Publications

2024

Journal Articles

Vibrio cholerae pathogenicity island 2 encodes two distinct types of restriction systems

G. Vizzarro; A. Lemopoulos; D. W. Adams; M. Blokesch 

Journal of Bacteriology. 2024. DOI : 10.1128/jb.00145-24.

Genome sequences of Vibrio cholerae strains isolated in the DRC between 2009 and 2012

A. Lemopoulos; B. Miwanda; N. C. Drebes Dorr; S. Stutzmann; D. Bompangue et al. 

Microbiology Resource Announcements. 2024. DOI : 10.1128/mra.00827-23.

Molecular mechanism of plasmid elimination by the DdmDE defense system

L. Loeff; D. W. Adams; C. Chanez; S. Stutzmann; L. Righi et al. 

Science. 2024. DOI : 10.1126/science.adq0534.

Interactions between pili affect the outcome of bacterial competition driven by the type VI secretion system

S. B. Otto; R. M. Servajean; A. Lemopoulos; A-F. Bitbol; M. Blokesch 

Current Biology. 2024. Vol. 34, p. https://doi.org/10.1016/j.cub.2024.04.041. DOI : 10.1016/j.cub.2024.04.041.

Reviews

Q & A – Melanie Blokesch

M. Blokesch 

Current Biology. 2024. Vol. 34, num. 10, p. R475 – R478. DOI : 10.1016/j.cub.2024.04.015.

Theses

Dangerous acquaintances: the interplay between type IV pili and the type VI secretion system during Vibrio cholerae’s environmental lifestyle

S. B. Otto / M. Blokesch (Dir.)  

Lausanne, EPFL, 2024. 

Working Papers

Vibrio cholerae pathogenicity island 2 encodes two distinct types of restriction systems

G. Vizzarro; A. Lemopoulos; D. W. Adams; M. Blokesch 

2024

Capsular Polysaccharide Restrains Type VI Secretion in Acinetobacter baumannii

N. O. Flaugnatti; L. Bader; M-C. Croisier-Coeytaux; M. Blokesch 

2024

2023

Journal Articles

DNA modifications impact natural transformation of Acinetobacter baumannii

N. Vesel; C. Iseli; N. Guex; A. Lemopoulos; M. Blokesch 

Nucleic Acids Research. 2023. Vol. gkad377. DOI : 10.1093/nar/gkad377.

Sporadic type VI secretion in seventh pandemic Vibrio cholerae

A. Proutière; N. C. Drebes Dorr; L. Bader; S. Stutzmann; L. C. Metzger et al. 

Microbiology. 2023. Vol. 169, num. 5. DOI : 10.1099/mic.0.001329.

Working Papers

Interactions between pili affect the outcome of bacterial competition driven by the type VI secretion system

S. B. Otto; R. M. Servajean; A. Lemopoulos; A-F. Bitbol; M. Blokesch 

2023

Patents

Recombinant bacteria resistant to horizontal gene transfer and phage infection

M. Blokesch; M. J. Jaskolska; D. W. Adams 

WO2023275328.

2023.

2022

Journal Articles

Single nucleotide polymorphism determines constitutive versus inducible type VI secretion in Vibrio cholerae

N. C. Drebes Dörr; A. Proutière; M. Jaskólska; S. Stutzmann; L. Bader et al. 

The ISME Journal. 2022. Vol. 16, p. 1868 – 1872. DOI : 10.1038/s41396-022-01234-7.

Two defence systems eliminate plasmids from seventh pandemic Vibrio cholerae

M. Jaskólska; D. W. Adams; M. Blokesch 

Nature. 2022. Vol. 604, p. 323 – 329. DOI : 10.1038/s41586-022-04546-y.

Solving the mystery of the missing plasmids in seventh pandemic Vibrio cholerae strains

M. Blokesch 

Nature. 2022. DOI : 10.1038/d41586-022-00778-0.

The VarA-CsrA regulatory pathway influences cell shape in Vibrio cholerae

L. F. Lemos Rocha; K. Peters; J. Biboy; J. S. Depelteau; A. Briegel et al. 

PLOS Genetics. 2022. Vol. 18, num. 3, p. e1010143. DOI : 10.1371/journal.pgen.1010143.

Theses

How Vibrio cholerae adapts to the environment: from cell shape transitions to antagonistic behavior

L. F. Lemos Rocha / M. Blokesch (Dir.)  

Lausanne, EPFL, 2022. 

Natural competence of the pathogen Acinetobacter baumannii: an elusive phenomenon

N. Vesel / M. Blokesch (Dir.)  

Lausanne, EPFL, 2022. 

2021

Journal Articles

Human commensal gut Proteobacteria withstand type VI secretion attacks through immunity protein-independent mechanisms

N. Flaugnatti; S. Isaac; L. F. Lemos Rocha; S. Stutzmann; O. Rendueles et al. 

Nature Communications. 2021. Vol. 12, p. 1 – 13, 5751. DOI : 10.1038/s41467-021-26041-0.

Pilus production in Acinetobacter baumannii is growth phase dependent and essential for natural transformation

N. Vesel; M. Blokesch 

Journal of Bacteriology. 2021. Vol. 2013, num. 8, p. e00034 – 21. DOI : 10.1128/JB.00034-21.

Growing away from monocultures – interdependent growth conditions for studying antibacterial and antiphage systems

M. Blokesch 

Environmental Microbiology Reports. 2021. Vol. 13, num. 1, p. 42 – 44. DOI : 10.1111/1758-2229.12899.

Theses

The molecular treasure box of environmental Vibrio cholerae strains

N. C. Drebes Dörr / M. Blokesch (Dir.)  

Lausanne, EPFL, 2021. 

2020

Journal Articles

Interbacterial competition and anti‐predatory behavior of environmental Vibrio cholerae strains

N. C. Drebes Dörr; M. Blokesch 

Environmental Microbiology. 2020. Vol. 22, num. 10, p. 4485 – 4504. DOI : 10.1111/1462-2920.15224.

Comparison of chitin‐induced natural transformation in pandemic Vibrio cholerae O1 El Tor strains

S. Stutzmann; M. Blokesch 

Environmental Microbiology. 2020. Vol. 22, num. 10, p. 4149 – 4166. DOI : 10.1111/1462-2920.15214.

A Vibriophage Takes Antirepression to the Next Level

L. F. Lemos Rocha; M. Blokesch 

Cell Host & Microbe. 2020. Vol. 27, num. 4, p. 493 – 495. DOI : 10.1016/j.chom.2020.03.019.

Selection of Vibrio crassostreae relies on a plasmid expressing a type 6 secretion system cytotoxic for host immune cells

D. Piel; M. Bruto; A. James; Y. Labreuche; C. Lambert et al. 

Environmental Microbiology. 2020. Vol. 22, num. 10, p. 4198 – 4211. DOI : 10.1111/1462-2920.14776.

2019

Journal Articles

The type IV pilus protein PilU functions as a PilT-dependent retraction ATPase

D. W. Adams; J. M. Pereira; C. Stoudmann; S. Stutzmann; M. Blokesch 

PLOS Genetics. 2019. Vol. 15, num. 9, p. e1008393. DOI : 10.1371/journal.pgen.1008393.

Neighbor predation linked to natural competence fosters the transfer of large genomic regions in Vibrio cholerae

N. Matthey; S. Stutzmann; C. Stoudmann; N. Guex; C. Iseli et al. 

eLife. 2019. Vol. 8, p. e48212. DOI : 10.7554/eLife.48212.

DNA-uptake pili of Vibrio cholerae are required for chitin colonization and capable of kin recognition via sequence-specific self-interaction

D. W. Adams; S. Stutzmann; C. Stoudmann; M. Blokesch 

Nature Microbiology. 2019. Vol. 4, p. 1545 – 1557. DOI : 10.1038/s41564-019-0479-5.

Ecological implications of gene regulation by TfoX and TfoY among diverse Vibrio species

L. C. Metzger; N. Matthey; C. Stoudmann; E. J. Collas; M. Blokesch 

Environmental Microbiology. 2019. Vol. 21, num. 7, p. 2231 – 2247. DOI : 10.1111/1462-2920.14562.

Cellular Microbiology Interview – Dr. Melanie Blokesch

M. Blokesch 

Cellular Microbiology. 2019.  p. e13002. DOI : 10.1111/cmi.13002.

Reviews

Mechanisms of DNA Uptake by Naturally Competent Bacteria

D. Dubnau; M. Blokesch 

Annual Review of Genetics. 2019. Vol. 53, p. 217 – 37. DOI : 10.1146/annurev-genet-112618-043641.

Theses

Two nanomachines drive evolution in diverse Vibrio species

N. Matthey / M. Blokesch (Dir.)  

Lausanne, EPFL, 2019. 

2018

Journal Articles

QstR-dependent regulation of natural competence and type VI secretion in Vibrio cholerae

M. Jaskolska; S. Stutzmann; C. Stoudmann; M. Blokesch 

Nucleic Acids Research. 2018. Vol. 46, num. 20, p. 10619 – 10634. DOI : 10.1093/nar/gky717.

Long-Read-Based Genome Sequences of Pandemic and Environmental Vibrio cholerae Strains

N. Matthey; N. C. Drebes Dörr; M. Blokesch 

Microbiology Resource Announcements. 2018. Vol. 7, num. 23, p. e01574 – 18. DOI : 10.1128/MRA.01574-18.

Molecular insights into Vibrio cholerae’s intra-amoebal host-pathogen interactions

C. Van der Henst; A. S. Vanhove; N. C. Drebes Dörr; S. Stutzmann; C. Stoudmann et al. 

Nature Communications. 2018. Vol. 9, p. 3460. DOI : 10.1038/s41467-018-05976-x.

Bacterial type VI secretion system facilitates niche domination

N. C. Drebes Dörr; M. Blokesch 

Proceedings of the National Academy of Sciences. 2018. Vol. 115, num. 36, p. 8855 – 8857. DOI : 10.1073/pnas.1812776115.

Reviews

Eco-Evolutionary Dynamics Linked to Horizontal Gene Transfer in Vibrios

F. Le Roux; M. Blokesch 

Annual Review of Microbiology. 2018. Vol. 72, num. 1, p. 89 – 110. DOI : 10.1146/annurev-micro-090817-062148.

2017

Reviews

Modeling Key Drivers of Cholera Transmission Dynamics Provides New Perspectives for Parasitology

A. Rinaldo; E. Bertuzzo; M. Blokesch; L. Mari; M. Gatto 

Trends in Parasitology. 2017. Vol. 33, num. 8, p. 587 – 599. DOI : 10.1016/j.pt.2017.04.002.

In and out—contribution of natural transformation to the shuffling of large genomic regions

M. Blokesch 

Current Opinion in Microbiology. 2017. Vol. 38, p. 22 – 29. DOI : 10.1016/j.mib.2017.04.001.

Interbacterial predation as a strategy for DNA acquisition in naturally competent bacteria

J-W. Veening; M. Blokesch 

Nature Reviews Microbiology. 2017. Vol. 15, p. 621 – 629. DOI : 10.1038/nrmicro.2017.66.

2016

Journal Articles

Circulation of a Quorum-Sensing-Impaired Variant of Vibrio cholerae Strain C6706 Masks Important Phenotypes

S. Stutzmann; M. Blokesch 

mSphere. 2016. Vol. 1, num. 3, p. e00098 – 16. DOI : 10.1128/mSphere.00098-16.

Independent Regulation of Type VI Secretion in Vibrio cholerae by TfoX and TfoY

L. C. Metzger; S. Stutzmann; T. Scrignari; C. Van der Henst; N. Matthey et al. 

Cell reports. 2016. Vol. 15, num. 5, p. 951 – 958. DOI : 10.1016/j.celrep.2016.03.092.

Reviews

The DNA-Uptake Process of Naturally Competent Vibrio cholerae

N. Matthey; M. Blokesch 

Trends in Microbiology. 2016. Vol. 24, num. 2, p. 98 – 110. DOI : 10.1016/j.tim.2015.10.008.

Natural competence for transformation

M. Blokesch 

Current Biology. 2016. Vol. 26, num. 21, p. R1126 – R1130. DOI : 10.1016/j.cub.2016.08.058.

Regulation of competence-mediated horizontal gene transfer in the natural habitat of Vibrio cholerae

L. C. Metzger; M. Blokesch 

Current Opinion in Microbiology. 2016. Vol. 30, p. 1 – 7. DOI : 10.1016/j.mib.2015.10.007.

2015

Journal Articles

An intracellular replication niche for Vibrio cholerae in the amoeba Acanthamoeba castellanii

C. Van Der Henst; T. Scrignari; C. Maclachlan; M. Blokesch 

The ISME Journal. 2015. Vol. 10, p. 897 – 910. DOI : 10.1038/ismej.2015.165.

Competence-induced type VI secretion might foster intestinal colonization by Vibrio cholerae

M. Blokesch 

BioEssays. 2015. Vol. 37, num. 11, p. 1163 – 8. DOI : 10.1002/bies.201500101.

The type VI secretion system of Vibrio cholerae fosters horizontal gene transfer

S. Borgeaud; L. C. Metzger; T. Scrignari; M. Blokesch 

Science. 2015. Vol. 347, num. 6217, p. 63 – 67. DOI : 10.1126/science.1260064.

The emergence of Vibrio pathogens in Europe: ecology, evolution, and pathogenesis (Paris, 11–12th March 2015)

F. Le Roux; K. M. Wegner; C. Baker-Austin; L. Vezzulli; C. R. Osorio et al. 

Frontiers in Microbiology. 2015. Vol. 6, p. 830. DOI : 10.3389/fmicb.2015.00830.

Leben und sterben lassen – horizontaler Gentransfer in Vibrio cholerae

M. Blokesch 

BIOspektrum. 2015. Vol. 21, num. 3, p. 273 – 276. DOI : 10.1007/s12268-015-0572-0.

Book Chapters

Protocols for Visualizing Horizontal Gene Transfer in Gram-Negative Bacteria Through Natural Competence

M. Blokesch 

Hydrocarbon and Lipid Microbiology Protocols; Berlin: Humana Press, 2015. p. 1 – 16.

2014

Journal Articles

DNA Transport across the Outer and Inner Membranes of Naturally Transformable Vibrio cholerae Is Spatially but Not Temporally Coupled

P. Seitz; M. Blokesch 

mBio. 2014. Vol. 5, num. 4, p. e01409 – 14. DOI : 10.1128/mBio.01409-14.

Regulatory elements involved in the expression of competence genes in naturally transformable Vibrio cholerae

M. Lo Scrudato; S. Borgeaud; M. Blokesch 

BMC microbiology. 2014. Vol. 14, p. 327. DOI : 10.1186/s12866-014-0327-y.

Composition of the DNA-uptake complex of Vibrio cholerae

L. C. Metzger; M. Blokesch 

Mobile Genetic Elements. 2014. Vol. 4, num. 1, p. e28142. DOI : 10.4161/mge.28142.

Probing the size of proteins with glass nanopores

L. J. Steinbock; S. Krishnan; R. D. Bulushev; S. Borgeaud; M. Blokesch et al. 

Nanoscale. 2014. Vol. 6, num. 23, p. 14380 – 14387. DOI : 10.1039/C4NR05001K.

Glucose- but Not Rice-Based Oral Rehydration Therapy Enhances the Production of Virulence Determinants in the Human Pathogen Vibrio cholerae

J. Kühn; F. Finger; E. Bertuzzo; S. Borgeaud; M. Gatto et al. 

PLoS Neglected Tropical Diseases. 2014. Vol. 8, num. 12, p. e3347. DOI : 10.1371/journal.pntd.0003347.

ComEA Is Essential for the Transfer of External DNA into the Periplasm in Naturally Transformable Vibrio cholerae Cells

P. Seitz; H. Pezeshgi Modarres; S. Borgeaud; R. D. Bulushev; L. J. Steinbock et al. 

PLoS Genetics. 2014. Vol. 10, num. 1, p. e1004066. DOI : 10.1371/journal.pgen.1004066.

Theses

Mechanistic aspects of DNA uptake in naturally competent Vibrio cholerae

P. M. Seitz / M. Blokesch (Dir.)  

Lausanne, EPFL, 2014. 

The regulatory circuit of natural competence for transformation in the human pathogen Vibrio cholerae

M. Lo Scrudato / M. Blokesch (Dir.)  

Lausanne, EPFL, 2014. 

2013

Journal Articles

A transcriptional regulator linking quorum sensing and chitin induction to render Vibrio cholerae naturally transformable

M. Lo Scrudato; M. Blokesch 

Nucleic acids research. 2013. Vol. 41, num. 6, p. 3644 – 58. DOI : 10.1093/nar/gkt041.

Overexpression of the tcp Gene Cluster Using the T7 RNA Polymerase/Promoter System and Natural Transformation-Mediated Genetic Engineering of Vibrio cholerae

S. Borgeaud; M. Blokesch 

PLoS ONE. 2013. Vol. 8, num. 1, p. e53952. DOI : 10.1371/journal.pone.0053952.

Evidence for Two Different Regulatory Mechanisms Linking Replication and Segregation of Vibrio cholerae Chromosome II

T. Venkova-Canova; J. H. Baek; P. C. Fitzgerald; M. Blokesch; D. K. Chattoraj 

PLoS Genetics. 2013. Vol. 9, num. 6, p. e1003579. DOI : 10.1371/journal.pgen.1003579.

The Janthinobacterium sp. HH01 Genome Encodes a Homologue of the V. cholerae CqsA and L. pneumophila LqsA Autoinducer Synthases

C. Hornung; A. Poehlein; F. S. Haack; M. Schmidt; K. Dierking et al. 

PLoS ONE. 2013. Vol. 8, num. 2, p. e55045. DOI : 10.1371/journal.pone.0055045.

DNA-uptake machinery of naturally competent Vibrio cholerae

P. Seitz; M. Blokesch 

Proceedings of the National Academy of Sciences of the United States of America. 2013. Vol. 110, num. 44, p. 17987 – 92. DOI : 10.1073/pnas.1315647110.

Reviews

Cues and regulatory pathways involved in natural competence and transformation in pathogenic and environmental Gram-negative bacteria

P. Seitz; M. Blokesch 

FEMS Microbiology Reviews. 2013. Vol. 37, num. 3, p. 336 – 63. DOI : 10.1111/j.1574-6976.2012.00353.x.

2012

Journal Articles

Reassessment of the 2010-2011 Haiti cholera outbreak and rainfall-driven multiseason projections

A. Rinaldo; E. Bertuzzo; L. Mari; L. Righetto; M. Blokesch et al. 

Proceedings of the National Academy of Sciences. 2012. Vol. 109, num. 17, p. 6602 – 6607. DOI : 10.1073/pnas.1203333109.

Chitin colonization, chitin degradation and chitin-induced natural competence of Vibrio cholerae are subject to catabolite repression

M. Blokesch 

Environmental Microbiology. 2012. Vol. 14, num. 8, p. 1898 – 912. DOI : 10.1111/j.1462-2920.2011.02689.x.

The Regulatory Network of Natural Competence and Transformation of Vibrio cholerae

M. Lo Scrudato; M. Blokesch 

PLoS Genetics. 2012. Vol. 8, num. 6, p. e1002778. DOI : 10.1371/journal.pgen.1002778.

A quorum sensing-mediated switch contributes to natural transformation of Vibrio cholerae

M. Blokesch 

Mobile genetic elements. 2012. Vol. 2, num. 5, p. 224 – 227. DOI : 10.4161/mge.22284.

TransFLP – A Method to Genetically Modify Vibrio cholerae Based on Natural Transformation and FLP-recombination

M. Blokesch 

Journal of Visualized Experiments : JoVE. 2012. Vol. Oct 8, num. 68, p. pii: 3761. DOI : 10.3791/3761.

2011

Journal Articles

Prediction of the spatial evolution and effects of control measures for the unfolding Haiti cholera outbreak

E. Bertuzzo; L. Mari; L. Righetto; M. Gatto; R. Casagrandi et al. 

Geophysical Research Letters. 2011. Vol. 38, p. L06403. DOI : 10.1029/2011GL046823.

A transmission model of the 2010 cholera epidemic in haiti

A. Rinaldo; M. Blokesch; E. Bertuzzo; L. Mari; L. Righetto et al. 

Annals of internal medicine. 2011. Vol. 155, num. 6, p. 403 – 4. DOI : 10.1059/0003-4819-155-6-201109200-00018.

Quorum Sensing Contributes to Natural Transformation of Vibrio cholerae in a Species-Specific Manner

G. Suckow; P. Seitz; M. Blokesch 

Journal of Bacteriology. 2011. Vol. 193, num. 18, p. 4914 – 4924. DOI : 10.1128/JB.05396-11.

2010

Journal Articles

Natural transformation of Vibrio cholerae as a tool – Optimizing the procedure

R. L. Marvig; M. Blokesch 

BMC Microbiology. 2010. Vol. 10, num. 1, p. 155. DOI : 10.1186/1471-2180-10-155.

Genetic manipulation of Vibrio cholerae by combining natural transformation with FLP recombination

O. De Souza Silva; M. Blokesch 

Plasmid. 2010. Vol. 64, num. 3, p. 186 – 195. DOI : 10.1016/j.plasmid.2010.08.001.

2008

Journal Articles

The extracellular nuclease Dns and its role in natural transformation of Vibrio cholerae

M. Blokesch; G. K. Schoolnik 

Journal of Bacteriology. 2008. Vol. 190, num. 21, p. 7232 – 40. DOI : 10.1128/JB.00959-08.

2007

Journal Articles

Serogroup conversion of Vibrio cholerae in aquatic reservoirs

M. Blokesch; G. K. Schoolnik 

PLoS pathogens. 2007. Vol. 3, num. 6, p. e81. DOI : 10.1371/journal.ppat.0030081.

2006

Journal Articles

Properties of the [NiFe]-hydrogenase maturation protein HypD

M. Blokesch; A. Böck 

FEBS letters. 2006. Vol. 580, num. 17, p. 4065 – 8. DOI : 10.1016/j.febslet.2006.06.045.

Reviews

Maturation of hydrogenases

A. Böck; P. W. King; M. Blokesch; M. C. Posewitz 

Advances in microbial physiology. 2006. Vol. 51, p. 1 – 71.

2005

Journal Articles

Chitin induces natural competence in Vibrio cholerae

K. L. Meibom; M. Blokesch; N. A. Dolganov; C-Y. Wu; G. K. Schoolnik 

Science. 2005. Vol. 310, num. 5755, p. 1824 – 7. DOI : 10.1126/science.1120096.

The biosynthetic routes for carbon monoxide and cyanide in the Ni-Fe active site of hydrogenases are different

W. Roseboom; M. Blokesch; A. Böck; S. P. J. Albracht 

FEBS letters. 2005. Vol. 579, num. 2, p. 469 – 72. DOI : 10.1016/j.febslet.2004.12.013.

2004

Journal Articles

Analysis of the transcarbamoylation-dehydration reaction catalyzed by the hydrogenase maturation proteins HypF and HypE

M. Blokesch; A. Paschos; A. Bauer; S. Reissmann; N. Drapal et al. 

European journal of biochemistry / FEBS. 2004. Vol. 271, num. 16, p. 3428 – 36. DOI : 10.1111/j.1432-1033.2004.04280.x.

The complex between hydrogenase-maturation proteins HypC and HypD is an intermediate in the supply of cyanide to the active site iron of [NiFe]-hydrogenases

M. Blokesch; S. P. J. Albracht; B. F. Matzanke; N. M. Drapal; A. Jacobi et al. 

Journal of molecular biology. 2004. Vol. 344, num. 1, p. 155 – 67. DOI : 10.1016/j.jmb.2004.09.040.

HybF, a zinc-containing protein involved in NiFe hydrogenase maturation

M. Blokesch; M. Rohrmoser; S. Rode; A. Böck 

Journal of bacteriology. 2004. Vol. 186, num. 9, p. 2603 – 11. DOI : 10.1128/JB.186.9.2603-2611.2004.

2002

Journal Articles

Maturation of [NiFe]-hydrogenases in Escherichia coli: the HypC cycle

M. Blokesch; A. Böck 

Journal of molecular biology. 2002. Vol. 324, num. 2, p. 287 – 96. DOI : 10.1016/S0022-2836(02)01070-7.

Network of hydrogenase maturation in Escherichia coli: role of accessory proteins HypA and HybF

M. Hube; M. Blokesch; A. Böck 

Journal of bacteriology. 2002. Vol. 184, num. 14, p. 3879 – 85. DOI : 10.1128/JB.184.14.3879-3885.2002.

Reviews

Metal insertion into NiFe-hydrogenases

M. Blokesch; A. Paschos; E. Theodoratou; A. Bauer; M. Hube et al. 

Biochemical Society transactions. 2002. Vol. 30, num. 4, p. 674 – 80. DOI : 10.1042/bst0300674.

2001

Journal Articles

Interplay between the specific chaperone-like proteins HybG and HypC in maturation of hydrogenases 1, 2, and 3 from Escherichia coli

M. Blokesch; A. Magalon; A. Böck 

Journal of bacteriology. 2001. Vol. 183, num. 9, p. 2817 – 22. DOI : 10.1128/JB.183.9.2817-2822.2001.

Fidelity of metal insertion into hydrogenases

A. Magalon; M. Blokesch; E. Zehelein; A. Böck 

FEBS letters. 2001. Vol. 499, num. 1-2, p. 73 – 6. DOI : 10.1016/S0014-5793(01)02525-X.