate experiments
- Save PSO particles when pause the experiment

