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Motivation 

• Online learning of optimal locomotion pattern 

• Adaptation to arbitrary structures and environmental  

conditions 
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Source: Work by S. Pouya and J.v.d. Kieboom 



Previous works 

• Online learning using CPG and Powell optimization 

method on YAMOR by A. Sproewitz et. al [1] 

• Offline optimization using CPG and Particle Swarm 

Optimization (PSO) on Roombots in simulation by S. 

Pouya et. al [2] 

• First steps towards online learning using CPG and PSO 

on Roombots without tracking system by F. Wilhelm [3] 

This project:   

Online learning using CPG and PSO on Roombots with 

Kinect tracking system and GUI experiment software.  
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Roombots 

• Modular self-reconfigurable robots 

• Designed for adaptive furniture 

• A module:  

• 3 degrees of freedom (DOF) 

• 2 types of movement: Oscillation and Rotation 

• Meta-module: 

• Two modules connected  

• 6 degrees of freedom (DOFs) 

• 4 configurations: PAR, PER, SRS, SRZ  
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Source: pictures created by A.Spröwitz 

Roombots Module Roombots 3 DOFs 

Adaptive Furniture 

Four configurations of a meta-module 



• Controlled by Central Pattern Generator (CPG) 
• Network of coupled phase oscillators 

• 1 oscillator per 1 degree of freedom 

• A meta-module with 6 DOFs 
• Only PER configuration used 

• 6 DOFs corresponds to 6 oscillators 

• One oscillator can generate:  
• Oscillation 

• Rotation 

• Locked 

• Particle Swarm Optimization (PSO) 

• Stochastic, population-based optimization method based on collaboration 

• Robust against local minima 

• Optimize the Euclidean distance between initial and final position of 
Roombots after travelling in 30s 

 

Locomotion control and optimization 
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Source: F. Wilhelm 



Experimental environment 

• Experimental Setup with Kinect 

• 3 types of surface material: 

• Cork mat (high friction) 

• Paper (medium friction) 

• Plastic rubber (low friction) 

• Software 

• Calculate fitness values 

• Tracking System 

• Control Roombots 

• Commands via Bluetooth 

• Roombots 

• CPG, PSO 
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Experiment software 
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• GUI 

• 3 main control 
sections: 

• Tracking 

• Communication 
with Roombots 

• Control of 
optimization 
experiment 

• Other sections: 
Visual monitor, 
Software status, 
Bluetooth Data log   

• Convenient tool 
used for conducting 
experiments. 



Tracking & location detection algorithm 
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Optimization and control parameters 

• Fitness: Distance travelled in 30s (average over 3 trials), zero if collision 

• The 3rd Experiments: 

• Reduction of number of CPG parameters: 
• 1 and 6 has little impact: 

• R1=R6=X1=X6= 0 

• Then, 2 and 5 become axial rotation invariant 
• X2=X5= 0 

• Assume symmetric amplitudes of 2,3,4,5 
• R2=R3=R4=R5= R 

• 6 CPG parameters 
1. Amplitude R 

2. Offset X3 

3. Offset X4 

4. Coupling phase 𝝓𝟐𝟑  
5. Coupling phase 𝝓𝟑𝟒 

6. Coupling phase 𝝓𝟒𝟓 

• The parameters and their ranges are set via XML file.  
• Software reads XML file and sends automatically commands to Roombots for settings. 

   In the 3rd experiment, the best gait was found.  
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Results 
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Experiment 2 

Parameters values vs. iterations of the best gait 

Fitness values vs. iterations of the best gait 

Fitness values of particles along iterations 



Results 

• A good gait : fitness value of 324 in average or 121.5cm 

(i.e a speed of 4.05cm/s). 
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𝑅2 = 𝑅3 = 𝑅4 = 𝑅5 = 1.448, 𝑋3 = 0.708, 𝑋4 = 0.044, 𝜙23 = 1.375, 𝜙34 = 3.102, 𝜙45 = 0.057 

Trajectory of the good gait Video of the good gait 



Results 
• The current best gait: fitness value of 395 in average or 

150cm (i.e a speed of 5cm/s). 
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Trajectory of the best gait Video of the best gait 

𝑅2 = 𝑅3 = 𝑅4 = 𝑅5 = 2.065, 𝑋3 = 0.407, 𝑋4 = −0.03, 𝜙23 = 2.418, 𝜙34 = 3.103, 𝜙45 = 0 



Gaits evaluations 
• Gait vs. Friction 

• 3 materials, same initial state: 

 

 

 

 

 

 

 

 

 

Different frictions affect the performance of a gait 

• The difference depends on how much the gait uses friction to move  
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Cork mat Paper Plastic rubber 



Gaits evaluations 

• Gait vs. Initial states 
• 4 initial states, 2 materials: 

 

 

 

 

 

 

 

 

 

 

• Different initial states can ruin the performance of a gait  
• Because the gait was learnt from a certain initial state.  

• Due to the mechanical symmetry in Roombots the difference of the gait 
performances within two pairs: side 1 & side 2, and side 3 & side 4 is small.  

 
 

 

 

10/2/2012 RESULTS 15 

Four initial states (4 orientations) of Roombots Good Gait vs. Initial states 

 



Gaits evaluations 

• Gait vs. Obstacles 

• Gait was learnt in the condition where there is no obstacle but a 

learnt gaits can be still robust against obstacle. 

• The distance to an obstacle affects the performance of a gait 

• The friction can improve the robustness of gait over obstacle 

• The best gait is robust against obstacles. 
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Good gait vs. obstacle Best gait vs. obstacle 



Gaits evaluations 

• Gait vs. Slope 

• Gait was learnt in the condition where the surface is flat but it still 

works when there is a slope. 

• A high friction can improve the performance of gait over slope 

• Roombots tends to fall down the slope when the surface is slippy 

• The good gait can reach the top, but the best gait fell down the slope 
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Best gait vs. slope Good gait vs. slope 



Conclusion 

• Implemented an efficient tracking system for locomotion 
online learning experiment.  

• The user-friendly software with the tracking system makes 
the experiment more convenient, time-saving, and energy-
saving.  
• Fully supports loading experiment settings, setting CPG parameters 

for a gait, setting CPG parameters’ ranges 

• Load and save PSO particles from file to Roombots and reversely.  

• Debugged critical bugs in CPG firmware code in Roombots. 

• Added many commands and a feature allowing users to select 
CPG parameters used in PSO without modifying firmware.  

• Found two interesting gaits.    

• Various gait evaluations were conducted. 
• Initial state and surface friction are two main factors that affect to the 

performance of a particular gait. 
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Future works 

• PSO with velocity (vector) rather than speed (scalar). 

• Ability to return the initial state and position automatically 

based on vision data 

• Use internal sensors such as accelerometers or 

gyroscopes to compute the fitness value 
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QUESTIONS??? 
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Thank you for your attention 
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Experiment procedures 

1. Load experiment Settings 

2. Load PSO particles (resume exp) or 
Init PSO particles (new exp) 

3. Run CPG simulation to detect collision 

1. If there is a collision, f = 0, go to 5 

2. If there is no collision, go to 4 

4. Run CPG controller-based for 30s, 
fitness value(f) = travelled distance 

5. Set the fitness value of current particle 
and Go to next particles 

6. Repeat step 3 until we want to pause 
or terminate experiments 

7. Save PSO particles when pause the 
experiment 
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Experiment Procedure 


