Publications

2024

Journal Articles

Prediction rigidities for data-driven chemistry

S. Chong; F. Bigi; F. Grasselli; P. R. Loche; M. L. Kellner et al. 

Faraday Discussions. 2024. DOI : 10.1039/d4fd00101j.

Thermal conductivity of Li 3 PS 4 solid electrolytes with ab initio accuracy

D. Tisi; F. Grasselli; L. Gigli; M. Ceriotti 

Physical Review Materials. 2024. Vol. 8, num. 6, p. 065403. DOI : 10.1103/PhysRevMaterials.8.065403.

Unearthing the foundational role of anharmonicity in heat transport in glasses

A. Fiorentino; E. Drigo; S. Baroni; P. Pegolo 

Physical Review B. 2024. Vol. 109, num. 22, p. 224202. DOI : 10.1103/PhysRevB.109.224202.

Seebeck Coefficient of Ionic Conductors from Bayesian Regression Analysis

E. Drigo; S. Baroni; P. Pegolo 

Journal Of Chemical Theory And Computation. 2024. DOI : 10.1021/acs.jctc.4c00124.

Excited State-Specific CASSCF Theory for the Torsion of Ethylene

S. Saade; H. G. A. Burton 

Journal Of Chemical Theory And Computation. 2024. Vol. 20, num. 12, p. 5105 – 5114. DOI : 10.1021/acs.jctc.4c00212.

Surface segregation in high-entropy alloys from alchemical machine learning

A. Mazitov; M. A. Springer; N. Lopanitsyna; G. Fraux; S. De et al. 

Journal Of Physics-Materials. 2024. Vol. 7, num. 2, p. 025007. DOI : 10.1088/2515-7639/ad2983.

Wandering principal optical axes in van der Waals triclinic materials

G. A. Ermolaev; K. V. Voronin; A. N. Toksumakov; D. V. Grudinin; I. M. Fradkin et al. 

Nature Communications. 2024. Vol. 15, num. 1, p. 1552. DOI : 10.1038/s41467-024-45266-3.

Thermal transport of glasses via machine learning driven simulations

P. Pegolo; F. Grasselli 

Frontiers In Materials. 2024. Vol. 11, p. 1369034. DOI : 10.3389/fmats.2024.1369034.

Theses

Integrating symmetry and physical constraints into atomic-scale machine learning

J. Nigam / M. Ceriotti (Dir.)  

Lausanne, EPFL, 2024. 

Efficient and insightful descriptors for representing molecular and material space

A. J. Goscinski / M. Ceriotti (Dir.)  

Lausanne, EPFL, 2024. 

2023

Journal Articles

Natural aging and vacancy trapping in Al-6xxx

A. C. P. Jain; M. Ceriotti; W. A. Curtin 

Journal Of Materials Research. 2023. DOI : 10.1557/s43578-023-01245-w.

Accelerated chemical science with AI

S. Back; A. Aspuru-Guzik; M. Ceriotti; G. Gryn’ova; B. Grzybowski et al. 

Digital Discovery. 2023. Vol. 3, num. 1, p. 23 – 33. DOI : 10.1039/d3dd00213f.

Revealing the Formation Dynamics of Janus Polymer Particles: Insights from Experiments and Molecular Dynamics

M. Nedyalkova; G. Russo; P. R. Loche; M. Lattuada 

Journal Of Chemical Information And Modeling. 2023. Vol. 63, num. 23, p. 7453 – 7463. DOI : 10.1021/acs.jcim.3c01547.

Divide-and-conquer potentials enable scalable and accurate predictions of forces and energies in atomistic systems

C. Zeni; A. Anelli; A. Glielmo; S. de Gironcoli; K. Rossi 

Digital Discovery. 2023. Vol. 3, num. 1, p. 113 – 121. DOI : 10.1039/d3dd00155e.

Robustness of Local Predictions in Atomistic Machine Learning Models

S. Chong; F. Grasselli; C. Ben Mahmoud; J. D. Morrow; V. L. Deringer et al. 

Journal Of Chemical Theory And Computation. 2023. Vol. 19, num. 22, p. 8020 – 8031. DOI : 10.1021/acs.jctc.3c00704.

Accuracy Assessment of Atomistic Neural Network Potentials: The Impact of Cutoff Radius and Message Passing

J. Xia; Y. Zhang; B. Jiang 

Journal Of Physical Chemistry A. 2023. Vol. 127, num. 46, p. 9874 – 9883. DOI : 10.1021/acs.jpca.3c06024.

Physics-Inspired Equivariant Descriptors of Nonbonded Interactions

K. K. Huguenin-Dumittan; P. R. Loche; N. Haoran; M. Ceriotti 

Journal Of Physical Chemistry Letters. 2023. Vol. 14, num. 43, p. 9612 – 9618. DOI : 10.1021/acs.jpclett.3c02375.

Universal machine learning for the response of atomistic systems to external fields

Y. Zhang; B. Jiang 

Nature Communications. 2023. Vol. 14, num. 1, p. 6424. DOI : 10.1038/s41467-023-42148-y.

Self-interaction and transport of solvated electrons in molten salts

P. Pegolo; S. Baroni; F. Grasselli 

Journal Of Chemical Physics. 2023. Vol. 159, num. 9, p. 094116. DOI : 10.1063/5.0169474.

van der Waals Materials for Overcoming Fundamental Limitations in Photonic Integrated Circuitry

A. A. Vyshnevyy; G. A. Ermolaev; D. V. Grudinin; K. V. Voronin; I. Kharichkin et al. 

Nano Letters. 2023. Vol. 23, num. 17, p. 8057 – 8064. DOI : 10.1021/acs.nanolett.3c02051.

Fast evaluation of spherical harmonics with sphericart

F. Bigi; G. Fraux; N. J. Browning; M. Ceriotti 

Journal Of Chemical Physics. 2023. Vol. 159, num. 6, p. 064802. DOI : 10.1063/5.0156307.

Effect of a temperature gradient on the screening properties of ionic fluids

A. Grisafi; F. Grasselli 

Physical Review Materials. 2023. Vol. 7, num. 4, p. 045803. DOI : 10.1103/PhysRevMaterials.7.045803.

Modeling high-entropy transition metal alloys with alchemical compression

N. Lopanitsyna; G. Fraux; M. A. Springer; S. De; M. Ceriotti 

Physical Review Materials. 2023. Vol. 7, num. 4, p. 045802. DOI : 10.1103/PhysRevMaterials.7.045802.

A data-driven interpretation of the stability of organic molecular crystals

R. K. Cersonsky; M. Pakhnova; E. A. Engel; M. Ceriotti 

Chemical Science. 2023. Vol. 14, num. 5, p. 1272 – 1285. DOI : 10.1039/d2sc06198h.

Reviews

Multiscale Modeling of Aqueous Electric Double Layers

M. Becker; P. R. Loche; M. Rezaei; A. Wolde-Kidan; Y. Uematsu et al. 

Chemical Reviews. 2023. Vol. 124, num. 1, p. 1 – 26. DOI : 10.1021/acs.chemrev.3c00307.

Theses

Machine-learning the electronic density of states: electronic properties without quantum mechanics

C. Ben Mahmoud / M. Ceriotti (Dir.)  

Lausanne, EPFL, 2023. 

Modelling of metal alloys in realistic conditions with machine learning

N. Lopanitsyna / M. Ceriotti (Dir.)  

Lausanne, EPFL, 2023. 

2022

Journal Articles

Electrokinetic, electrochemical, and electrostatic surface potentials of the pristine water liquid-vapor interface

M. R. Becker; P. Loche; R. R. Netz 

Journal Of Chemical Physics. 2022. Vol. 157, num. 24, p. 240902. DOI : 10.1063/5.0127869.

A smooth basis for atomistic machine learning

F. Bigi; K. K. Huguenin-Dumittan; M. Ceriotti; D. E. Manolopoulos 

Journal Of Chemical Physics. 2022. Vol. 157, num. 23, p. 234101. DOI : 10.1063/5.0124363.

Beyond potentials: Integrated machine learning models for materials

M. Ceriotti 

Mrs Bulletin. 2022. Vol. 47, p. 1045 – 1053. DOI : 10.1557/s43577-022-00440-0.

Incompleteness of graph neural networks for points clouds in three dimensions

S. N. Pozdnyakov; M. Ceriotti 

Machine Learning-Science And Technology. 2022. Vol. 3, num. 4, p. 045020. DOI : 10.1088/2632-2153/aca1f8.

Comment on “Manifolds of quasi-constant SOAP and ACSF fingerprints and the resulting failure to machine learn four-body interactions” [J. Chem. Phys. 156, 034302 (2022)]

S. N. N. Pozdnyakov; M. J. J. Willatt; A. P. P. Bartok; C. Ortner; G. Csanyi et al. 

Journal Of Chemical Physics. 2022. Vol. 157, num. 17, p. 177101. DOI : 10.1063/5.0088404.

Thermodynamics and dielectric response of BaTiO3 by data-driven modeling

L. Gigli; M. Veit; M. Kotiuga; G. Pizzi; N. Marzari et al. 

Npj Computational Materials. 2022. Vol. 8, num. 1, p. 209. DOI : 10.1038/s41524-022-00845-0.

Predicting hot-electron free energies from ground-state data

C. Ben Mahmoud; F. Grasselli; M. Ceriotti 

Physical Review B. 2022. Vol. 106, num. 12, p. L121116. DOI : 10.1103/PhysRevB.106.L121116.

A Machine Learning Model of Chemical Shifts for Chemically and Structurally Diverse Molecular Solids

M. Cordova; E. A. Engel; A. Stefaniuk; F. Paruzzo; A. Hofstetter et al. 

Journal Of Physical Chemistry C. 2022. Vol. 126, num. 39, p. 16710 – 16720. DOI : 10.1021/acs.jpcc.2c03854.

Effects of surface rigidity and metallicity on dielectric properties and ion interactions at aqueous hydrophobic interfaces

P. Loche; L. Scalfi; M. A. Amu; O. Schullian; D. J. Bonthuis et al. 

Journal Of Chemical Physics. 2022. Vol. 157, num. 9, p. 094707. DOI : 10.1063/5.0101509.

Roadmap on Machine learning in electronic structure

H. J. Kulik; T. Hammerschmidt; J. Schmidt; S. Botti; M. A. L. Marques et al. 

Electronic Structure. 2022. Vol. 4, num. 2, p. 023004. DOI : 10.1088/2516-1075/ac572f.

Unified theory of atom-centered representations and message-passing machine-learning schemes

J. Nigam; S. Pozdnyakov; G. Fraux; M. Ceriotti 

Journal Of Chemical Physics. 2022. Vol. 156, num. 20, p. 204115. DOI : 10.1063/5.0087042.

Molecular dynamics simulations of the evaporation of hydrated ions from aqueous solution

P. Loche; D. J. Bonthuis; R. R. Netz 

Communications Chemistry. 2022. Vol. 5, num. 1, p. 55. DOI : 10.1038/s42004-022-00669-5.

Investigating finite-size effects in molecular dynamics simulations of ion diffusion, heat transport, and thermal motion in superionic materials

F. Grasselli 

Journal Of Chemical Physics. 2022. Vol. 156, num. 13, p. 134705. DOI : 10.1063/5.0087382.

A complete description of thermodynamic stabilities of molecular crystals

V. Kapil; E. A. Engel 

Proceedings Of The National Academy Of Sciences Of The United States Of America. 2022. Vol. 119, num. 6, p. e2111769119. DOI : 10.1073/pnas.2111769119.

Temperature- and vacancy-concentration-dependence of heat transport in Li3ClO from multi-method numerical simulations

P. Pegolo; S. Baroni; F. Grasselli 

Npj Computational Materials. 2022. Vol. 8, num. 1, p. 24. DOI : 10.1038/s41524-021-00693-4.

Equivariant representations for molecular Hamiltonians and N-center atomic-scale properties

J. Nigam; M. J. Willatt; M. Ceriotti 

Journal Of Chemical Physics. 2022. Vol. 156, num. 1, p. 014115. DOI : 10.1063/5.0072784.

A route to hierarchical assembly of colloidal diamond

Y. Zhou; R. K. Cersonsky; S. C. Glotzer 

Soft Matter. 2022. Vol. 18, num. 2, p. 304 – 311. DOI : 10.1039/d1sm01418h.

Ranking the synthesizability of hypothetical zeolites with the sorting hat

B. A. Helfrecht; G. Pireddu; R. Semino; S. Auerbach; M. Ceriotti 

Digital Discovery. 2022. Vol. 1, num. 6, p. 779 – 789. DOI : 10.1039/D2DD00056C.

Local Kernel Regression and Neural Network Approaches to the Conformational Landscapes of Oligopeptides

R. Fabregat; A. Fabrizio; E. A. Engel; B. Meyer; V. Juraskova et al. 

Journal of Chemical Theory and Computation. 2022. Vol. 18, num. 3, p. 1467 – 1479. DOI : 10.1021/acs.jctc.1c00813.

Reviews

Topology, Oxidation States, and Charge Transport in Ionic Conductors

P. Pegolo; S. Baroni; F. Grasselli 

Annalen Der Physik. 2022.  p. 2200123. DOI : 10.1002/andp.202200123.

Theses

Characterization and prediction of peptide structures on inorganic surfaces

D. Maksimov / M. Ceriotti; M. Rossi Carvalho (Dir.)  

Lausanne, EPFL, 2022. 

2021

Journal Articles

2020 JCP Emerging Investigator Special Collection

M. Ceriotti; L. Jensen; D. E. Manolopoulos; T. J. Martinez; A. Michaelides et al. 

Journal Of Chemical Physics. 2021. Vol. 155, num. 23, p. 230401. DOI : 10.1063/5.0078934.

Reply to: On the liquid-liquid phase transition of dense hydrogen

B. Cheng; G. Mazzola; C. J. Pickard; M. Ceriotti 

Nature. 2021. Vol. 600, num. 7889, p. E15 – E16. DOI : 10.1038/s41586-021-04079-w.

Learning Electron Densities in the Condensed Phase

A. M. Lewis; A. Grisafi; M. Ceriotti; M. Rossi 

Journal Of Chemical Theory And Computation. 2021. Vol. 17, num. 11, p. 7203 – 7214. DOI : 10.1021/acs.jctc.1c00576.

Bayesian probabilistic assignment of chemical shifts in organic solids

M. Cordova; M. Balodis; B. S. de Almeida; M. Ceriotti; L. Emsley 

Science Advances. 2021. Vol. 7, num. 48, p. eabk2341. DOI : 10.1126/sciadv.abk2341.

Optimal radial basis for density-based atomic representations

A. Goscinski; F. Musil; S. Pozdnyakov; J. Nigam; M. Ceriotti 

Journal Of Chemical Physics. 2021. Vol. 155, num. 10, p. e104106. DOI : 10.1063/5.0057229.

Improving sample and feature selection with principal covariates regression

R. K. Cersonsky; B. A. Helfrecht; E. A. Engel; S. Kliavinek; M. Ceriotti 

Machine Learning-Science And Technology. 2021. Vol. 2, num. 3, p. 035038. DOI : 10.1088/2632-2153/abfe7c.

Introduction: Machine Learning at the Atomic Scale

M. Ceriotti; C. Clementi; O. A. von Lilienfeld 

Chemical Reviews. 2021. Vol. 121, num. 16, p. 9719 – 9721. DOI : 10.1021/acs.chemrev.1c00598.

Importance of Nuclear Quantum Effects for NMR Crystallography

E. A. Engel; V. Kapil; M. Ceriotti 

Journal Of Physical Chemistry Letters. 2021. Vol. 12, num. 32, p. 7701 – 7707. DOI : 10.1021/acs.jpclett.1c01987.

Invariance principles in the theory and computation of transport coefficients

F. Grasselli; S. Baroni 

The European Physical Journal. 2021. Vol. B94, num. 8, p. 160. DOI : 10.1140/epjb/s10051-021-00152-5.

Quantum vibronic effects on the electronic properties of solid and molecular carbon

A. Kundu; M. Govoni; H. Yang; M. Ceriotti; F. Gygi et al. 

Physical Review Materials. 2021. Vol. 5, num. 7, p. L070801. DOI : 10.1103/PhysRevMaterials.5.L070801.

Chemical physics software

C. D. Sherrill; D. E. Manolopoulos; T. J. Martinez; M. Ceriotti; A. Michaelides 

Journal Of Chemical Physics. 2021. Vol. 155, num. 1, p. 010401. DOI : 10.1063/5.0059886.

Modeling the Ga/As binary system across temperatures and compositions from first principles

G. Imbalzano; M. Ceriotti 

Physical Review Materials. 2021. Vol. 5, num. 6, p. 063804. DOI : 10.1103/PhysRevMaterials.5.063804.

Global Free-Energy Landscapes as a Smoothly Joined Collection of Local Maps

F. Giberti; G. A. Tribello; M. Ceriotti 

Journal Of Chemical Theory And Computation. 2021. Vol. 17, num. 6, p. 3292 – 3308. DOI : 10.1021/acs.jctc.0c01177.

The role of feature space in atomistic learning

A. Goscinski; G. Fraux; G. Imbalzano; M. Ceriotti 

Machine Learning-Science And Technology. 2021. Vol. 2, num. 2, p. 025028. DOI : 10.1088/2632-2153/abdaf7.

Machine learning for metallurgy III: A neural network potential for Al-Mg-Si

A. C. P. Jain; D. Marchand; A. Glensk; M. Ceriotti; W. A. Curtin 

Physical Review Materials. 2021. Vol. 5, num. 5, p. 053805. DOI : 10.1103/PhysRevMaterials.5.053805.

Machine learning meets chemical physics

M. Ceriotti; C. Clementi; O. Anatole von Lilienfeld 

Journal Of Chemical Physics. 2021. Vol. 154, num. 16, p. 160401. DOI : 10.1063/5.0051418.

Origins of structural and electronic transitions in disordered silicon

V. L. Deringer; N. Bernstein; G. Csányi; C. Ben Mahmoud; M. Ceriotti et al. 

Nature. 2021. Vol. 589, num. 7840, p. 59 – 64. DOI : 10.1038/s41586-020-03072-z.

Finite-temperature materials modeling from the quantum nuclei to the hot electron regime

N. Lopanitsyna; C. Ben Mahmoud; M. Ceriotti 

Physical Review Materials. 2021. Vol. 5, num. 4, p. 043802. DOI : 10.1103/PhysRevMaterials.5.043802.

Multi-scale approach for the prediction of atomic scale properties

A. Grisafi; J. Nigam; M. Ceriotti 

Chemical Science. 2021. Vol. 12, num. 6, p. 2078 – 2090. DOI : 10.1039/D0SC04934D.

Local invertibility and sensitivity of atomic structure-feature mappings

S. N. Pozdnyakov; L. Zhang; C. Ortner; G. Csányi; M. Ceriotti 

Open Research Europe. 2021. Vol. 1, p. 1 – 22, 126. DOI : 10.12688/openreseurope.14156.1.

Uncertainty estimation for molecular dynamics and sampling

G. Imbalzano; Y. Zhuang; V. Kapil; K. Rossi; E. A. Engel et al. 

The Journal of Chemical Physics. 2021. Vol. 154, num. 7, p. 074102. DOI : 10.1063/5.0036522.

Simulating the ghost: quantum dynamics of the solvated electron

J. Lan; V. Kapil; P. Gasparotto; M. Ceriotti; M. Iannuzzi et al. 

Nature Communications. 2021. Vol. 12, num. 1, p. 766. DOI : 10.1038/s41467-021-20914-0.

Efficient implementation of atom-density representations

F. Musil; M. Veit; A. Goscinski; G. Fraux; M. J. Willatt et al. 

The Journal of Chemical Physics. 2021. Vol. 154, num. 11, p. 114109. DOI : 10.1063/5.0044689.

Reviews

Gaussian Process Regression for Materials and Molecules

V. L. Deringer; A. P. Bartok; N. Bernstein; D. M. Wilkins; M. Ceriotti et al. 

Chemical Reviews. 2021. Vol. 121, num. 16, p. 10073 – 10141. DOI : 10.1021/acs.chemrev.1c00022.

Physics-Inspired Structural Representations for Molecules and Materials

F. Musil; A. Grisafi; A. P. Bartok; C. Ortner; G. Csanyi et al. 

Chemical Reviews. 2021. Vol. 121, num. 16, p. 9759 – 9815. DOI : 10.1021/acs.chemrev.1c00021.

Theses

Structure-Property Relationships in Complex Materials by Combining Supervised and Unsupervised Machine Learning

B. A. Helfrecht / M. Ceriotti (Dir.)  

Lausanne, EPFL, 2021. 

A general and efficient framework for atomistic machine learning

F. B. C. Musil / M. Ceriotti (Dir.)  

Lausanne, EPFL, 2021. 

Transferable machine-learning models of complex materials: the case of GaAs

G. Imbalzano / M. Ceriotti (Dir.)  

Lausanne, EPFL, 2021. 

Physics-enhanced machine learning with symmetry-adapted and long-range representations

A. Grisafi / M. Ceriotti (Dir.)  

Lausanne, EPFL, 2021. 

2020

Journal Articles

Learning the electronic density of states in condensed matter

C. Ben Mahmoud; A. Anelli; G. Csanyi; M. Ceriotti 

Physical Review B. 2020. Vol. 102, num. 23, p. 235130. DOI : 10.1103/PhysRevB.102.235130.

Oxidation States, Thouless’ Pumps, and Nontrivial Ionic Transport in Nonstoichiometric Electrolytes

P. Pegolo; F. Grasselli; S. Baroni 

Physical Review X. 2020. Vol. 10, num. 4, p. 041031. DOI : 10.1103/PhysRevX.10.041031.

Incompleteness of Atomic Structure Representations

S. N. Pozdnyakov; M. J. Willatt; A. P. Bartok; C. Ortner; G. Csanyi et al. 

Physical Review Letters. 2020. Vol. 125, num. 16, p. 166001. DOI : 10.1103/PhysRevLett.125.166001.

Gas-sieving zeolitic membranes fabricated by condensation of precursor nanosheets

M. Dakhchoune; L. F. Villalobos; R. Semino; L. Liu; M. Rezaei et al. 

Nature Materials. 2020. Vol. 20, num. 3, p. 362 – 369. DOI : 10.1038/s41563-020-00822-2.

DUBS: A Framework for Developing Directory of Useful Benchmarking Sets for Virtual Screening

J. Fine; M. Muhoberac; G. Fraux; G. Chopra 

Journal Of Chemical Information And Modeling. 2020. Vol. 60, num. 9, p. 4137 – 4143. DOI : 10.1021/acs.jcim.0c00122.

Simulating Solvation and Acidity in Complex Mixtures with First-Principles Accuracy: The Case of CH3SO3H and H2O2 in Phenol

K. Rossi; V. Juraskova; R. Wischert; L. Garel; C. Corminboeuf et al. 

Journal Of Chemical Theory And Computation. 2020. Vol. 16, num. 8, p. 5139 – 5149. DOI : 10.1021/acs.jctc.0c00362.

3D Ordering at the Liquid-Solid Polar Interface of Nanowires

M. Zamani; G. Imbalzano; N. Tappy; D. T. L. Alexander; S. Marti-Sanchez et al. 

Advanced Materials. 2020. Vol. 32, num. 38, p. 2001030. DOI : 10.1002/adma.202001030.

Heat and charge transport in H2O at ice-giant conditions from ab initio molecular dynamics simulations

F. Grasselli; L. Stixrude; S. Baroni 

Nature Communications. 2020. Vol. 11, num. 1, p. 3605. DOI : 10.1038/s41467-020-17275-5.

Predicting molecular dipole moments by combining atomic partial charges and atomic dipoles

M. Veit; D. M. Wilkins; Y. Yang; R. A. DiStasio; M. Ceriotti 

Journal Of Chemical Physics. 2020. Vol. 153, num. 2, p. 024113. DOI : 10.1063/5.0009106.

Quantum kinetic energy and isotope fractionation in aqueous ionic solutions

L. Wang; M. Ceriotti; T. E. Markland 

Physical Chemistry Chemical Physics. 2020. Vol. 22, num. 19, p. 10490 – 10499. DOI : 10.1039/c9cp06483d.

Inexpensive modeling of quantum dynamics using path integral generalized Langevin equation thermostats

V. Kapil; D. M. Wilkins; J. Lan; M. Ceriotti 

Journal Of Chemical Physics. 2020. Vol. 152, num. 12, p. 124104. DOI : 10.1063/1.5141950.

Structural Screening and Design of Platinum Nanosamples for Oxygen Reduction

K. Rossi; G. G. Asara; F. Baletto 

Acs Catalysis. 2020. Vol. 10, num. 6, p. 3911 – 3920. DOI : 10.1021/acscatal.9b05202.

Understanding How Ligand Functionalization Influences CO2 and N-2 Adsorption in a Sodalite Metal-Organic Framework

M. Asgari; R. Semino; P. A. Schouwink; I. Kochetygov; J. Tarver et al. 

Chemistry Of Materials. 2020. Vol. 32, num. 4, p. 1526 – 1536. DOI : 10.1021/acs.chemmater.9b04631.

Accurate Description of Nuclear Quantum Effects with High-Order Perturbed Path Integrals (HOPPI)

I. Poltaysky; V. Kapil; M. Ceriotti; K. S. Kim; A. Tkatchenko 

Journal Of Chemical Theory And Computation. 2020. Vol. 16, num. 2, p. 1128 – 1135. DOI : 10.1021/acs.jctc.9b00881.

Classical nucleation theory predicts the shape of the nucleus in homogeneous solidification

B. Cheng; M. Ceriotti; G. A. Tribello 

Journal Of Chemical Physics. 2020. Vol. 152, num. 4, p. 044103. DOI : 10.1063/1.5134461.

Identifying and Tracking Defects in Dynamic Supramolecular Polymers

P. Gasparotto; D. Bochicchio; M. Ceriotti; G. M. Pavan 

Journal Of Physical Chemistry B. 2020. Vol. 124, num. 3, p. 589 – 599. DOI : 10.1021/acs.jpcb.9b11015.

Machine Learning-Guided Approach for Studying Solvation Environments

Y. Basdogan; M. C. Groenenboom; E. Henderson; S. De; S. B. Rempe et al. 

Journal Of Chemical Theory And Computation. 2020. Vol. 16, num. 1, p. 633 – 642. DOI : 10.1021/acs.jctc.9b00605.

Iterative Unbiasing of Quasi-Equilibrium Sampling

F. Giberti; B. Cheng; G. A. Tribello; M. Ceriotti 

Journal Of Chemical Theory And Computation. 2020. Vol. 16, num. 1, p. 100 – 107. DOI : 10.1021/acs.jctc.9b00907.

Recursive evaluation and iterative contraction of N-body equivariant features

J. Nigam; S. Pozdnyakov; M. Ceriotti 

The Journal of Chemical Physics. 2020. Vol. 153, num. 12, p. 121101. DOI : 10.1063/5.0021116.

Chemiscope: interactive structure-property explorer for materials and molecules

G. Fraux; R. Cersonsky; M. Ceriotti 

Journal of Open Source Software. 2020. Vol. 5, num. 51, p. 2117. DOI : 10.21105/joss.02117.

Reviews

Machine Learning Force Fields and Coarse-Grained Variables in Molecular Dynamics: Application to Materials and Biological Systems

P. Gkeka; G. Stoltz; A. B. Farimani; Z. Belkacemi; M. Ceriotti et al. 

Journal Of Chemical Theory And Computation. 2020. Vol. 16, num. 8, p. 4757 – 4775. DOI : 10.1021/acs.jctc.0c00355.

Theses

Atomistic modeling of the solid-liquid interface of metals and alloys

E. Baldi / M. Ceriotti (Dir.)  

Lausanne, EPFL, 2020. 

Nuclear Quantum Effects: Fast and Accurate

V. Kapil / M. Ceriotti (Dir.)  

Lausanne, EPFL, 2020.