Developing Technologies in Educational Settings
EPFL
February 5–8, 2019
New technologies are emerging among which robots are foreseen to play a major role in the announced Industrial 4.0 revolution. While AI and robotics usage has been constantly increasing since the last decade in some economic sectors such as transportation and manufacturing, the educational sector seems to still be impermeable to the acceptance of technologies in classroom.
In the last few years, researchers in digital education have been demonstrating considerable achievements in designing, adapting, implementing and deploying technological systems in classrooms. These systems aim to facilitate learning and instruction via several levers including: 1) adaptive and individualized learning with personal feedback and generation of personal learning paths, 2) richer learning experiences with collaborative learning systems and mediated social interactions, 3) monitoring and learning assessments with new tools developed for teachers to assess learning outcomes.
However, many questions still remain. For instance, what interaction strategies aid learning and which hamper learning? How can we deal with the current technical limitations? How should effective lessons be developed and implemented on a tutoring robot? Answering these and other questions requires a multidisciplinary effort, including contributions from learning sciences, developmental psychology, artificial intelligence and HRI, among others.
Within the scope of the Educational Activities of the NCCR Robotics, and the International Training Network – ANIMATAS (MSCA – ITN – 2017 – 765955 2), we propose to organize a 4-day training event on the topic of Robots and Digital Learning Sciences. The aim of this training event is to give young scholars, who aim to gain expertise in education and in human-robot interaction (from instructional design to inverse kinematics, ROS to ZPD, Markov to Piaget), an overview of current research in the interdisciplinary community working on educational robotics and digital education. Participants will benefit from hearing from the forefront of the field and from discussions on how to move from fundamental research towards the development of market-ready educational robots.
The winter school took place on EPFL campus in Lausanne, Switzerland.
Young researchers and entrepreneurs from Digital Education, Human-Robot Interaction, Robotics and Educational Sciences background are invited to apply.
Applications consist in a CV and cover letter and can be done from our website.
They will be reviewed for appropriateness and scientific and technical qualifications. Priority will be given to applicants who are members of the ANIMATAS project, the NCCR Robotics and the EdTech Collider, which fit the call, are complementary, and offer a range of theoretical and cultural perspectives.
Submission deadline: 2 December 2018
Notifications: 15 December 2018
Event: 4 February – 8 February 2019
Talk Title:
From Learning Theory to the (Digital) Learning Sciences – An Introduction and Insights from Current Research
Abstract:
After a brief introduction to the Learning Sciences, I will give an overview of different theoretical conceptualizations of learning and illustrate corresponding implications for designing digital learning environments. In the second part of the keynote, I will introduce a framework of support dimensions that can provide guidance when designing digital (and non-digital) learning environments. I will discuss insights on selected dimensions of the framework from my research.
Bio:
Dr. Nikol Rummel is a Full Professor and head of the Educational Psychology Lab in the Institute of Educational Research at Ruhr-Universität Bochum, Germany. She is also an Adjunct Professor in the Human-Computer Interaction Institute at Carnegie Mellon University, Pittsburgh, USA. Nikol Rummel’s main research interest is on developing and evaluating adaptive instructional support for (collaborative) learning in computer-based settings. Another focus of her work is on developing methods for automated analyses of learning process data combining multiple data sources. Prof. Rummel has published over 40 journal articles in leading international research journals, as well as over 100 refereed book chapters and conference papers. She is elected member of the Board of Directors and past president of the International Society of the Learning Sciences (ISLS). She is Associate Editor of Instructional Science, and Editorial Board member of several international journals, such as the Journal of the Learning Sciences and Learning & Instruction.
Talk Title:
Educational Robots
Abstract:
Educational robots are often considered by roboticists as simple robots, so simple to operate that a child can access them. In reality, designing a robot for formal education is an interdisciplinary process requiring to integrate aspect of robot design, but also HRI, pedagogy, respect of several rules that are applied in schools, knowledge of the curriculum, and so on. The presentation will go through some of these aspects taking the Thymio robot as example.
Bio:
Prof. Francesco Mondada receives his M.Sc. in micro-engineering in 1991 and his Doctoral degree in 1997 at the Ecole Polytechnique Fédérale de Lausanne (EPFL). In the same period he participates in the development of the Khepera mobile robot, considered a standard in robotic bio-inspired research and mentioned in more than 6000 publications (google scholar). In parallel to his thesis he co-founds the company K-Team, where he takes the role of CEO for 5 years. In 2000 he returns at EPFL after a brief period at the California Institute of Technology. He leads the development of different robots, several being produced and distributed worldwide in the fields of research and education. In 2008, Francesco Mondada creates the robotics festival of EPFL. Under his direction, this annual meeting becomes the most important event of scientific communication at EPFL. In 2010 he takes the lead of the research in educational Robotics of the Switzerland national research in robotics. In 2013, he is appointed professor at EPFL and in 2018 he takes the direction of the Center for Learning Sciences. For his activity Francesco Mondada received numerous awards, including the prestigious Latsis University Prize in 2005 and the Credit Suisse Award for Best Teaching in 2011.
Talk Title:
Betty’s Brain: A Learning by Teaching Environment for Middle School Science Classrooms
Abstract:
Over several years, our research team has developed Betty’s Brain, a multi-agent environment that utilizes the learning-by-teaching paradigm to help middle school students learn science. In Betty’s Brain, students teach a virtual Teachable Agent (TA) called Betty using a visual causal map representation. Once taught, Betty, can answer questions, explain her answers, and when requested by the student take quizzes, which are a set of questions created and graded by a mentor agent named Mr. Davis. The TA’s quiz performance helps students indirectly assess their own knowledge, and it also motivates them to learn more and improve their TA’s quiz scores. Overall, the learning and teaching task is complex, open-ended, and choice-rich. Thus, learners must employ a number of cognitive and metacognitive strategies to succeed in their tasks. At the cognitive level, they need to identify, understand, and represent important information from online resources in the causal map format, and use the affordances of the system to assess Betty’s progress using the quiz results. In terms of strategies, they must decide when and how to acquire information, build and modify the causal map they are creating to teach Betty, check Betty’s progress, reflect on their own understanding of both the science knowledge and the evolving causal map structure, and seek help when necessary. Their cognitive and metacognitive activities are scaffolded through dialogue and feedback provided by Betty and Mr. Davis. This feedback aims to help students progress in their learning, teaching, and monitoring tasks.
Experimental studies run in middle school classrooms show that students learn science content and do develop some metacognitive strategies through interactions with Betty and Mr. Davis. However, a number of students fail to complete their teaching task because they lack an understanding of the cognitive and metacognitive skills they need to become successful learners. In this talk, I will discuss the Betty’s Brain system, the data mining techniques we have developed to analyze students’ learning behaviors, and then discuss how we translate this understanding to develop better conversational structures to help students develop the cognitive and metacognitive skills they need to achieve success in their learning task.
Short Bio:
Gautam Biswas is a Cornelius Vanderbilt Professor of Engineering, a Professor of Computer Science and Engineering in the EECS Department, and a Senior Research Scientist at the Institute for Software Integrated Systems, Vanderbilt University. He conducts research in intelligent systems with primary interests in modeling and simulation, analysis of complex embedded systems, data mining, and Open-Ended Learning Environments (CBLEs) for STEM disciplines. The most notable project in this area is the Teachable Agents project, where students learn science by building causal models of scientific processes. His work on learning environments has exploited the synergy between computational thinking ideas and STEM concepts and practices to help students learn STEM topics by building simulation models. He has also developed innovative educational data mining techniques for studying students learning behaviors and linking them to metacognitive strategies. For his work in data mining for diagnosis, he received the NASA 2011 Aeronautics Research Mission Directorate Technology and Innovation Group Award for Vehicle Level Reasoning Systems.
Prof. Biswas has over 650 refereed publications, and his research has been supported by funding from ARL, NASA, NSF, DARPA, and the US Department of Education. He is an associate editor of Metacognition and Learning and the IEEE Transactions on Learning Technologies. He is a fellow of the IEEE and the Prognostics and Health Management Society, and member of the AAAI, AAAS, ACM, AIED, EDM, ISLS, LAK, and the Sigma Xi Research Societies.
Talk Title:
How (not) to Fail at Digital Learning: Classroom Orchestration Edition
Abstract:
About ten years ago, a group of educational technology researchers were puzzled by an apparently simple question: We have developed so many cool, new (and often, free) technologies to help people learn… how come these are only used rarely (if at all) in your average school classroom? The answer seemed to be “classroom orchestration”: not just paying attention to whether people learn, or the plain usability of the technology, but also looking at the many other factors that come into play when you use technology in a real, everyday educational setting. In this interactive talk I will review not only the concept and history of classroom orchestration research. I will also offer concrete frameworks and methods to apply this concept to develop and enhance your own learning technology design and research. Drawing from examples of failures (and some successes) in learning technology research, I will show how making use of these ideas can help you avoid the pitfalls that come from putting your learning technology in “the real (educational) world”.
Bio:
Luis P. Prieto is a Senior Research Fellow at the Center of Excellence in Educational innovation of Tallinn University (Estonia). A former Marie Curie Fellow at EPFL (Switzerland), his research in the field of technology-enhanced learning (TEL) spans areas like classroom orchestration, learning design, computer-supported collaborative learning, tangible/paper interfaces for learning, technology support for teacher professional development, or learning and teaching analytics (especially, multimodal learning analytics). In his relatively short research career he has authored more than 70 peer-reviewed academic publications. He is also interested in transversal issues in doctoral education, such as Ph.D. supervision techniques, scientific communication, or Ph.D. student productivity and wellbeing (see his upcoming blog about these topics).
Talk Title:
Towards Situated Interaction with Social Robots
Abstract:
Professor Gustafson will present the work done on social robots at KTH. He will describe their efforts in developing the social robot platform Furhat and methods for interpreting and generating multimodal attention and turntaking behaviours, with a special focus on multiparty interactions. Finally, he will describe the work done on mutual gaze and joint attention in human-robot collaboration on assembly tasks.
Bio:
Joakim Gustafson (KTH) is a professor in speech technology and head of the department of Speech, Music and Hearing. He has been a prolific researcher and active systems developer of spoken and multimodal dialogue systems since 1993. He has an industrial background from Telia Research where he led the research work of the EU project NICE, that developed a computer game where kids could interact with animated 3D characters using a combination of speech and gestures. He currently has three research projects where social robots act as third-hand helpers in assembly, social skills coaches for autistic children and companions for the elderly with the task of detecting early signs of dementia.
Talk Title:
Modeling Student Knowledge and Behavior in Computer-Based Learning Environments
Short Bio:
Tanja Käser is a postdoctoral researcher at Stanford University. Before joining Stanford, she worked as a postdoctoral researcher at ETH Zurich and as a consultant for Disney Research Zurich and Dybuster AG. Tanja received her PhD in Computer Science from ETH Zurich; her thesis was distinguished with the Fritz Kutter Award of ETH Zurich. Tanja works in the field of artificial intelligence in education and is especially interested in modeling and predicting student thinking and learning to provide optimal computer-based learning environments.
Ramona Merhej
Matin Macktoobian
Manuel Bied
Sebastian Wallkötter
Sooraj Krishna
Sahba Zojaji
Rebecca Stower
Natalia Calvo
Utku Norman
Maha El Garf
Jauwairia Nasir
Tanvi Dinkar
Morgane Chevalier
Sina Shahmoradi
Sera Buyukgoz
Karen Tatarian
Christian Giang
Maxime Rossier
Ben Eddy
Maria Gaci
Chantal Comby
Sue Luethi
El Mustapha El Atifi
Silvia Tulli
Organizers
Wafa Johal, École Polytechnique Fédérale Lausanne, Switzerland, wafa.johal@epfl.ch
Jennifer Olsen, École Polytechnique Fédérale Lausanne, Switzerland
Utku Norman, École Polytechnique Fédérale Lausanne, Switzerland
Jauwairia Nasir, École Polytechnique Fédérale Lausanne, Switzerland
Sina Shahmoradi, École Polytechnique Fédérale Lausanne, Switzerland
Catharine Oertel, École Polytechnique Fédérale Lausanne, Switzerland
Pierre Dillenbourg, École Fédérale Polytechnique Lausanne, Switzerland