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Abstract In this work we provide a convergence analysis for the quasi-optimal
version of the Stochastic Sparse Grid Collocation method we had presented in
our previous work “On the optimal polynomial approximation of Stochastic
PDEs by Galerkin and Collocation methods” [6]. Here the construction of a
sparse grid is recast into a knapsack problem: a profit is assigned to each hi-
erarchical surplus and only the most profitable ones are added to the sparse
grid. The convergence rate of the sparse grid approximation error with respect
to the number of points in the grid is then shown to depend on weighted
summability properties of the sequence of profits. This argument is very gen-
eral and can be applied to sparse grids built with any uni-variate family of
points, both nested and non-nested. As an example, we apply such quasi-
optimal sparse grid to the solution of a particular elliptic PDE with stochastic
diffusion coefficients, namely the “inclusions problem”: we detail the conver-
gence estimate obtained in this case, using polynomial interpolation on either
nested (Clenshaw–Curtis) or non-nested (Gauss–Legendre) abscissas, verify its
sharpness numerically, and compare the performance of the resulting quasi-
optimal grids with a few alternative sparse grids construction schemes recently
proposed in literature.
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1 Introduction

Sparse grid polynomial approximation has emerged as one of the most appeal-
ing methods for approximating high-dimensional functions. Indeed, although
as simple to use as a sampling strategy, it can converge significantly faster if
the function at hand presents some degree of differentiability. A number of “off-
the-shelf” sparse grid packages can be found on the web1, further enhancing
the spread of this technique among practitioners.

Yet, the sparse grid technique experiences a dramatic performance de-
terioration as the number of random variables increases, i.e. it suffers from
the so-called “curse of dimensionality effect”, to which Monte Carlo sampling
methods are instead essentially immune. To avoid, or at least alleviate, this
undesirable feature, a number of approaches have been recently proposed.
Among others, we mention the anisotropic sparse grid technique [4,26] and
the a-posteriori adaptive strategy investigated in [9,12,19,21,23]; here we fur-
ther investigate the quasi-optimal sparse grids method proposed in [6]. Such
method, applied to elliptic PDEs with random coefficients, consists in reformu-
lating the problem of the construction of a sparse grid as a knapsack problem as
first proposed in [9,19,21], and estimating the profit of each sparse grid compo-
nent (hierarchical surplus) using combined a-priori/a-posteriori information,
i.e. providing a-priori estimates whose constants are numerically tuned (hence
the name “quasi-optimal”), that have been observed numerically to be quite
sharp. The goal of this work is to present a convergence theorem for such
“knapsack” sparse grids in terms of the weighted τ -summability of the profits:
in particular, we extend and improve the preliminary estimates presented in
[31]. Our result is general and can accommodate both the case of nested and
non-nested abscissas. We mention that two other related works have appeared
more recently in the literature, [29] and [12], addressing alternative conver-
gence estimates for the knapsack-type sparse grids. See also [26] for an older
estimate for the convergence of anisotropic sparse grid approximations: in that
work, the construction of the sparse grids is based on error contributions only
rather than profits like here, making our current theoretical and numerical
results better.

As a specific application we consider an elliptic PDE with random co-
efficients, namely the so-called “inclusions problem” already discussed in [4,
8], whose solution falls in the class of analytic functions in polyellipses, see
e.g. [3,8,13]. We will derive an estimate of the profits of the hierarchical sur-
pluses for this family of functions and prove that such profits satisfy suit-
able weighted summability properties. We will then deduce, using the above-
mentioned Theorem, rigorous convergence results for the corresponding quasi-

1 see e.g. http://www.ians.uni-stuttgart.de/spinterp or http://dakota.sandia.gov
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optimal sparse grids approximation: in particular, we will show that it con-
verges sub-exponentially with a rate comparable to that of the optimal (“best
M -terms”) L2 approximation in the case of nested points, and with half the
rate for non-nested points, cf. [8, Theorem 16]. We will then verify numeri-
cally the sharpness of the estimates thus obtained, using Clenshaw–Curtis and
Gauss–Legendre points as specific representatives of the two families of nested
and non-nested points, and compare the performances of the quasi-optimal
sparse grids with that of a few other sparse grid schemes recently proposed in
the literature.

The rest of the work is organized as follows. Section 2 defines the gen-
eral approximation problem and introduces the sparse grid methodology. The
quasi-optimal sparse grid construction is explained in Section 3, while the gen-
eral convergence result in terms of the weighted τ -summability of the profits is
given in Section 4, see Theorem 1. Section 5 introduces the above-mentioned
class of polyellipse-analytic Hilbert-valued functions and builds on the previ-
ous general Theorem to derive rigorous convergence estimates for their quasi-
optimal sparse grid approximation with nested and non-nested collocation
points, see Theorems 2 and 3. In particular, the Theorems are stated at the
beginning of the Section, and the rest of the Section is devoted to their proof.
Section 6 introduces the “inclusion problem” and shows some numerical re-
sults that confirm the effectiveness of the proposed quasi-optimal strategy and
the sharpness of the proposed convergence estimates, while conclusions and
final remarks are presented in Section 7.

2 Sparse grid polynomial approximation of Hilbert space-valued
functions

We consider the problem of approximating a multivariate function u(y) : Γ →
V , where Γ is an N -variate hypercube Γ = Γ1×Γ2×. . .×ΓN (with Γn ⊆ R and
N possibly infinite), and V is a Hilbert space. Furthermore, we assume that
each Γn is endowed with a probability measure %n(yn)dyn, so that %(y)dy =∏N
n=1 %n(yn) is a probability measure on Γ , and we restrict our attention to

functions in the Bochner space L2
%(Γ ;V ), where

L2
%(Γ ;V ) =

{
u : Γ → V s.t.

∫
Γ

‖u(y)‖2V %(y)dy <∞
}
.

Observe that, since V and L2
%(Γ ) are Hilbert spaces, L2

%(Γ ;V ) can be equiv-
alently understood as the tensor space V ⊗ L2

%(Γ ), defined as the completion

of formal sums v =
∑k′

k=1 φkψk, with φk ∈ V and ψk ∈ L2
%(Γ ), with respect

to the inner product

(v, v̂)V⊗L2
%(Γ ) =

∑
k,`

(φk, φ̂`)V , (ψk, ψ̂`)L2
%(Γ ).

In particular, we aim at approximating u(y) with global polynomials over
Γ , which is a sound approach if u is a smooth function of y. To introduce the
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polynomial subspace of V ⊗ L2
%(Γ ) in which we will build our approximate

solution, it is convenient to use a multi-index notation2. Let w ∈ N be an
integer index indicating the level of approximation, and Λ(w) a sequence of
index sets in NN such that Λ(0) = {0}, Λ(w) ⊆ Λ(w + 1) for w ≥ 0 and
NN =

⋃
w∈N Λ(w). Denoting by PΛ(w)(Γ ) the multivariate polynomial space

PΛ(w)(Γ ) = span

{
N∏
n=1

ypnn , p ∈ Λ(w)

}
,

we will look for an approximation

uw ∈ V ⊗ PΛ(w)(Γ ) =

∑
j

vjqj(y), vj ∈ V, qj ∈ PΛ(w)(Γ )

 .

Clearly, the polynomial space PΛ(w)(Γ ) should be designed to have good ap-
proximation properties while keeping the number of degrees of freedom as low
as possible. Although this is a problem-dependent choice, using the classi-
cal Tensor Product polynomial space PTP(w)(Γ ), with TP(w) = {q ∈ NN :
maxn qn ≤ w}, is in general not a good choice, as its dimension grows exponen-
tially fast with the number of random variables N , i.e. dimPTP(w)(Γ ) = (1 +
w)N . Valid alternative choices that have been widely used in literature are: the
Total Degree polynomial space PTD(w)(Γ ), TD(w) = {q ∈ NN :

∑
n qn ≤ w},

see e.g. [20,24], that contains indeed only
(
N+w
N

)
monomials but has approxi-

mation properties similar to the Tensor Product space; or the Hyperbolic Cross
polynomial space PHC (w)(Γ ), HC (w) = {q ∈ NN :

∏
n(qn + 1) ≤ w + 1}, see

e.g. [1,25,30]. One could also introduce anisotropy in the approximation, to
enrich the polynomial space only in those variables yn which contribute the
most to the total variability of the solution, see e.g. [4]. Several methods can be
used to compute the polynomial approximation uw (projection, interpolation,
regression): in this work we consider the Sparse Grid Approximation Method,
that we briefly review in the rest of this Section.

2.1 Sparse grid Approximation Method

For a given level of approximation w ≥ 0, the sparse grid approximation
method (see e.g. [5,9] and references therein) consists in evaluating the func-
tion u in a set of W points y1, . . . ,yW ∈ Γ , and building a global poly-
nomial approximation uw (not necessarily interpolatory) in a suitable space
V ⊗ PΛ(w)(Γ ).

2 Throughout the rest of this work, N will denote the set of integer numbers including 0,
and N+ that of integer numbers excluding 0. Moreover, 0 will denote the vector (0, 0, . . . , 0) ∈
NN , 1 the vector (1, 1, . . . , 1) ∈ NN , and ej the j-th canonical vector in RN , i.e. a vector
whose components are all zero but the j-th, whose value is one. Finally, given two vectors
v,w ∈ NN , v ≤ w if and only if vj ≤ wj for every 1 ≤ j ≤ N .
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Fig. 1: Left: Tensor grid. Right: Sparse grid.

For each direction yn we introduce a sequence of one-dimensional polyno-
mial Lagrangian interpolant operators of increasing degree, indexed by in ≥ 1:

∀ in ≥ 1, Um(in)
n : C0(Γn)→ Pm(in)−1(Γn),

where m(in) is the number of collocation points used to build the interpolant
at level in and Pq(Γn) is the set of polynomials in yn of degree at most q.
We require the level-to-nodes function m : N → N to satisfy the following
assumptions:

m(0) = 0, m(1) = 1, m(in) < m(in + 1), in ≥ 1.

In addition, let U0
n[f ] = 0, ∀f ∈ C0(Γn). Next, we introduce the difference

operators ∆
m(in)
n = Um(in)

n − Um(in−1)
n , and consider a sequence of index sets

I(w) ⊂ NN+ such that I(w) ⊂ I(w + 1) and I(0) = {1}. We define the sparse
grid approximation of u : Γ → V at level w as

uw(y) = SmI(w)[u](y) =
∑

i∈I(w)

N⊗
n=1

∆m(in)
n [u](y) . (1)

As pointed out in [19], it is desirable that the sum (1) has some telescopic
properties. To ensure this, we have to impose some additional constraints on
I. Following [19] we say that a set I is admissible3 if

∀ i ∈ I, i− ej ∈ I for 1 ≤ j ≤ N such that ij > 1. (2)

We refer to this property as admissibility condition, or ADM in short. Given
a multi-index set I, we will denote by IADM the smallest admissible set such
that I ⊂ IADM . The set of all evaluation points needed by (1) is called a
sparse grid, and we denote its cardinality by WI(w),m. Note that (1) is indeed

3 Also known as lower sets or downward closed set, see e.g. [14].
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equivalent to a linear combination of tensor grid interpolations each of which
uses only “few” interpolation points (see e.g. [34]):

SmI(w)[u](y) =
∑

i∈I(w)ADM

ci

N⊗
n=1

Um(in)
n [u](y), ci =

∑
j∈{0,1}N

(i+j)∈I(w)ADM

(−1)|j|. (3)

Observe that many of the coefficients ci in (3) may be zero: in particular ci
is zero whenever i + 1 ∈ I(w)ADM . To any sparse grid one can associate a
corresponding quadrature formula QmI(w)[·],

∀ f ∈ C0(Γ ),

∫
Γ

f(y)%(y)dy ≈
∫
Γ

SmI(w)[f ]%(y)dy ≈ QmI(w)[f ] =

Wm
I(w)∑
j=1

f(yj)βj ,

for suitable βj ∈ R. In particular, given g ∈ V ′, where V ′ is the dual space of
V , the expected value of 〈g, u〉 can be computed as

E [〈g, u〉] ≈ QmI(w)

[
〈g, u〉

]
=

Wm
I(w)∑
j=1

〈
g, u(yj)

〉
βj .

The sequence of sets I(w), the level-to-nodes function m and the family of col-
location points to be used at each level characterize the sparse approximation
operator SmI(w) introduced in (1). The choice of I(w) will be the subject of the

next Section; anisotropic sets I(w), that enrich the approximation in specific
directions of the parameter space Γ have been studied in [4,26]. As for the
family of points, they should be chosen according to the probability measure
%(y)dy on Γ for an optimal performance, e.g. the Gauss–Legendre points for
the Uniform measure, and the Gauss–Hermite points for the Gaussian measure
(see e.g. [33]). For good uniform approximations on Γ = [−1, 1]N , Clenshaw–
Curtis points are also a good choice. In the following, we will refer to nested

points when the set of points used to build the operator Um(in)
n is a subset

of the points of the operator Um(in+1)
n , and non-nested points otherwise. It is

well-known that nested quadrature formulae have a lower degree of exactness
than Gaussian quadrature formulae when approximating integrals of functions
of one variable; however, the accuracy of Clenshaw–Curtis points is similar to
that of Gauss–Legendre points (cf. e.g. [32]), and nestedness allows for signif-
icant savings in the sparse grids construction. This distinction will also play a
central role in the following sections.

We finally point out (see also [4]) that given any polynomial space PΛ(Γ ),
one can always find a sparse grid that delivers approximations in that space,
simply by taking m(i) = i and I = {i ∈ NN+ : i − 1 ∈ Λ}. Conversely, given
a sparse grid approximation SmI(w), the underlying polynomial space is PΛ(Γ )

with Λ = {q ∈ NN : q ≤ m(i)− 1 for some i ∈ I}.
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3 Quasi-Optimal sparse grid construction

We now summarize and slightly generalize a procedure for quasi-optimal sparse
grid construction, using the approach introduced in our previous work [6]; see
also [9,19,21]. We begin by introducing the concept of work (or computational
cost) associated to the construction of a given sparse grid approximation of
u. Assuming that the computation of the points of the sparse grid itself is
negligible, the main cost of the sparse grid approximation is then given by the
evaluation of the target function u at each point of the sparse grid, so that
the required work is proportional to the total number of points used, WI(w),m.
For notational convenience, we thus use the same symbol WI(w),m to denote
the work of the sparse grid approximation of u. Next, for each multi-index
i ∈ I(w) we introduce the hierarchical surplus operator

∆m(i) =

N⊗
n=1

∆m(in),

so that the sparse grid approximation (1) can actually be seen as a sum of
hierarchical surplus operators applied to u. The quasi-optimal sparse grid relies
on the concept of profit of a hierarchical surplus: to this end, we associate to
each hierarchical surplus an error contribution and a work contribution, i.e.
the contribution to the total error (respectively cost) that can be ascribed to
a specific hierarchical surplus composing a sparse grid.

Associated to the hierarchical surplus ∆m(i), we first introduce the quantity

δE(i) =
∥∥∥∆m(i)[u]

∥∥∥
V⊗L2

%(Γ )
, (4)

and observe that, for any multi-index set J such that i /∈ J and J , {J ∪ i}
are admissible according to condition (2), we have(

u− Sm{J∪i}[u]
)
−
(
u− SmJ [u]

)
= Sm{J∪i}[u]− SmJ [u] = ∆m(i)[u],

so that δE(i) can be considered as a good indicator of the error reduction due
to the addition of ∆m(i) to any sparse grid approximation of u (in other words,
δE(i) is independent of J ). We can then naturally define as error contribution
any upper bound ∆E(i) for δE(i),

δE(i) ≤ ∆E(i),

Defining a work contribution ∆W (i) is instead a more delicate issue. In-
deed, one could define the quantity δW (i) = W{J∪i},m −WJ ,m as the work

contribution of the hierarchical surplus ∆m(i); however, such quantity δW (i)
does in general depend on the starting set J unless nested points are used
(see Example 1 below). Therefore, in the case of nested points we can safely
define an “exact” work contribution ∆W (i) as

∆W (i) =

N∏
n=1

(
m(in)−m(in − 1)

)
, (5)
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Fig. 2: The top row shows the two different multi-index sets considered in
Example 1, i.e. J1 (left) and J2 (right), as well as the multi-index i (red cross).
The bottom row shows the resulting sparse grids S1,S2,S3,S4, corresponding
to the sets J1, {J1 ∪ i},J2, {J2 ∪ i}. The sparse grid S2 has 9 points more
than S1 (left), while S3 and S4 have the same number of points (right).

which satisfies WI(w),m =
∑

i∈I(w)∆W (i). On the other hand, in the case of
non-nested points we consider the following definition of work contribution:

∆W (i) =

N∏
n=1

m(in), (6)

i.e. the cost of the tensor grid associated to i, so thatWI(w),m ≤
∑

i∈I(w)∆W (i).

This work contribution estimate is reasonable if one builds the (non nested)
sparse grid “incrementally”, i.e. starting from I = {1}, adding one multi-
index i ∈ NN+ to I at a time and immediately evaluating the function u on the

corresponding tensor grid
⊗N

n=1 U
m(in)
n , cf. equation (3). By doing this, one

does not exploit the fact that many tensor grids in the final formula (3) are
multiplied by zero coefficients, and therefore WI(w),m ≤

∑
i∈I(w)∆W (i).

Example 1 To show that δW (i) is not uniquely defined when non-nested points
are used, we take as an example the case of sparse grids built over Γ = [−1, 1]2

using Gauss–Legendre points. We set i = (1, 5) and consider the multi-index
sets J1 and J2, shown in the top-left and top-right plots of Figure 2. We then
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consider four different sparse grids: S1,S2,S3,S4, built using the multi-index
sets J1, {J1 ∪ i}, J2, and {J2 ∪ i} respectively.

Comparing S1 and S2 (bottom-left plot of Figure 2), we can see that adding
i to J1 results in a sparse grid with 9 additional points (i.e. δW (i) = 9).
Conversely, the comparison of S3 and S4 (bottom-right plot of Figure 2) shows
that adding i to J2 does not change the number of points of the sparse grid
(i.e. δW (i) = 0), since 4 new points are added but 4 points are no longer
present.

Next, we introduce the estimated profit of a hierarchical surplus,

P (i) =
∆E(i)

∆W (i)
, (7)

and the sequence of decreasingly-ordered profits, {P ordj }j∈N+

P ordj ≥ P ordj+1.

It is also convenient to introduce a function that assigns the corresponding
multi-index to the j-th ordered profit: we will denote such function as i(j), i.e.
P ordj = P (i(j)). Incidentally, note that as soon as two hierarchical surpluses
have equal estimated profit, the map i(j) is not unique: in this case, any
criterion to select a specific sequence can be used.

We can now define a quasi-optimal sparse grid at level w of approximation
as the sparse grid including in the sum (1) only the w hierarchical surpluses
with the highest profit (in the spirit of a knapsack problem), possibly made
admissible according to condition (2):

I(w) = J (w)ADM , J (w) = {i(1), i(2), . . . , i(w)}. (8)

Equivalently, one can automatically enforce the admissibility of the multi-
index set by introducing the auxiliary profits (see also [11])

P ∗(i) = max
j≥i

P (j), (9)

considering the decreasingly-ordered sequence {P ∗,ordj }j∈N+

P ∗,ordj ≥ P ∗,ordj+1 , (10)

and the new ordering i∗(j) such that P ∗,ordj = P ∗(i∗(j)) so that (8) can be
rewritten as

I(w) = {i∗(1), i∗(2), . . . , i∗(w)}. (11)

Definition 1 A sequence of profits {P (i)}i∈NN+ is monotone if

∀ i ∈ NN+ , P ∗(i) = P (i) .
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Notice that for a monotone sequence {P (i)}i∈NN+ , the set J (w) = {i(1), i(2), . . . , i(w)}
is always admissible (or downward closed).

The idea of constructing a sparse grid based on the profit of each hierarchi-
cal surplus (or other suitable “optimality indicators”) has been first proposed
in a series of works [9,19,21], see also [23]. In particular, a possible approach
could be an adaptive “greedy-type” algorithm in which the set I is constructed
iteratively: given a set I(k) at the k-th iteration, one looks at the “neighbor”
(or “margin”) M(k) of I(k) and adds to the set I(k) the most profitable hier-
archical surplus in M(k),

I(k+1) = I(k) ∪ {i} , i = argmax
j∈M(k)

P ∗(j),

see e.g [19,23] for a similar algorithm based however on optimality indicators
other than profits. Clearly, this methodology implicitly assumes some kind of
decay of the profits, or, equivalently, that the next most profitable multi-index
always belongs to the margin of the current set I(k). Moreover, the explo-
ration of the margin M(k) can be expensive in high dimensions. Therefore,
in the context of elliptic PDEs with random coefficients, we proposed in [6]
to add hierarchical surpluses based on a-priori error and work contribution
estimates with numerically tuned constants (hybrid “a-priori”/“a-posteriori”
estimates), that we observed numerically to be quite sharp and thus effective
in reducing the sparse grid construction cost. Note that an analogous fully “a-
priori” approach has been considered in [21,9] in the context of wavelet-type
approximation of high-dimensional deterministic PDEs.

4 Convergence estimate for the quasi-optimal sparse grid
approximation

We now state and prove a convergence result of the quasi-optimal sparse grid
approximation, built according to (11); see [31] for earlier versions and [29,
12] for an alternative estimate derived in the context of elliptic PDEs with
random diffusion coefficients. We first recall a technical result, the so-called
Stechkin Lemma, see e.g. [15] for a proof.

Lemma 1 (Stechkin) Let 0 ≤ p ≤ q, and let {aj}j∈N+
be a positive decreas-

ing sequence. Then, for any M > 0∑
j>M

(aj)
q

1/q

≤M−
1
p+

1
q

∑
j∈N+

(aj)
p

1/p

.

Theorem 1 (Quasi-optimal sparse grid convergence)
If the auxiliary profits (9) satisfy the weighted summability condition∑

i∈NN+

P ∗(i)τ∆W (i)

1/τ

= CP (τ) <∞ (12)
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for some 0 < τ ≤ 1, then∥∥∥u− SmI(w)[u]
∥∥∥
V⊗L2

%(Γ )
≤W 1−1/τ

I(w),mCP (τ).

where I(w) is given by (11), and ∆W is given by (5) for grids with nested
points and by (6) for grids with non nested points.

Proof We start by introducing the following auxiliary sequences:

– {∆Wj}j∈N+
is the sequence of work contributions arranged using the same

order as the sequence of the auxiliary profits (10). Note that this sequence
will not be ordered in general.

– {Qj}j∈N+
is the sequence of the sum of the first j work contributions, i.e.

Q0 = 0, Qj =

j∑
k=1

∆Wk .

– {∆Ej}j∈N+
is the sequence of error contributions arranged using the same

order as the sequence of the auxiliary profits (10). Again, this sequence will
not be ordered in general.

– {∆Ẽk}k∈N+
is a modification of the error contributions sequence {∆Ej}j∈N+

just introduced, in which each ∆Ej is repeated a number of times equal to
the corresponding work contribution. More precisely

{∆Ẽk}k∈N+ =
{
∆E1, ∆E1, . . .︸ ︷︷ ︸

∆W1 times

, ∆E2, ∆E2, . . .︸ ︷︷ ︸
∆W2 times

, . . .
}

i.e. ∆ẼQj−1+s = ∆Ej , s = 1, . . . ,∆Wj .

– {P̃k}k∈N+
is the analogously modified sequence of auxiliary profits,

{P̃k}k∈N+
=

{
∆E1

∆W1
,
∆E1

∆W1
, . . .︸ ︷︷ ︸

∆W1 times

,
∆E2

∆W2
,
∆E2

∆W2
, . . .︸ ︷︷ ︸

∆W2 times

, . . .

}
(13)

i.e. P̃Qj−1+s = P ∗,ordj , s = 1, . . . ,∆Wj .

For a generic sparse grid the following error decomposition holds:∥∥∥u− SmI(w)[u]
∥∥∥
V⊗L2

%(Γ )
=

∥∥∥∥∥∥
∑

i/∈I(w)

∆m(i)[u]

∥∥∥∥∥∥
V⊗L2

%(Γ )

≤
∑

i/∈I(w)

∥∥∥∆m(i)[u]
∥∥∥
V⊗L2

%(Γ )
≤
∑
j>w

∆Ej .

Next we recast the previous sum of error contributions in terms of the auxiliary
sequence P̃k in (13), i.e.

∑
j>w

∆Ej =
∑
j>w

∆Wj∑
s=1

∆ẼQj−1+s

∆Wj
=
∑
k>Qw

P̃k .
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We now apply Lemma 1 with q = 1 and p = τ , obtaining

∥∥∥u− SmI(w)[u]
∥∥∥
V⊗L2

%(Γ )
≤
∑
k>Qw

P̃k ≤ Q−1/τ+1
w

(∑
k>0

P̃ τk

)1/τ

,

and observe that

(∑
k>0

P̃ τk

)1/τ

=

∑
j>0

(
P ∗,ordj

)τ
∆Wj

1/τ

=

∑
i∈NN+

P ∗(i)τ∆W (i)

1/τ

,

and

Qw =

w∑
k=1

∆Wk ≥WI(w),m,

due to the definitions of ∆W (i) in (5), (6). Then,

∥∥∥u− SmI(w)[u]
∥∥∥
V⊗L2

%(Γ )
≤ Q−1/τ+1

w

∑
i∈NN+

P ∗(i)τ∆W (i)

1/τ

≤ CP (τ)W
1−1/τ
I(w),m.

which concludes the proof. ut

Remark 1 An alternative approach would consist in sorting the hierarchical
surpluses according to error contribution estimates ∆E(i) rather than accord-
ing to profits. Following the lines of the Theorem above, one could derive the
following convergence estimate for the resulting sparse grid,

∥∥∥u− SmI(w)[u]
∥∥∥
V⊗L2

%(Γ )
≤ w1−1/τCE(τ), CE(τ) =

( ∑
i∈NN+

∆E(i)τ
)1/τ

.

However, recasting such estimate in terms of computational cost would not be
possible without assumptions on the shape of the optimal set I(w).

5 Quasi-optimal sparse grid approximation of analytic functions on
polyellipses

In this Section we apply the convergence Theorem 1 to a particular class of
Hilbert-valued functions, which contains in particular the solution of some
linear elliptic equations with random diffusion coefficients, as will be shown in
Section 6. More precisely, we consider the class of functions u : Γ = [1, 1]N →
V that satisfies the following assumption
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Assumption A1 (“Polyellipse analyticity”) The function u : Γ → V ,
Γ = [−1, 1]N , admits a complex continuation u∗ : CN → V that is a V -valued
holomorphic function in any polyellipse

Eδ1,...,δN =

N∏
n=1

En,δn ,

where En,δn denotes the so-called Bernstein ellipse

En,δn =

{
zn ∈ C : Re (z) ≤ δn + δ−1n

2
cosφ, Im (z) ≤ δn − δ−1n

2
sinφ, φ ∈ [0, 2π)

}
,

with 1 < δn < δ∗n, n = 1, 2, . . . , N . Moreover supz∈Eδ1,...,δN
‖u∗(z)‖V ≤ Bu,

and Bu = Bu(δ1, δ2, . . . , δn)→∞ as δn → δ∗n, n = 1, . . . , N .

As already mentioned in the Introduction, sparse polynomial approxima-
tions are particularly suitable for this kind on functions, see e.g. [8]. We now
state the convergence results for the quasi-optimal sparse grid approximation
of functions satisfying Assumption A1, and devote the rest of this Section to
their proof.

Definition 2 For a given family of collocation points, let Mm(in)
n be the norm

of the interpolation operator Um(in)
n : C0(Γn)→ L2

%(Γn),

Mm(in)
n = sup

‖f‖L∞(Γn)=1

∥∥∥Um(in)
n [f ]

∥∥∥
L2
%(Γn)

.

Definition 3 Given a level-to-nodes function m(in), we define

d(in) = m(in)−m(in − 1).

Assumption A2 For nested collocation points, there exists a constant CM >
0 such that

Mm(in)
n

d(in)
≤ CM, ∀in ∈ N,

while for non-nested collocation points, there exists a constant CM > 0 such
that

Mm(in)
n

m(in)
≤ CM, ∀in ∈ N.

Assumption A3 There exists a constant Cm > 0 such that there holds

d(in + 1)

d(in)
≤ Cm, ∀in ∈ N.
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Remark 2 Assumption A3 allows for an exponential increase of the number of
points from one level to another, of the type m(in) ∼ γin . On the other hand,

Assumption A2 requires that the operator norm Mm(in)
n grows slowlier than

d(in) for nested points and slowlier than m(in) for non-nested points. There-
fore, an exponential growth m(in) ∼ γin can accommodate even a polynomial

growth of Mm(in)
n , whereas a linear growth m(in) ∼ αin requires a uniform

boundedness of Mm(in)
n .

Theorem 2 (nested quasi-optimal sparse grid convergence)
Let u be a function satisfying assumption A1. If the collocation points used

are nested and satisfy Assumptions A2 and A3, then the quasi-optimal sparse
grid approximation built according to the profits

P (i) = CE

N∏
n=1

e−gnm(in−1)Mm(in)
n

d(in)
, gn < log δ∗n, (14)

where CE is a constant depending exponentially on N that will be specified in
Lemma 6, converges as∥∥∥u− SmI(w)[u]

∥∥∥
V⊗L2

%(Γ )
≤ inf

0<τ<1
C(N, τ)W

1−1/τ
I(w),m ,

where

C(N, τ) =

(
CτE(CτMĈm)N

N∏
n=1

eτgn

eτgn − 1

)1/τ

, Ĉm = max{1, Cm}.

Moreover, letting gm = N

√∏N
n=1 gn denote the geometric mean of g1, . . . , gN ,

and assuming without loss of generality that g1 ≤ g2 ≤ . . . ≤ gN , there exist
some constants αL, βL, Clog that will be specified in Lemmas 4 and 5 such that∥∥∥u− SmI(w)[u]

∥∥∥
V⊗L2

%(Γ )
≤ CECNM exp

((
Clog −

gmδ

Ĉme

)
N N

√
WI(w),m

)
, (15)

that holds for 0 < δ < 1− 1
e and for

WI(w),m >

(
gNeĈm

gm(αL − δβL)

)N
. (16)

Theorem 3 (non-nested quasi-optimal sparse grid convergence)
Let u be a function satisfying assumption A1. If the collocation points used

are non-nested and satisfy Assumptions A2 and A3, then the quasi-optimal
sparse grids approximation built according to

P (i) = CE

N∏
n=1

e−gnm(in−1)Mm(in)
n

m(in)
, gn < log δ∗n, (17)
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where CE a constant depending exponentially on N that will be specified in
Lemma 6, converges as∥∥∥u− SmI(w)[u]

∥∥∥
V⊗L2

%(Γ )
≤ inf

0<τ<1
C(N, τ)W

1−1/τ
I(w),m,

where

C(N, τ) =

(
(CEC

N
M )τ

N∏
n=1

(
Ĉm

eτgn

eτgn − 1
+

2

τgne

eτgn/2

eτgn/2 − 1

))1/τ

, Ĉm = max{1, Cm}.

Moreover, letting gm = N

√∏N
n=1 gn denote the geometric mean of g1, . . . , gN ,

and assuming without loss of generality that g1 ≤ g2 ≤ . . . ≤ gN , there exist
some constants αL, βL, Clog that will be specified in Lemmas 4 and 5 such that

∥∥∥u− SmI(w)[u]
∥∥∥
V⊗L2

%(Γ )
≤ CECNM exp

(
(2Clog −Kgm)N 2N

√
WI(w),m

)
, (18)

with K = (δ + 1− log 2)/(2
√
e) that holds for 0 < δ < 1− 1

e and for

WI(w),m > max


(

4
√
egn

gm(αL − δβL)

)2N

,

(
Ĉme

3/2gn
2gm

)2N
 . (19)

The convergence estimates (15) and (18) just provided share the same
structure of the result obtained for the optimal (“best M -terms”) L2 approx-
imation of u in [8, Theorem 16]. In particular:

1. they show that the convergence of the quasi-optimal sparse grid approxi-
mation is essentially sub-exponential, with a rate comparable to that of the
optimal L2 approximation in the case of nested points, and with half the
rate for non-nested points. Such difference can be ascribed to the fact that
the sparse grid construction on non-nested collocation points is not as effi-
cient as its nested counterpart, and that the non-nested work contribution
estimate is actually pessimistic.

2. Such convergence rate is obtained only after a sufficiently large amount of
work (collocation points in this case, polynomials terms added in the ex-
pansion in the case of the optimal L2 approximation) has been performed.

3. Both the convergence rate and the minimal work depend in a non trivial
way on the choice of the parameters δ and Clog.

A detailed discussion on the interplay between δ and Clog can be found in [8,
Remarks 17,19]; here we only mention that the two expressions in (19) are

almost equivalent: for example, if the quadrature points are such that Ĉm = 2
(see Section 6.1), the first term is larger than the second one if 4

e ≥ αL− δβL,
i.e. if δ is larger than approximately 0.25, which is well inside the range of
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feasible values of δ, cf. Lemma 4. In the numerical results Section we will show
that a convergence estimate of the form∥∥∥u− SmI(w)[u]

∥∥∥
V⊗L2

%(Γ )
≤ α exp

(
−βN N

√
WI(w),m

)
,

for nested points, and∥∥∥u− SmI(w)[u]
∥∥∥
V⊗L2

%(Γ )
≤ α exp

(
−βN 2N

√
WI(w),m

)
,

for non-nested points, with α ∈ R and β ∈ R+, captures well the behavior of
the computational error.

5.1 Preliminary results

We start by introducing the Chebyshev expansion of u (see e.g. [33]) and
estimate the decay of its coefficients. To this end, we introduce the Chebyshev
polynomials of the first kind Ψq(t) on [−1, 1], that are defined as the unique
polynomials satisfying

Ψq(cosϑ) = cos(qϑ), 0 ≤ ϑ ≤ π, q ∈ N.

As a consequence, |Ψq(t)| ≤ 1 on [−1, 1], with Ψq(1) = 1 and Ψq(−1) = (−1)q;
moreover, they are orthogonal with respect to the weight ρC(t) = 1/

√
1− t2:

∫ 1

−1
Ψq(t)Ψκ(t)ρC(t)dt =


0 κ 6= q

π κ = q = 0

π/2 κ = q 6= 0.

Lemma 2 Let Ψqn(yn) be the family of Chebyshev polynomials of the first kind
on Γn = [−1, 1], and let

Ψq(y) =

N∏
n=1

Ψqn(yn), q = (q1, q2, . . . , qN ) ∈ NN .

be the generic N -variate Chebyshev polynomial. If the function u satisfies As-
sumption A1, then it admits a Chebyshev expansion

u(x,y) =
∑

q∈NN
uq(x)Ψq(y),

with coefficients

uq(x) =
1∫

Γ
Ψ2

q(y)%C(y)dy

∫
Γ

u(x,y)Ψq(y)%C(y)dy,
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which converges in C0(Γ, V ), and whose coefficients uq(x) are such that

‖uq‖V ≤ CCheb
N∏
n=1

e−gnqn , gn = log δn (20)

with 1 < δn < δ∗n, CCheb = 2‖q‖0Bu(δ1, . . . , δN ) where ‖q‖0 denotes the num-
ber of non-zero elements of q and Bu(δ1, . . . , δN ) as in Assumption A1.

Proof The proof is a straightforward extension to the N -dimensional case of
the argument in [16, Chapter 7, Theorem 8.1]; see also [3]. ut

Remark 3 An analogous bound could be proved for the decay of the coefficients
of the Legendre expansion of u,

‖uq‖V ≤ Bu(δ1, . . . , δN )

N∏
n=1

rqnn
τnδn

(√
1− r2n +O

(
1

q
1/3
n

))
,

with τn to be chosen in (0, 1) and

rn = rn(τn, δn) =
1

1 + δn(1− τn) +
√
δ2n(1− τn)2 + 2δn(1− τn)

,

see [2,22]. Hence, the same analysis presented in this work could still be per-
formed using the Legendre expansion of u instead of the Chebyshev one.

Remark 4 Lemma 2 and Remark 3 state that the convergence of the coeffi-
cients of both Chebyshev and Legendre expansions is essentially exponential
with respect to the degree of approximation of each parameter. Our numerical
experience shows that such bound is actually sharp, at least for the inclusion
problem that will be discussed in Section 6; see also [8] for more examples on
the Legendre expansion.

We close this Section with some technical lemmas which will be needed in
the following analysis.

Lemma 3 If Um(in)
n is built over Gaussian abscissas, then Mm(in)

n = 1.

Proof Let Qm(in)
n be the quadrature rule built over the same abscissas used

for Um(in)
n ,

Qm(in)
n [f ] =

m(in)∑
j=1

f(αj)ωj .

Observe that since the considered abscissas are Gaussian, Qm(in)
n is exact for

polynomials of degree 2m(in) − 1, and in particular
∑m(in)
j=1 ωj = 1; further-

more, the quadrature weights ωj are positive. Next, observe that
(
Um(in)
n [f(t)]

)2
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is a polynomial of degree 2(m(in)− 1): therefore, using the fact that Um(in)
n is

a Lagrangian interpolant, we have

∫
Γn

(
Um(in)
n [f ]

)2
%n(t)dt = Q

[(
Um(in)
n [f ]

)2]
=

m(in)∑
j=1

(
Um(in)
n [f ](αj)

)2
ωj

=

m(in)∑
j=1

f2(αj)ωj ≤
∥∥f2∥∥

L∞(Γn)
,

and this finishes the proof. ut

Lemma 4 For 0 < ε < e−1
e = εmax ≈ 0.63, there holds

1

1− e−x
≤ (1− ε)e

x
, 0 < x ≤ xcr(ε).

Moreover, the function xcr(ε) is concave and can be bounded from below as

αL − βLε ≤ xcr(ε), 0 < ε < εmax

with αL ≈ 2.49 and βL = αL/εmax.

Proof See [8, Lemma 13]. ut

Lemma 5 Given any Clog ∈ (0, 1/e], and denoting by t̄ the largest root of the
equation log t = Clogt, then ∀K > 0 there holds

M ≤ eClogK
K√
M ∀M > t̄K , ∀K > 0,

If Clog = 1/e, the bound holds for any M > 0.

Proof See [8, Lemma 14]. ut

5.2 Estimates of hierarchical surplus error contributions

Lemma 6 If u satisfies Assumption A1, then for each hierarchical surplus
operator ∆m(i) there holds

δE(i) ≤ ∆E(i) = CEe
−

∑N
n=1 gnm(in−1)

N∏
n=1

Mm(in)
n .

with gn as in Lemma 2 and CE = 2NCCheb
∏N
n=1

1
1−e−gn .
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Proof Let us consider again the Chebyshev expansion of u. From the definition
(4) of δE(i) we have

δE(i) =
∥∥∥∆m(i)[u]

∥∥∥
V⊗L2

%(Γ )
=
∥∥∥∆m(i)

[ ∑
q∈NN

uqΨq

] ∥∥∥
V⊗L2

%(Γ )

=
∥∥∥ ∑

q∈NN
uq∆

m(i)[Ψq]
∥∥∥
V⊗L2

%(Γ )

Observe now that by construction of hierarchical surplus there holds∆m(i)[Ψq] =
0 for all Chebyshev polynomials Ψq such that ∃n : qn < m(in− 1). Therefore,
the previous sum reduces to the multi-index set q ≥ m(i− 1), and we have

δE(i) =
∥∥∥ ∑

q≥m(i−1)

uq∆
m(i)[Ψq]

∥∥∥
V⊗L2

%(Γ )

≤
∑

q≥m(i−1)

‖uq‖V
∥∥∥∆m(i)[Ψq]

∥∥∥
L2
%(Γ )

.

Next, using the definition of ∆m(i) we bound∥∥∥∆m(i)[Ψq]
∥∥∥
L2
%(Γ )

=

N∏
n=1

∥∥∥∆m(in)[Ψqn ]
∥∥∥
L2
%n

(Γn)

≤
N∏
n=1

2Mm(in)
n ‖Ψqn‖L∞(Γn)

=

N∏
n=1

2Mm(in)
n .

Recalling estimate (20) for the decay of the Chebyshev coefficients of u, one
obtains

δE(i) ≤
∑

q≥m(i−1)

‖uq‖V
N∏
n=1

2Mm(in)
n ≤ 2N

∑
q≥m(i−1)

CCheb

N∏
n=1

e−gnqnMm(in)
n

≤ 2NCCheb

N∏
n=1

Mm(in)
n

∑
qn≥m(in−1)

e−gnqn ≤ 2NCCheb

N∏
n=1

Mm(in)
n

e−gnm(in−1)

1− e−gn
.

ut

Remark 5 This bound had been already proposed without proof in [6], using

the norm of the interpolation operator Um(in)
n : C0(Γn) → L∞(Γn), i.e. the

standard Lebesgue constant associated to Um(in)
n , instead of Mm(in)

n .

5.3 Convergence result: nested case

We now focus on the case of nested sequences of collocation points. Observe
that the profits (14) are derived by the profit definition (7) combining the work
contribution (5) and Lemma 6.
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Lemma 7 Under Assumption A2, the auxiliary profits

P b(i) = CEC
N
M

N∏
n=1

e−gnm(in−1)

are such that
P (i) ≤ P b(i), ∀ i ∈ NN+ , (21)

where P (i) are the profits in (14). Moreover, the sequence {P b(i)}i∈NN+ is

monotone according to Definition 1, i.e.

P b,∗(i) = max
j≥i

P b(j) = P b(i), ∀ i ∈ NN+

and, under Assumption A3, it satisfies the weighted τ -summability condition
(12) for every 0 < τ < 1. In particular, there holds

∑
i∈NN+

P b(i)τ∆W (i) ≤ CτE(CτMĈm)N
N∏
n=1

eτgn

eτgn − 1
,

with CE as in Lemma 6 and Ĉm = max{1, Cm}.

Proof Inequality (21) follows from Assumption A2, while the fact that the
sequence {P b(i)}i∈NN+ is monotone is a straightforward consequence of its def-

inition. As for the summability property, we start by observing that we can
actually write the weighted sum

∑
i∈NN+

P b(i)τ∆W (i) as a product of series

depending on in only,∑
i∈NN+

CτE

N∏
n=1

[(
CMe

−gnm(in−1)
)τ
d(in)

]
= CτEC

τN
M

N∏
n=1

∞∑
in=1

(
e−gnm(in−1)

)τ
d(in),

(22)
so that we only need to study the summability of

Sn =

∞∑
in=1

(
e−gnm(in−1)

)τ
d(in), n = 1, . . . , N.

We begin by taking out of the sum the term for in = 1 and using Assumption
A3

Sn = 1 +

∞∑
in=2

e−τgnm(in−1)d(in) ≤ 1 + Cm

∞∑
in=2

e−τgnm(in−1)d(in − 1). (23)

Next, observe that

e−τgnm(in−1)d(in − 1) = e−τgnm(in−1)
(
m(in − 1)−m(in − 2)

)

≤
m(in−1)∑

jn=m(in−2)+1

e−jnτgn ,
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so that
∞∑
in=2

e−τgnm(in−1)d(in − 1) ≤
∞∑
jn=1

e−τgnjn . (24)

Therefore, going back to (23) we obtain

Sn ≤ 1 + Cm

∞∑
in=1

e−τgnin ≤ max{1, Cm}
∞∑
in=0

e−τgnin = Ĉm
eτgn

eτgn − 1
.

and the proof is concluded by substituting this bound in (22). ut

We are now ready to give the full proof of Theorem 2.

Proof (of Theorem 2) In the case of nested collocation points, the quasi-
optimal sparse grid is built using the profits (14). We first observe that, due
to Lemma 7, there holds

P ∗(i) = max
j≥i

P (i) ≤ max
j≥i

P b(i) = P b(i).

Therefore, the profits P ∗(i) have (at least) the same τ -summability properties
than P b(i), and thus from Theorem 1 we have

∥∥∥u− SmI(w)[u]
∥∥∥
V⊗L2

%(Γ )
≤W 1−1/τ

I(w),m

∑
i∈NN+

P ∗(i)τ∆W (i)

1/τ

≤W 1−1/τ
I(w),m

∑
i∈NN+

P b(i)τ∆W (i)

1/τ

.

Now, due to Lemma 7, the profits P b satisfy the weighted τ -summability
condition for every τ in (0, 1), hence we can use any τ in the range 0 < τ < 1
to obtain a valid bound for the sparse grid error. Thus, we can choose the
smallest bound, by minimizing the error estimate over τ : to this end, we follow
closely the argument in [8, Theorem 16]. We have

∥∥∥u− SmI(w)[u]
∥∥∥
V⊗L2

%(Γ )
≤W 1−1/τ

I(w),m

(
CτE(CτMĈm)N

N∏
n=1

eτgn

eτgn − 1

)1/τ

, (25)

and we want to minimize the right-hand side with respect to τ . We do not
solve this minimization problem exactly, but rather take τ = eK, with KN =

ĈNm

WI(w),m

∏N
n=1 gn

. The motivation for this choice is the following: if τ is small,
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we can approximate eτgn

eτgn−1 ≈
1
τgn

and rewrite the right-hand side of (25) as

W
1−1/τ
I(w),m

(
CτE(CτMĈm)N

N∏
n=1

eτgn

eτgn − 1

)1/τ

≈W 1−1/τ
I(w),m

(
CτE(CτMĈm)N

1

τN
∏N
n=1 gn

)1/τ

= WI(w),mCEC
N
M

(
ĈNm

τNWI(w),m

∏N
n=1 gn

)1/τ

= WI(w),mCEC
N
M

(
KN

τN

)1/τ

.

Therefore, we enforce

0 =
d

dτ

(
KN

τN

)1/τ

=
d

dτ
exp

(
−1

τ
log

τN

KN

)
= exp

(
−1

τ
log

τN

KN

)[
1

τ2
log

τN

KN
− 1

τ

N

τ

]
that is

0 =
N

τ2

[
log

τ

K
− 1
]
, (26)

resulting in τ = eK. We now insert this choice of τ in the original bound (25)
obtaining

∥∥∥u− SmI(w)[u]
∥∥∥
V⊗L2

%(Γ )
≤WI(w),mCEC

N
M

(
ĈNm

WI(w),m

N∏
n=1

egneK

egneK − 1

)1/τ

.

Next, we bound each of the factors eegnK/(eegnK − 1) by Lemma 4 (with
x = egnK), obtaining

∥∥∥u− SmI(w)[u]
∥∥∥
V⊗L2

%(Γ )
≤WI(w),mCEC

N
M

(
ĈNm

WI(w),m

N∏
n=1

(1− εn)
egm N

√
WI(w),m

egnĈm
,

)1/(eK)

,

= WI(w),mCEC
N
M

(
N∏
n=1

(1− εn)

)1/(eK)

. (27)

Note that the latter equation holds true for εn and WI(w),m satisfying egnK ≤
xcr(εn) (cf. again Lemma 4), which in turn is satisfied if we choose εn using
the lower bound in Lemma 4, i.e.

egnK =
egnĈm

N
√
WI(w),mgm

= αL − βLεn ⇒ εn =

(
αL −

gneĈm

gm N
√
WI(w),m

)
1

βL
.
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Moreover, we also have to enforce εn > 0 to ensure convergence of estimate
(27), thus obtaining a constraint on WI(w),m. Namely, taken any 0 < δ < εmax
we require εn > δ, which implies

δ <

(
αL −

gneĈm

gm N
√
WI(w),m

)
1

βL
⇒ WI(w),m >

(
gneĈm

gm(αL − δβL)

)N
.

Since we have assumed that the coefficients gn are ordered increasingly, this
condition has to be checked for n = N only, hence (16). With this choice of
εWI(w),m,n, equation (27) further simplifies to

∥∥∥u− SmI(w)[u]
∥∥∥
V⊗L2

%(Γ )
≤WI(w),mCEC

N
M exp

(
N∑
n=1

log(1− εn)

)1/(eK)

≤WI(w),mCEC
N
M exp

(
−

N∑
n=1

εn

)1/(eK)

≤WI(w),mCEC
N
M exp

(
−Nδ
eK

)
and the final result follows by recalling the definition of K and using Lemma
5. ut

5.4 Convergence result: non-nested case

We now focus on the case of non-nested sequences of collocation points. Ob-
serve that the profits (17) are derived by the profit definition (7) combining
the work contribution (6) and Lemma 6.

Lemma 8 Under Assumption A2, the auxiliary profits

P b(i) = CEC
N
M

N∏
n=1

e−gnm(in−1),

are such that
P (i) ≤ P b(i), ∀ i ∈ NN+ , (28)

where P (i) are the profits (17). Moreover, the sequence {P b(i)}i∈NN+ is mono-

tone according to Definition 1, i.e.

P b,∗(i) = max
j≥i

P b(j) = P b(i), ∀ i ∈ NN+

and, under Assumption A3, it satisfies the weighted τ -summability condition
(12) for every 0 < τ < 1. In particular, there holds

∑
i∈NN+

P b(i)τ∆W (i) ≤ (CEC
N
M )τ

N∏
n=1

(
Ĉm

eτgn

eτgn − 1
+

2

τgne

eτgn/2

eτgn/2 − 1

)
.
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Proof Inequality (28) follows from Assumption A2, while the fact that {P b(i)}i∈NN+
is monotone is a straightforward consequence of its definition. As for the
summability property, we proceed as in the proof of Lemma 7, and rewrite

∑
i∈NN+

P b(i)τ∆W (i) =
∑
i∈NN+

CτE

N∏
n=1

[(
CMe

−gnm(in−1)
)τ
m(in)

]

= CτEC
τN
M

N∏
n=1

∞∑
in=1

(
e−gnm(in−1)

)τ
m(in), (29)

to study the summability of

Sn =

∞∑
in=1

(
e−gnm(in−1)

)τ
m(in), n = 1, . . . , N.

We split the sum as

Sn = 1 +

∞∑
in=2

e−τgnm(in−1)m(in)

= 1 +

∞∑
in=2

e−τgnm(in−1)d(in) +

∞∑
in=2

e−τgnm(in−1)m(in − 1)

and we consider the two sums separately. The first one can be bounded as in
Lemma 7, equations (23)-(24),

∞∑
in=2

e−τgnm(in−1)d(in) ≤ Cm
∞∑
in=1

e−τgnin ,

while the second one can be bounded as

∞∑
in=2

e−τgnm(in−1)m(in − 1) ≤ 2

τgne

∞∑
in=2

e−τgnm(in−1)/2 .

exploiting the elementary fact that for every x > 0 and for every ε > 0, there
holds x ≤ 1

εee
εx. Combining the two bounds, we obtain

Sn ≤ 1 + Cm

∞∑
in=1

e−τgnin +
2

τgne

∞∑
in=2

e−τgnm(in−1)/2

≤ max{1, Cm}
∞∑
in=0

e−τgnin +
2

τgne

∞∑
in=0

e−τgnin/2

≤ Ĉm
eτgn

eτgn − 1
+

2

τgne

eτgn/2

eτgn/2 − 1
,

and the proof is concluded by substituting this bound into (29). ut
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We are now ready to give the full proof of Theorem 3.

Proof (of Theorem 3) In the case of non-nested collocation points, the quasi-
optimal sparse grid is built using the profits (17). The proof is analogous to
that of Theorem 2. Due to Lemma 8, there holds

P ∗(i) = max
j≥i

P (i) ≤ max
j≥i

P b(i) = P b(i),

so that from Theorem 1 and Lemma 8 we have

∥∥∥u− SmI(w)[u]
∥∥∥
V⊗L2

%(Γ )
≤W 1−1/τ

I(w),m

∑
i∈NN+

P b(i)τ∆Wj

1/τ

≤W 1−1/τ
I(w),m

(
(CEC

N
M )τ

N∏
n=1

(
Ĉm

eτgn

eτgn − 1
+

2

τgne

eτgn/2

eτgn/2 − 1

))1/τ

,

(30)

to be minimized with respect to τ . Next, we suppose τ to be small, so that

Ĉm
eτgn

eτgn − 1
+

2

τgne

eτgn/2

eτgn/2 − 1
≈ Ĉm
τgn

+
4

(τgn)2e
≈ 4

(τgn)2e
,

and∥∥∥u− SmI(w)[u]
∥∥∥
V⊗L2

%(Γ )
≈W 1−1/τ

I(w),mCEC
N
M

(
4N

eNτ2N
∏N
n=1 g

2
n

)1/τ

= WI(w),mCEC
N
M

(
KN

τ2N

)1/τ

,

with KN =
4N

eNWI(w),mg2Nm
. With some calculus analogous to (26), we then

obtain
d

dτ

(
KN

τ2N

)1/τ

= 0 ⇔ log
τ2

K
= 2 ⇔ τ = e

√
K.

We now go back to the original bound (30) and apply Lemma 4, obtaining

∥∥∥u− SmI(w)[u]
∥∥∥
V⊗L2

%(Γ )
≤WI(w),mCEC

N
M

(
1

WI(w),m

N∏
n=1

(
Ĉm

(1− εn)e

τgn
+

2

τgne

(1− εn)e

τgn/2

))1/τ

,

=WI(w),mCEC
N
M

(
1

WI(w),m

N∏
n=1

1− εn
τgn

(
Ĉme+

4

τgn

))1/τ

(31)

that holds for τgn/2 ≤ xcr(εn). This condition can be satisfied using the lower
bound in Lemma 4, i.e. by choosing εn such that

e
√
Kgn
2

=
4gn
√
e

gm 2N
√
WI(w),m

= αL−βLεn ⇒ εn =

(
αL −

2gn
√
e

gm 2N
√
WI(w),m

)
1

βL
.
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Note also that we will need εn > 0 to ensure convergence of the estimate;
namely, taken any 0 < δ < εmax we require εn > δ, which implies

δ <

(
αL −

4gn
√
e

gm 2N
√
WI(w),m

)
1

βL
⇒ WI(w),m >

(
4
√
egn

gm(αL − δβL)

)2N

.

Moreover, under the additional assumption that Ĉme ≤ 4/(τgn), i.e.

Ĉme ≤
4

e
√
Kgn

=
2gm 2N

√
WI(w),m

gn
√
e

⇒ WI(w),m >

(
Ĉme

3/2gn
2gm

)2N

,

we can bound the term (Ĉme+4/(τgn)) in (31) with 8/(τgn), so that (31) can
be rewritten as

∥∥∥u− SmI(w)[u]
∥∥∥
V⊗L2

%(Γ )
≤WI(w),mCEC

N
M

(
8N

WI(w),m

N∏
n=1

1− εn
τ2g2n

)1/τ

which can be further simplified by inserting the nearly optimal value of τ
previously computed:

∥∥∥u− SmI(w)[u]
∥∥∥
V⊗L2

%(Γ )
≤WI(w),mCEC

N
M

(
8N

WI(w),m

1

e2NKN
N∏
n=1

1− εn
g2n

)1/τ

=WI(w),mCEC
N
M

(
8N

WI(w),m

eNWI(w),mg
2N
m

e2N4N

N∏
n=1

1− εn
g2n

)1/τ

=WI(w),mCEC
N
M

((
2

e

)N N∏
n=1

(1− εn)

)1/τ

≤WI(w),mCEC
N
M

((
2

e

)N
e−Nδ

)1/τ

=WI(w),mCEC
N
M exp

(
−N(δ + 1− log 2)

e
√
K

)
=WI(w),mCEC

N
M exp

(
−
N(δ + 1− log 2)gm 2N

√
WI(w),m

2
√
e

)
.

The proof is then concluded by using Lemma 5. ut

6 Application to a diffusion problem with random inclusions

In this Section we show how the solution u of a certain class of elliptic PDEs
with stochastic coefficients (namely, the so-called “inclusions problem” already
examined in [4,8]) satisfies the polyellipse analyticity condition A1; we will
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Fig. 3: Domains for the inclusions problem with 2, 4 and 8 circular inclusions.

then apply the previous Theorems 2 and 3 to establish the convergence of
the quasi-optimal sparse grid approximation of u, using both nested and non-
nested points, and verify numerically such convergence results.

Let D be a convex polygonal domain in R2, and let y be an N -variate ran-
dom vector whose components y1, . . . , yN are independent uniform random
variables over Γi = [ymin, ymax]. The support of the random vector y is there-
fore the hypercube Γ = Γ1×Γ2× . . .×ΓN , the joint probability density func-
tion of y is %(y) =

∏N
n=1 %n(yn) =

∏N
n=1

1
ymax−ymin , and (Γ,B(Γ ), %(y)dy) is

a probability space, B(Γ ) being the Borel σ-algebra on Γ . We consider the
stochastic elliptic problem

Problem 1 Find a real-valued function u : D × Γ → R, such that %(y)dy-
almost everywhere there holds:{

−div(a(x,y)∇u(x,y)) = f(x) x ∈ D,
u(x,y) = 0 x ∈ ∂D,

where the operators div and ∇ imply differentiation with respect to the phys-
ical coordinate only, and the diffusion coefficient is:

a(x,y) = a0 +

N∑
n=1

γnχn(x)yn. (32)

Here χn(x) are the indicator functions of the disjoint circular sub-domains
Dn ⊂ D = [0, 1]2 as in Figure 3, and a0, γn are real coefficients such that
a(x,y) is strictly positive and bounded, i.e. there exist two positive constants
0 < amin < amax <∞ such that

0 < amin ≤ a(x,y) ≤ amax <∞, (33)

%(y)dy-almost surely, ∀x ∈ D.

Next, let V = H1
0 (D) be the space of square integrable functions in D

with square integrable distributional derivatives and with zero trace on the
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boundary, equipped with the gradient norm ‖v‖V = ‖∇v‖L2(D). Using Lax–

Milgram’s Lemma it is straightforward to show that Problem 1 is %(y)dy-
almost everywhere well-posed in V , due to the boundedness assumption (33).
Similarly, it is easy to see that u ∈ L2

%(Γ )⊗ V , see e.g. [4,6,8].

Remark 6 In this work we do not address the discretization of the solution
u in the physical variable x. In this respect all results obtained here apply
also to a discrete solution uh, obtained by introducing e.g. a finite element
discretization over a triangulation Th of the physical domain D, and a finite
element space of piecewise continuous polynomials on Th, Vh(D) ⊂ H1

0 (D).

We shall begin by reparametrizing the diffusion coefficient in terms of new
random variables distributed over [−1, 1]. For the sake of notation, we will still
denote the new variables as yi, i.e. yi ∼ U(−1, 1). The new diffusion coefficient
will be therefore:

a(x,y) = a0 +

N∑
n=1

γnχn(x)

(
yn + 1

2
(ymax − ymin) + ymin

)
. (34)

Lemma 9 The complex continuation u∗ of the solution u corresponding to a
diffusion coefficient (34) is analytic in the region

Σ = Σ1 ×Σ2 × . . .×ΣN , Σn = {zn ∈ C : Re (zn) ≥ Tn} ,

with −1 ≥ Tn > T ∗n =
2a0 + γn(ymax + ymin)

γn(ymin − ymax)
. Moreover, supz∈Σ ‖u∗‖V ≤

Bu(T1, . . . , TN ), with

Bu(T1, . . . , TN ) =
‖f‖V ′

a0 +
∑N
n=1 γn

(
1−|Tn|

2 (ymin − ymax) + ymin

) .

Proof See [8, Lemma 23]. ut

Corollary 1 The solution u corresponding to a diffusion coefficient (34) sat-
isfies Assumption A1 with δ∗n = |T ∗n |+

√
|T ∗n |2 − 1, T ∗n as in Lemma 9.

Proof We only need to compute the parameter δ∗n corresponding to the largest
Bernstein ellipse contained in the analyticity region Σ. This can be done by
enforcing (δ∗n + δ∗n

−1)/2 = |T ∗n |. ut

6.1 On the choice of collocation points

Before proceeding further with the description of the numerical tests per-
formed, we specify here the families of collocation points used to build the
sparse grids considered in the following, as well as the values of the corre-
sponding quantities Mq

n, cf. Definition 2. Finally, we will verify that such fam-
ilies of points satisfy the Assumptions A2 and A3 needed for the convergence
Theorems to hold true.
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As for nested points, we use the Clenshaw–Curtis rule (see e.g. [33]),

yij = cos

(
(j − 1)π

m(i)− 1

)
, 1 ≤ j ≤ m(i),

that are nested when using the following level-to-nodes relation:

mdb(i) =


0 if i = 0

1 if i = 1

2i−1 + 1, if i > 1.

⇒ ddb(i) =


1 if i = 1

2 if i = 2

2i−2, if i > 2,

(35)

while for non-nested points we will use the classical Gauss–Legendre (see e.g.
[32]), together with the level-to-nodes relation

m lin(i) = i, ⇒ dlin(i) = 1. (36)

Other families of points that are commonly considered for problems with uni-
form random variables are the Gauss–Patterson and the Leja points, see e.g.
[28,10,29] and references therein. We discuss here these different choices of
points.

Gauss–Legendre. As stated in Lemma 3, for Gauss–Legendre nodes there holds
Mq
n = 1. This, together with equation (36), implies that Assumption A2 holds

with CM = 1. Assumption A3 holds with Cm = 1 due to equation (36).

Clenshaw–Curtis. In the case of nested Clenshaw–Curtis nodes, we use the
standard estimate of the “L∞” Lebesgue constant (see e.g. [17,18]) as a bound
for Mq

n,

Mq
n ≤Mq

n,est, Mq
n,est =


1 for q = 1

2

π
log(q − 1) + 1 for q ≥ 2.

Combining this estimate and equation (35) we obtain that Assumption A2
holds with CM = 1. Assumption A3 holds with Cm = 2, due again to equation
(35).

Leja. Given a compact set X and an initial value x0 ∈ X, Leja sequences are

recursively defined as xk = argmaxy∈X

∣∣∣∣∏k−1
j=0 (y − xj)

∣∣∣∣. Choosing x0 = 1 and

X = [−1, 1] results in the so-called standard Leja sequence, while choosing as
X the unit disk in the complex domain together with x0 = 1 and projecting the
resulting sequence on X = [−1, 1] one obtains the so-called R-Leja sequence,
see [10,29] and references therein for details. Here we focus on the so-called
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symmetrized Leja sequence (see again [29]), which at level i includes 2i + 1
points defined as

xi0 = 0, xi1 = 1, xi2 = −1,

xik =


argmax
y∈X

∣∣∣∣ k−1∏
j=0

(y − xj)
∣∣∣∣ if k is odd, k ≤ 2i

−xk−1 if k is even, k ≤ 2i+ 1

so that the level-to-nodes function is defined as

mSL(i) =


0 if i = 0

1 if i = 1

2i+ 1, if i > 1.

⇒ dSL(i) =

{
1 if i = 1

2 if otherwise.

Thus, Assumption A3 trivially holds with Cm = 2. The validity of Assumption
A2 can be verified numerically, by computing lower and upper bounds for the
Lebesgue constant. The upper bound is obtained as in the case of Clenshaw–

Curtis points, by bounding MmSL(in)
n with the standard Lebesgue constant,

that can be computed numerically. The lower bound is also established numer-
ically, by solving approximately the maximization problem appearing in the

definition of Mm(in)
n (see Definition 2), that can be recast into a constrained

quadratic optimization problem.

To do this, denote by t1, t2, . . . , tm(in) the collocation points of Um(in)
n and

by `1, `2, . . . , `m(in) the associated Lagrangian polynomials, and expand

∫
Γn

(Um(in)
n [f ])2%n(yn)dyn =

∫
Γn

( m(in)∑
j=1

f(tj)`j(yn)

)2

%n(yn)dyn

=

m(in)∑
κ,j

f(tκ)f(tj)

∫
Γn

`κ(yn)`j(yn)%n(yn)dyn.

Observe now that, being `κ(yn)`j(yn) a polynomial of degree 2(m(in) − 1),
we can integrate it exactly with a Gaussian quadrature formula with m(in)
quadrature points: we further denote by ξ1, ξ2, . . . , ξm(in) the quadrature points
and by α1, α2, . . . , αm(in) the associated quadrature weights, and we let f be

the vector containing the nodal values fj = f(tj). Computing Mm(in)
n amounts

then to solving the quadratic optimization problem

L = max
f∈R

fTAf , R = {f ∈ Rm(in)s.t. − 1 ≤ fn ≤ 1, ∀n = 1, . . . N}

with Aij =
∑m(in)
q=1 `i(ξq)`j(ξq)αq, and setting Mm(in)

n =
√
L. Being A is pos-

itive definite, the solutions of the optimization problem are located in the
corners of the feasible region R, and multiple maxima are possible. By repeat-
edly running an optimization algorithm for quadratic optimization problems
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Fig. 4: Left: the lower and upper bounds for MmSL(in)
n for symmetric

Leja points show that MmSL(in)
n grows polynomially. Right: the ratio

MmSL(in)
n /d(in) grows polynomially as well.

(here we use the active set method, see e.g. [27]) with different initial guesses,
we obtain a suboptimal solution, which is however sufficient for our purposes.

Results are reported in Figure 4, and show that we can assume a polyno-

mial growth for MmSL(in)
n and for MmSL(in)

n /d(in); yet, the theory previously
developed could be still be applied, at the price of modifying the auxiliary prof-
its P b introduced in Lemma 7 by changing the rates gn with gbn = gn(1 − ε)
for every ε > 0 and the constant CM with another constant CM(ε) increasing
as ε→ 0.

The same conclusion can be deduced for the R-Leja sequence, thanks to
the results stated in [10], where a polynomial growth is proved for the standard
“L∞” constant for this sequence of points.

Gauss–Patterson. These nodes are tabulated (see [28]). In particular, there
holds

mGP (0) = 0, mGP (in) =

in−1∑
k=0

2k

therefore dGP (in) = 2in−1, hence Assumption A3 holds with Cm = 2, while
we can verify again the validity of Assumption A2 numerically.

The numerical results are shown in Figure 5, and suggest that both MmGP (in)
n,est

and the ratio MmGP (in)
n /d(in) may asymptotically grow more than polynomi-

ally, hence we cannot use the results obtained in the previous Sections to derive
the convergence of the quasi-optimal sparse built with Gauss–Patterson knots.

6.2 Numerical results

In this Section we consider three different “inclusions” geometries, with N =
2, 4 and 8 inclusions respectively (see Figure 3), with ymin = −0.99 and ymax =
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Fig. 5: The lower and upper bounds for MmSL(in)
n for Gauss–Patterson points

(left plot) and the corresponding ratios MmSL(in)
n /d(in) are not bounded.

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8
test N = 2 1 0.0035
test N = 4 1 0.06 0.0035 0.0002
test N = 8 1 0.25 0.06 0.015 0.0035 0.0009 0.0002 0.00005

Table 1: Values of the coefficients γn for the anisotropic settings. Inclusions
are numbered anticlockwise, starting from the bottom-left (south-west) corner.

0.99. We set homogeneous Dirichlet boundary conditions and use a constant
forcing term defined on the square subdomain F located in the center of the
physical domain D (see again Figure 3), i.e. f(x) = 100χF (x). Each geometry
is considered both in an isotropic setting (i.e. γn in (32) are set to 1 for all
n = 1, . . . , N) and an anisotropic setting (see Table 1 for the values of γn).

As already mentioned, we will test the performances of two different ver-
sions of the quasi-optimal sparse grid proposed in the previous section: one us-
ing nested points, which implies using Clenshaw–Curtis points and the profits
in (14), and one with non-nested points, which implies using Gauss–Legendre
points and the profits in (17); from here on, we will denote these two grids
as “OPT-N” and “OPT-NN”. In particular, we will verify the accuracy of the
convergence ansatz∥∥∥u− SmI(w)[u]

∥∥∥
V⊗L2

%(Γ )
≤ αn exp

(
−βnN N

√
WI(w),m

)
, (37)

for nested points and of∥∥∥u− SmI(w)[u]
∥∥∥
V⊗L2

%(Γ )
≤ αnn exp

(
−βnnN 2N

√
WI(w),m

)
(38)

for non-nested points, where αn, βn, αnn, βnn are numerical values. In practice,
we introduce the bounded linear functional Θ : V → R,

Θ(u) =

∫
F

u(x)dx



Convergence of quasi-optimal sparse grid approximation for random PDEs 33

test N = 2 test N = 4 test N = 8
y1 1.41 (1) 1.41 (1) 1.41 (1)
y2 7.16 (5) 4.31 (3) 2.88 (2)
y3 7.16 (5) 4.31 (3)
y4 10.01 (7) 5.70 (4)
y5 7.16 (5)
y6 8.51 (6)
y7 10.01 (7)
y8 11.40 (8)

Table 2: Absolute and normalized values of the anisotropy rates gn for the
anisotropic settings. The normalized values are shown in parenthesis, and are
defined as gn/g1. Inclusions are numbered anticlockwise, starting from the
bottom-left (south-west) corner. Finally, in the isotropic setting the value of
g is g = 1.41 for all variables.

and we monitor the convergence of the quantity

ε =

√
E
[(
Θ(SmI(w)[u])−Θ(u)

)2]
, (39)

with respect to number of sparse grid points, that will converge with the same

rate as the full error
∥∥∥u− SmI(w)[u]

∥∥∥
V⊗L2

%(Γ )
, given the linearity of Θ.

Moreover, from a practical point of view, it is important to observe that
using the logarithm of the Bernstein radii δn to estimate the quantities gn
needed in the sparse grid construction (cf. equations (14) and (17)) turns
out to be very pessimistic, as observed in [4,6,8]. Such quantities are better
assessed with the numerical procedure described in [4,6]: the results are shown
in Table 2.

Remark 7 In our numerical experiments, the set of the w largest profits is al-
ways downward closed, i.e. we never have to explicitly enforce the admissibility
condition (2), both in the nested and non-nested case. By following closely the
argument in [31, Chapter 6, Lemma 19] it is actually easy to show that, regard-
less of the values of g1, . . . , gN , the set of the w largest profits is necessarily
downward closed when considering Gauss–Legendre points. Conversely, the set
of the w largest profits is downward closed when considering Clenshaw–Curtis
points only under the assumption that the rates gn are sufficiently large. How-
ever, such condition is very mild (gn ≥ ḡ ≈ 0.13) and satisfied by the values
in Table 2.

We will furthermore compare the performances of the quasi-optimal sparse
grids “OPT-N” and “OPT-NN”, with that of a number of different sparse grid
schemes. In particular, we will consider:

1. A standard sparse grid (labeled “SM”) built with the classical Clenshaw–
Curtis abscissas, together with the level-nodes relation m(in) = mdb(i) and
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using the multi-index set

ISM(w) =

{
i ∈ NN+ :

N∑
n=1

(in − 1) ≤ w

}
,

and its anisotropic counterpart (“aSM”)

IaSM(w) =

{
i ∈ NN+ :

N∑
n=1

gn(in − 1) ≤ w

}
,

proposed in [26,4]; the rates gn used here are those listed in Table 2.
2. The (anisotropic) Total Degree sparse grid (labeled respectively “TD” and

“aTD”) proposed in [4] with Gauss–Legendre points, m(in) = mlin(i) and

ITD(w) =

{
i ∈ NN+ :

N∑
n=1

(in − 1) ≤ w

}
,

IaTD(w) =

{
i ∈ NN+ :

N∑
n=1

gn(in − 1) ≤ w

}
,

again, the rates gn used here are those listed in Table 2.
3. The adaptive strategy proposed by [19], in the implementation provided

by [23] and available at http://www.ians.uni-stuttgart.de/spinterp

(labeled “KL”). As already mentioned in the introduction and in Section
3, this is an adaptive algorithm that explores the set of admissible hi-
erarchical surpluses and adds to the sparse grid approximation the most
“profitable” ones, according to suitable a-posteriori estimates. The imple-
mentation considered here has a tunable parameter ω̃ that allows one to
move continuously from the standard sparse grid just described (ω̃ = 0)
to the fully adaptive algorithm (ω̃ = 1). Following [23] , in the present
work we have set ω̃ = 0.9, that numerically has been proved to be a well
performing choice. Clearly, this strategy is bounded to use nested (i.e.
Clenshaw–Curtis) points, and (at least in the implementation considered
here) works only on problems with a finite number of dimensions. We will
measure the convergence of this algorithm in terms of the total number of
points, i.e. including also those necessary to explore the set of hierarchical
surpluses.

4. Two “brute force” approximations of the quasi-optimal sparse grid (one
for the nested points case and one for the non-nested points case, labeled
“BF-N” and “BF-NN” respectively), that we obtain by first computing
numerically the profits of all the hierarchical surpluses in a sufficiently large
“universe” U ⊂ NN+ (see Table 3) and then sorting them in decreasing order.
Whenever such ordering does not satisfy the admissibility condition (2),
all the hierarchical surpluses needed are added (this approach is equivalent
to modifying the profits according to (9)). These grids were computed for
N = 2 and N = 4 only.
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test case U-nested U-non nested MC samples
iso2D TD(8) TD(8) 6000
iso4D TD(8) TD(8) 25000
iso8D TD(10) TD(10) 50000
aniso2D TD(6) TD(10) 5000
aniso4D TD(6) TD(13) 15000
aniso8D TD(10) TD(13) 25000

Table 3: Universe U and size of Monte Carlo sample considered in each com-
putational test. Due to the different level-to-nodes relations used, we use two
different sets U for the nested and non-nested case.

The error (39) has been computed with a Monte Carlo sampling, see Table
3; we emphasize that the number of Monte Carlo samples used has been verified
to be sufficient for our purposes. The same sampling strategy has also been
employed for the computation of the profits needed to build the brute force
sparse grids “BF-N” and “BF-NN”.

We show the results for the isotropic and anisotropic setting in Figures
6 and 7 respectively; from the analysis of the numerical results, several con-
clusions can be drawn. First, the proposed profit estimates are quite sharp,
both in the nested and non-nested case, since the convergence curves for the
“brute force” sparse grids “BF-N”/“BF-NN” and their estimated counterparts
“OPT-N”/“OPT-NN” are very close in every test. Observe that while this was
expected for “BF-N” and “OPT-N”, given the corresponding results presented
in previous works [6,7], this was not obvious for “BF-NN” and “OPT-NN”,
given the pessimistic approach adopted to estimate the work contribution of
each hierarchical surplus. The non-monotone convergence curve for the “OPT-
NN” scheme can be explained with the fact, already pointed out, that increas-
ing the number of multi-indices does not necessarily lead to an increase of
the number of total points in a sparse grid when using non-nested points (cf.
Figure 2 and Example 1).

Second, “OPT-N” is found to be more efficient than “OPT-NN”, as ex-
pected given the convergence Theorems 2 and 3; “OPT-N” is furthermore
found to be competitive with the a-posteriori sparse grid construction (“KL”),
again in agreement with the previous work [6].

Third, comparing the performance of “OPT-N” and “OPT-NN” with that
of non-optimized sparse grids, like the Smolyak and Total Degree ones (“SM”/“aSM”
and “TD”/“aTD”), we see that the “TD”/“aTD” convergence behavior closely
resembles that of “OPT-NN”, while the same does not hold true for the nested-
points corresponding grids, i.e. “SM”/“aSM” versus “OPT-N”. Indeed, if on
the one hand in the isotropic setting “SM” is competitive with the nested
quasi-optimal grid (although less efficient for low tolerances), on the other
hand “aSM” is instead quite less efficient than “OPT-N”, and even less effi-
cient than the isotropic “SM” for low values of N , i.e. N = 2, 4. Observe also
the significant loss of efficiency caused by using isotropic approximations in
the anisotropic setting as the number of variables increases, highlighting the
need for anisotropic approximation schemes.
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Fig. 6: Results for the isotropic setting. Top row: case N = 2; middle row:
case N = 4; bottom row: case N = 8. Left column: sparse grids with nested
points; right column: sparse grid with non-nested points.

Next, we verify the sharpness of the theoretical bounds provided in Theo-
rems 2 and 3, and in particular of the convergence ansatz (37)-(38). To this end,
we plot in semi-logarithmic scale the quantities N N

√
WI(w),m, N 2N

√
WI(w),m

versus the sparse grid error for “OPT-N” and “OPT-NN” sparse grids. Results
are shown in Figure 8: we correctly get straight lines, thus suggesting that the
ansatz can be considered quite effective.
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Fig. 7: Results for the anisotropic setting. Top row: case N = 2; middle
row: case N = 4; bottom row: case N = 8. Left column: sparse grids with
nested points; right column: sparse grid with non-nested points.

Finally, we investigate the convergence of the expected value of Θ(u),∣∣E[SmI(w)[Θ(u)]−E [Θ(u)]
∣∣, see Figures 9 and 10. As expected, the convergence

in this case is faster than the convergence of the full V ⊗L2
%(Γ ) norm inspected

previously. Moreover, the convergence is significantly less smooth than the pre-
vious case, due to cancellations among hierarchical surpluses. Finally, in the
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Fig. 8: Verification of the quasi-optimal sparse grid convergence estimates.
Top row: nested case; bottom row: non-nested case. Left column: isotropic
setting; right column: anisotropic setting.

anisotropic setting the non-nested grids are surprisingly competitive with the
nested schemes. A possible explanation for this is that in this test we are ac-
tually considering the quadrature capabilities of the sparse grids rather than
the interpolation ones, for which Gaussian collocation points are particularly
suitable. Beside this aspect, the other observations on the performances of the
sparse grids schemes are the same as the previous case.

7 Conclusions

In this work we have proved an error estimate for the stochastic collocation
based on quasi-optimal sparse grid constructed by choosing the w most prof-
itable hierarchical surpluses, that is the w surpluses with the highest error
reduction / cost ratio. The convergence of such grid is proved in terms of
weighted τ -summability of such profits: as the true profits are unknown, we
propose to build the quasi-optimal sparse grid introducing a-priori estimates
on the decay of the profits. We have then considered the application of such
quasi-optimal sparse grid to Hilbert-valued functions which are analytic in
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Fig. 9: Results for the isotropic setting, convergence of the expected value
of Θ(u). Top row: case N = 2; middle row: case N = 4; bottom row: case
N = 8. Left column: sparse grids with nested points; right column: sparse grid
with non-nested points.

certain polyellipses. We have considered two variations of the scheme, one us-
ing nested collocation points and the other one using non-nested points; in
both cases we were able to derive profit bounds and prove the corresponding
τ -summability. After having verified that the solution of the so-called “inclu-
sion problem” satisfied the above-mentioned analyticity Assumption, we have
shown with some numerical tests that the profit estimates are quite sharp and
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Fig. 10: Results for the anisotropic setting, convergence of the
expected value of Θ(u). Top row: case N = 2; middle row: case N = 4;
bottom row: case N = 8. Left column: sparse grids with nested points; right
column: sparse grid with non-nested points.

that the convergence results provide the correct ansatz for the error decay,
though with constants fitted numerically. The proposed method is therefore
competitive with the a-posteriori adaptive scheme [23], and possibly outper-
forms the previously proposed anisotropic sparse grids.
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