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Abstract

While feature point recognition is a key component of modern approaches to object detection,

existing approaches require computationally expensive patch preprocessing to handle perspective distor-

tion. In this paper, we show that formulating the problem in a Naive Bayesian classification framework

makes such preprocessing unnecessary and produces an algorithm that is simple, efficient, and robust.

Furthermore, it scales well as number of classes grows.

To recognize the patches surrounding keypoints, our classifier uses hundreds of simple binary

features and models class posterior probabilities. We make the problem computationally tractable by

assuming independence between arbitrary sets of features. Even though this is not strictly true, we

demonstrate that our classifier nevertheless performs remarkably well on image datasets containing very

significant perspective changes.

Index Terms

Image processing and computer vision, object recognition, tracking, image registration, feature

matching, naive bayesian
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I. INTRODUCTION

Identifying textured patches surrounding keypoints across images acquired under widely vary-

ing poses and lightning conditions is at the heart of many Computer Vision algorithms. The

resulting correspondences can be used to register different views of the same scene, extract 3D

shape information, or track objects across video frames. Correspondences also play a major role

in object category recognition and image retrieval applications.

In all these cases, since patch recognition is one of the first and most critical stages in the

algorithmic pipeline, reliability and speed are key to the overall success and practicality of

the corresponding applications. Achieving both is difficult because surface appearance around a

keypoint can vary drastically depending on how the images were captured. The standard approach

to addressing this problem is to build affine-invariant descriptors of local image patches and to

compare them across images. This usually involves fine scale selection, rotation correction, and

intensity normalization [23], [22]. It results in a high computational overhead and often requires

handcrafting the descriptors to achieve insensitivity to specific kinds of distortion.

In earlier work [20], we have shown that casting the matching problem as a more generic

classification problem leads to solutions that are much less computationally demanding. This

approach relies on an offline training phase during which multiple views of the patches to be

matched are used to train randomized trees [2] to recognize them based on a few pairwise

intensity comparisons. This yields both fast run-time performance and robustness to viewpoint

and lighting changes.

Here we show that the trees can be profitably replaced by non-hierarchical structures that we

refer to as ferns to classify the patches. Each one consists of a small set of binary tests and

returns the probability that a patch belongs to any one of the classes that have been learned

during training. These responses are then combined in a Naive Bayesian way. As before, we

train our classifier by synthesizing many views of the keypoints extracted from a training image

as they would appear under different perspective or scale. The ferns are just as reliable as the

randomized trees but much faster and simpler to implement. The code that implements patch

evaluation can be written in ten lines of C++ code, which highlights the simplicity of the resulting

implementation and the complete software package is available [29] 1.

1We make the code available under http://cvlab.epfl.ch/software
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The binary tests we use as classifier features are picked completely at random, which puts

our approach firmly in the camp of techniques that rely on randomization to achieve good

performance [1]. We will show that this is particularly effective for applications such as real-

time 3D object detection and Simultaneous Localization and Mapping (SLAM) that require scale

and perspective invariance, involve a very large number of classes, but can tolerate significant

error rates since we use robust statistical methods to exploit the information provided by the

correspondences. Furthermore, our approach is particularly easy to implement, does not overfit,

does not require ad hoc patch normalization, and allows fast and incremental training.

II. RELATED WORK

Due to its robustness to partial occlusions and computational efficiency, recognition of image

patches extracted around detected keypoints is crucial for many vision problems. As a result,

two main classes of approaches have been developed to achieve robustness to perspective and

lighting changes.

The first family relies on local descriptors designed to be invariant, or at least robust, to specific

classes of deformations [30], [22]. These approaches usually rely on the fine scale and rotation

estimates provided by the keypoint detector. Among these, the SIFT vector [22], computed from

local histograms of gradients, has been shown to work remarkably well and we will use it as a

benchmark for our own approach. It has also been shown that keypoints can be used as visual

words [31] for fast image retrieval in very large image databases [27]. Keypoints are labeled

by hierarchical k-means [5] clustering based on their SIFT descriptors. This makes it possible

to use very many visual words. However, performance is measured in terms of the number of

correctly retrieved documents rather than the number of correctly classified keypoints, which is

the important criterion for applications such as pose estimation or SLAM.

A second class relies on statistical learning techniques to compute a probabilistic model of

the patch. The one-shot approach of [13] uses PCA and Gaussian Mixture Models but does not

account for perspective distortion. Since the set of possible patches around an image feature

under changing perspective and lightning conditions can be seen as a class, we showed that this

problem can be overcome by training a set of Randomized Trees [2] to recognize feature points

independently of pose [20]. This is done using a database of patches obtained by warping those

found in a training image by randomly chosen homographies.
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Fig. 1. Matching a mouse pad in a 1074-frame sequence against a reference image. The reference image appears at the top and

the input image from the video sequence at the bottom. : Top row. Matches obtained using ferns in a few frames. Middle row.

Matches obtained using SIFT in the same frames. Bottom row. Scatter plot showing the number of inliers for each frame. The

values on the x and y axes give the number of inliers for Ferns and SIFT, respectively. Most of the time, the Ferns match at

least as many points as SIFT and often even more, as can be seen from the fact that most of the points lay below the diagonal.
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This approach is fast and effective to achieve the kind of object detection depicted by Figure 1.

Note that unlike in traditional classification problems, a close-to-perfect method is not required,

because the output of the classifier can be filtered by a robust estimator. However the classifier

should be able to handle many classes—typically more than 400— simultaneously without

compromising performance or speed. For this purpose, we will demonstrate that the approach

we propose is even faster than the trees [20], more scalable, and just as reliable.

Local Binary Patterns [28], also rely on binary feature statistics by describing the underlying

texture in terms of histograms of binary features over all pixels of a target region. While such

a description is appropriate for texture classification, it is not directly suitable for keypoint

characterization since histograms are built in this way, it will lose the spatial information between

the features. By contrast, we compute the statistics of the binary features over example patches

seen from different viewpoints and use independence assumptions between groups of features,

hence using many more features centered on the keypoint location, to improve the recognition

rate.

The Real-Time SLAM method of [35] also extends the RT’s into lists of features (very similar

to our Ferns), but the full posterior distribution over binary features are replaced by a single bit.

This design choice is aimed at significantly reducing the memory requirements while correctly

matching the sparse set of visible landmarks at a time. For maximum performance, we model

the full joint probability of the features. Memory requirements can be tackled by using fixed

point representations that require fewer bits than the standard floating point representation.

Trees and Ferns have recently been used for the image classification task, as a replacement for

a multi-way Support Vector Machine [6]. The binary features are computed on shape and texture

descriptors, hence gaining invariance to local deformations. The distributions are computed over

different instances of the same class, but unlike our approach the posteriors from different Trees

and Ferns are combined by averaging in both cases. The results match our own observations

that using either Fern or Tree structures leads to similar classification performance.

III. A SEMI-NAIVE BAYESIAN APPROACH TO PATCH RECOGNITION

As discussed in Section II, image patches can be recognized on the basis of very simple

and randomly chosen binary tests that are grouped into decision trees and recursively partition

the space of all possible patches [20]. In essence, we treat the set of possible appearances of
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a keypoint as classes and the Randomized Trees (RTs) embody a probability distribution over

these classes. In practice, no single tree is discriminative enough when there are many classes.

However, using a number of trees and averaging their votes yields good results because each

one partitions the feature space in a different way.

In this section, we will argue that, when the tests are chosen randomly, the power of the

approach derives not from the tree structure itself but from the fact that combining groups

of binary tests allows improved classification rates. Therefore, replacing the trees by our non-

hierarchical ferns and pooling their answers in a Naive Bayesian manner yields better results

and scalability in terms of number of classes. As a result, we can combine many more features,

which is key to improved recognition rates.

We first show that our non-hierarchical fern structures fit nicely into a Naive Bayesian frame-

work and then explain the training protocol which is similar to the one used for RTs.

A. Formulation of Feature Combination

As discussed in Section II we treat the set of all possible appearances of the image patch

surrounding a keypoint as a class. Therefore, given the patch surrounding a keypoint detected

in an image, our task is to assign it to the most likely class. Let ci, i = 1, . . . , H be the set of

classes and let fj, j = 1, . . . , N be the set of binary features that will be calculated over the

patch we are trying to classify. Formally, we are looking for

ĉi = argmax
ci

P (C = ci | f1, f2, . . . , fN) ,

where C is a random variable that represents the class. Bayes’ Formula yields

P (C = ci | f1, f2, . . . , fN) =
P (f1, f2, . . . , fN | C = ci)P (C = ci)

P (f1, f2, . . . , fN)
.

Assuming a uniform prior P (C), since the denominator is simply a scaling factor that it is

independent from the class, our problem reduces to finding

ĉi = argmax
ci

P (f1, f2, . . . , fN | C = ci) . (1)

In our implementation, the value of each binary feature fj only depends on the intensities of

two pixel locations dj,1 and dj,2 of the image patch. We therefore write

fj =







1 if I(dj,1) < I(dj,2)

0 otherwise
,
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where I represents the image patch. Since these features are very simple, we require many

(N ≈ 300) for accurate classification. Therefore a complete representation of the joint probability

in Eq. (1) is not feasible since it would require estimating and storing 2N entries for each class.

One way to compress the representation is to assume independence between features. An extreme

version is to assume complete independence, that is,

P (f1, f2, . . . , fN | C = ci) =
N
∏

j=1

P (fj | C = ci) .

However this completely ignores the correlation between features. To make the problem

tractable while accounting for these dependencies, a good compromise is to partition our features

into M groups of size S = N
M
. These groups are what we define as Ferns and we compute the

joint probability for features in each Fern. The conditional probability becomes

P (f1, f2, . . . , fN | C = ci) =
M
∏

k=1

P (Fk | C = ci) , (2)

where Fk = {fσ(k,1), fσ(k,2), . . . , fσ(k,S)}, k = 1, . . . , M represents the kth fern and σ(k, j) is a

random permutation function with range 1, . . . , N . Hence, we follow a Semi-Naive Bayesian [36]

approach by modelling only some of the dependencies between features. The viability of such

an approach has been shown by [18] in the context of image retrieval applications.

This formulation yields a tractable problem that involves M×2S parameters, with M between

30-50. In practice, as will be shown in Section IV, S = 11 yields good results. M×2S is therefore

in the order of 80000, which is much smaller than 2N with N ≈ 450 that the full joint probability

representation would require. Our formulation is also flexible since performance/memory trade-

offs can be made by changing the number of Ferns and their sizes.

Note that we use randomization in feature selection but also in grouping. An alternative

approach would involve selecting feature groups to be as independent from each other as possible.

This is routinely done by Semi-Naive Bayesian classifiers based on a criteria such as the mutual

information between features [8]. However, in practice, we have not found this to be necessary

to achieve good performance. We have therefore chosen not to use such a strategy to preserve

the simplicity and efficiency of our training scheme and to allow for incremental training.

November 7, 2008 DRAFT



7

B. Training

We assume that at least one image of the object to be detected is available for training. We

call any such image as a model image. Training starts by selecting a subset of the keypoints

detected on these model images. This is done by deforming the images many times, applying

the keypoint detector, and keeping track of the number of times the same keypoint is detected.

The keypoints that are found most often are assumed to be the most stable and retained. These

stable keypoints are assigned a unique class number.

The training set for each class is formed by generating thousands of sample images with

randomly picked affine deformations by sampling the deformation parameters from a uniform

distribution, adding Gaussian noise to each sample image, and smoothing with a Gaussian filter

of size 7×7. This increases the robustness of the resulting classifier to run-time noise, especially

when there are features that compare two pixels on a uniform area.

The training phase estimates the class conditional probabilities P (Fm | C = ci) for each Fern

Fm and class ci, as described in Eq. 2. For each Fern Fm we write these terms as:

pk,ci
= P (Fm = k | C = ci) , (3)

where we simplify our notations by considering Fm to be equal to k if the base 2 number formed

by the binary features of Fm taken in sequence is equal to k. With this convention, Ferns can

take K = 2S values and, for each one, we need to estimate the pk,ci
, k = 1, 2, . . . , K under the

constraint
K

∑

k=1

pk,ci
= 1.

The simplest approach would be to assign the maximum likelihood estimate to these parameters

from the training samples. For parameter pk,ci
it is

pk,ci
=

Nk,ci

Nci

,

where Nk,ci
is the number of training samples of class ci that evaluates to Fern value k and Nci

is the total number of samples for class ci. These parameters can therefore be estimated for each

Fern independently.

In practice however, this simple scheme yields poor results because if no training sample for

class ci evaluates to k, which can easily happen when the number of samples is not infinitely

large, both Nk,ci
and pk,ci

will be zero. Since we multiply the pk,cj
for all Ferns, it implies
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Fig. 2. Recognition rate as a function of log(Nr) using the three test images of Section IV. The recognition rate remains

relatively constant for 0.001 < Nr < 2. For Nr < 0.001 it begins a slow decline, which ends in a sudden drop to about 50%

when Nr = 0. The rate also drops when Nr is too large because too strong a prior decreases the effect of the actual training

data, which is around 10000 samples for this experiment.

that, if the Fern evaluates to k, the corresponding patch can never be associated to class ci, no

matter the response of the other Ferns. This makes the Ferns far too selective because the fact

that pk,ci
= 0 may simply be an artifact of the necessarily limited size of the training set. To

overcome this problem we take pk,ci
to be

pk,ci
=

Nk,ci
+ Nr

Nci
+ K × Nr

,

where Nr represents a regularization term, which behaves as a uniform Dirichlet prior [4] over

feature values. If a sample with a specific Fern value is not encountered during training, this

scheme will still assign a non-zero value to the corresponding probability. As illustrated by

Figure 2, we have found our estimator to be insensitive to the exact value of Nr and we use

Nr = 1 in all our experiments. However, having Nr be strictly greater than zero is essential.

This tallies with the observation that combining classifiers in a Naive Bayesian fashion can be

unreliable if improperly done [19].

In effect, our training scheme marginalizes over the pose space since the class conditional

probabilities P (Fm | C = ci) depend on the camera poses relative to the object. By densely

sampling the pose space and summing over all samples, we marginalize over these pose param-
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Fig. 3. Ferns vs Trees. A tree can be transformed into a Fern by performing the following steps. First, we constrain the tree

to systematically perform the same test across any given hierarchy level, which results in the same feature being evaluated

independently of the path taken to get to a particular node. Second, we do away with the hiearchical structure and simply store

the feature values at each level. This means applying a sequence of tests to the patch, which is what Ferns do.

(a) (b)

Fig. 4. The feature spaces of Trees and Ferns. Although the space of tree features seems much higher dimensional, it is not

because only a subset of features can be evaluated. (a) For the simple tree on the left only the 4 combination of feature values

denoted by green circles are possible. (b) The even simpler Fern on the left also yields 4 possible combinations of feature values

but a much simpler structure. As shown below, this simplicity does not entail any performance loss.

eters. Hence at run-time, the statistics can be used in a pose independent manner, which is key

to real-time performance. Furthermore, the training algorithm itself is very efficient since it only

requires storing the Nk,ci
counts for each fern while discarding the training samples immediately

after use, which means that we can use arbitrarily many if need be.

IV. COMPARISON WITH RANDOMIZED TREES

As shown in Figures 3 and 4, Ferns can be considered as simplified trees. Whether or not this

simplification degrades their classification performance hinges on whether our randomly chosen
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Fig. 5. The recognition rate experiments are performed on three images that show different texture and structures. Image size

is 640× 480 pixels.

binary features are still appropriate in this context. In this section, we will show that they are

indeed. In fact, because our Naive Bayesian scheme outperforms the averaging of posteriors used

to combine the output of the decision trees [20], the Ferns are both simpler and more powerful.

To compare RTs and Ferns, we experimented with the three images of Figure 5. We warp

each image by repeatedly applying random affine deformations and detect Harris corners in the

deformed images. We then select the most stable 250 keypoints per image based on how many

times they are detected in the deformed versions to use in the following experiments and assign

a unique class id to each of them. The classification is done using patches that are 32×32 pixels

in size.

Ferns differ from trees in two important respects: The probabilities are multiplied in a Naive-

Bayesian way instead of being averaged and the hierarchical structure is replaced by a flat one.

To disentangle the influence of these changes, we consider four different scenarios:

• Using Randomized Trees and averaging of class posterior distributions, as in [20],

• Using Randomized Trees and combining class conditional distributions in a Naive-Bayesian

way,

• Using Ferns and averaging of class posterior distributions,

• Using Ferns and combining class conditional distributions in a Naive-Bayesian way, as we

advocate in this paper.

The trees are of depth 11 and each Fern has 11 features, yielding the same number of parameters
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(a)

(b)

(c)

Fig. 6. Warped patches from the images of Figure 5 show the range of affine deformations we considered. In each line, the left

most patch is the original one and the others are deformed versions of it. (a) Sample patches from the City image. (b) Sample

patches from the Flowers image. (c) Sample patches from the Museum image.

for the estimated distributions. Also the number of features evaluated per patch is equal in all

cases.

The training set is obtained by randomly deforming images of Figure 5. To perform these

experiments, we represent affine image deformations as 2 × 2 matrices of the form

RθR−φdiag(λ1, λ2)Rφ ,

where diag(λ1, λ2) is a diagonal 2 × 2 matrix and Rγ represents a rotation of angle γ. Both to

train and to test our ferns, we warped the original images using such deformations computed by

randomly choosing θ and φ in the [0 : 2π] range and λ1 and λ2 in the [0.6 : 1.5] range. Fig. 6

depicts patches surrounding individual interest points first in the original images and then in the

warped ones. We used 30 random affine deformations per degree of rotation to produce 10800
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Fig. 7. Left Column. The average percentage of correctly classified image patches over many trials is shown as the number of

Trees or Ferns is changed. Using the Naive Bayesian assumption gives much better rates at reduced number of structures, while

the Fern and tree structures are interchangeable. Right Column. The scatter plots show the recognition rate over individual

trials with 50 Ferns. The recognition rates for the Naive-Bayesian combination and posterior averaging are given in the x and

y axes, respectively. The Naive-Bayesian combination of features usually performs better, as evidenced by the fact that most

points are below the diagonal, and only very rarely produce recognition rates below 80%. By contrast the averaging produces

rates below 60%.
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TABLE I

VARIANCE OF THE RECOGNITION RATE

Number of Structures 10 15 20 25 30 35 40 45 50

Fern-Naive 0.5880 0.2398 0.1116 0.0624 0.0481 0.0702 0.0597 0.0754 0.0511

Fern-Avg 0.3333 0.2138 0.2869 0.2360 0.3522 0.3930 0.3469 0.4087 0.2973

Tree-Naive 0.3684 0.1861 0.1255 0.0663 0.0572 0.0379 0.0397 0.0186 0.0095

Tree-Avg 0.3009 0.2156 0.1284 0.1719 0.1631 0.1694 0.1497 0.1683 0.1954

images. As explained in Section III-B, we then added Gaussian noise with zero mean and a

large variance—25 for gray levels ranging from 0 to 255—to these warped images to increase

the robustness of the resulting ferns. Gaussian smoothing with a mask of 7 × 7 is applied to

both training and test images.

The test set is obtained by generating a separate set of 1000 images in the same affine

deformation range and adding noise. Note that we simply transform the original keypoint loca-

tions, therefore we ignore the keypoint detector’s repeatability in the tests and measure only the

recognition performance. In Figure 7, we plot the results as a function of the number of trees

or Ferns being used.

We first note that using either flat Fern or hierarchical tree structures does not affect the

recognition rate, which was to be expected as the features are taken completely at random. By

contrast the Naive-Bayesian combination strategy outperforms the averaging of posteriors and

achieves a higher recognition rate even when using relatively few structures. Furthermore as

the scatter plots of Figure 7 show, for the Naive-Bayesian combination the recognition rate on

individual deformed images never falls below an acceptable rate. Since the features are taken

randomly, the recognition rate changes and the variance of the recognition rate is given as

Table I. As more Ferns or Trees are used the variance decreases and more rapidly for the naive

combination. If the number of Ferns or Trees are below 10, the recognition rate starts to change

more erratically and entropy based optimization of feature selection becomes a necessity.

To test the behavior of the methods as the number of classes is increased, we have trained

classifiers for matching up to 1500 classes. Figure 8 shows that the performance of the Naive-

Bayesian combination does not degrade rapidly and scales much better than averaging posteriors.
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Fig. 8. Recognition rate as a function of the number of classes. While the naive combination produces a very slow decrease

in performance, posterior averaging exhibits a much sharper drop. The tests are performed on the high resolution versions of

the City and Flowers data, respectively.
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Fig. 9. Recognition rate (a) and computation time (b) as a function of the amount of memory available and the size of the

Ferns being used. The number of ferns used is indicated on the top of each bar and the y-axis shows the Fern size. The color

of the bar represents the required memory amount, which is computed for distributions stored with single precision floating

numbers. Note that while using many small ferns achieves higher recognition rates, it also entails a higher computational cost.

For both methods, the required amounts of memory and computation times increase linearly with

the number of classes, since we assign a separate class for each keypoint.

So far, we have used 11 features for each Fern, and we now discuss the influence of this

number on recognition performance, and memory requirements.

Increasing the Fern size by one doubles the number of parameters hence the memory required
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to store the distributions. It also implies that more training samples should be used to estimate

the increased number of parameters. It has however negligible effect on the run-time speed and

larger Ferns can therefore handle more variation at the cost of training time and memory but

without much of a slow-down.

By contrast adding more Ferns to the classifier requires only a linear increase in memory but

also in computation time. Since the training samples for other Ferns can be reused it only has a

negligible effect on training time. As shown in Figure 9, for a given amount of memory the best

recognition rate is obtained by using many relatively small Ferns. However this comes at the

expense of run-time speed and when sufficient memory is available, a Fern size of 11 represents

a good compromise, which is why we have used this value in the experiments.

Finally we evaluate the behavior of the classifier as a function of the number of training

samples. Initially, we use 180 training images that we generate by warping the images of Figure 5

by random scaling parameters and deformation angle φ, while the rotation angle θ is uniformly

sampled at every two degrees. We then increase the number of training samples by 180 at each

step. The graphs depicted by Figure 10 show that the Naive-Bayesian combination performs

consistently better than the averaging, even when only a small number of training samples are

used.

V. EXPERIMENTS

We evaluate the performance of Fern based classification for both planar and fully three

dimensional object detection and SLAM based camera tracking. We also compare our approach

against SIFT [22], which is among the most reliable descriptors for patch matching.

A. Ferns vs SIFT to detect planar objects

We used the 1074-frame video depicted by Figure 1 to compare Ferns against SIFT for planar

object detection. It shows a mouse pad undergoing motions involving a large range of rotations,

scalings, and perspective deformations against a cluttered background. We used as a reference

an image in which the mouse pad is seen frontally. We match the keypoints extracted from each

input image against those found in the reference image using either Ferns or SIFT and then

eliminate outliers by computing a homography using RANSAC.
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Fig. 10. Recognition rate as a function of the number of training samples for each one of the three images of Figure 5. As

more training samples are used the recognition rate increases and it does so faster for the Naive-Bayesian combination of Ferns.

The SIFT keypoints and the corresponding descriptors are computed using the publicly avail-

able code kindly provided by David Lowe [21]. The keypoint detection is based on the Difference

of Gaussians over several scales and for each keypoint dominant orientations are precomputed.

By contrast the Ferns rely on a simpler keypoint detector that computes the maxima of Laplacian

on three scales, which provides neither dominant orientation information nor a finely estimated

scale. We retain the 400 strongest keypoints in the reference image, and 1000 keypoints in the

input images for the two methods.

We train 20 Ferns of size 14 to establish matches with the keypoints on the video frame by

selecting the most probable class. In parallel, we match the SIFT descriptors for the keypoints

on the reference image against the keypoints on the input image by selecting the one which has
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the nearest SIFT descriptor. Given the matches between the reference and input image, we use a

robust estimation followed by non-linear refinement to estimate a homography. We then take all

matches with reprojection error less than 10 pixels to be inliers. Figure 1 shows that the Ferns

can match as many points as SIFT and sometimes even more.

It is difficult to perform a completely fair speed comparison between our Ferns and SIFT for

several reasons. SIFT reuses intermediate data from the keypoint extraction to compute canonic

scale and orientations and the descriptors, while ferns can rely on a low-cost keypoint extraction.

On the other hand, the distributed SIFT C code is not optimized, and the Best-Bin-First KD-tree

of [3] is not used to speed up the nearest-neighbor search.

However, it is relatively easy to see that our approach requires much less computation.

Performing the individual tests of Section III requires very little time and most of the time is

spent computing the sums of the posterior probabilities. The classification of a keypoint requires

H×M additions, with H the number of classes, and M the number of Ferns. By contrast, SIFT

uses 128H additions and as many multiplications when the Best-Bin-First KD-tree is not used.

This represents an obvious advantage of our method at run-time since M can be much less than

128 and is taken to be 20 in practice, while selecting a large number of features for each fern

and using tens of thousands of training samples.

The major gain actually comes from the fact that Ferns do not require descriptors. This is

significant because computing the SIFT descriptors, which is the most difficult part to optimize,

takes about 1ms on a MacBook Pro laptop without including the time required to convolve the

image. By contrast, Ferns take 13.5 10−3 milliseconds to classify one keypoint into 200 classes

on the same machine. Moreover, ferns still run nicely with a primitive keypoint extractor, such

as the one we used in our experiments. When 300 keypoints are extracted and matched against

200 classes, our implementation on the MacBook Pro laptop requires 20ms per frame for both

keypoint extraction and recognition in 640×480 images, and four fifths of this time are devoted

to keypoint extraction. This corresponds to a theoretical 50Hz frame rate if one does ignore the

time required for frame acquisition. Training takes less than five minutes.

Of course, the ability to classify keypoints fast and work with a simple keypoint detector

comes at the cost of requiring a training stage, which is usually off-line. By contrast, SIFT

does not require training and for some applications, this is clearly an advantage. However for

other applications Ferns offer greater flexibility by allowing us to precisely state the kind of
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(a) (b)

(c) (d)

Fig. 11. When detecting a 3D object viewpoint change is more challenging due to self-occlusions and non-trivial lighting

effects. The images are taken from a database presented in [26] and cover a total range of 70 ◦ of camera rotation. They are

cropped around the object, while we used the original images in the experiments. (a) Horse dataset. (b) Vase dataset. (c) Desk

dataset. (d) Dog dataset.

invariance we require through the choice of the training samples. Ferns also let us incrementally

update the classifiers as more training samples become available as demonstrated by the SLAM

application of Section V-D. This flexibility is key to the ability to carry out offline computations

and significantly simplify and speed-up the run-time operation.

B. Ferns vs SIFT to detect 3D objects

So far we have considered that the keypoints lie on a planar object and evaluated the robustness

of Ferns with respect to perspective effects. This simplifies training as a single view is sufficient

and the known 2D geometry can be used to compute ground truth correspondences. However

most objects have truly three dimensional appearance, which implies that self occlusions and

complex illuminations effects have to be taken into account to correctly evaluate the performance

of any keypoint matching algorithm.

Recently, an extensive comparison of different keypoint detection and matching algorithms on

a large database of 3D objects has been published [26]. It was performed on images taken by a

stereo camera pair of objects rotating on a turntable. Figure 11 shows such images spanning a
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70 ◦ camera rotation range. We used this image database to evaluate the performance of Ferns

for a variety of 3D objects. We compare our results against the SIFT detector/descriptor pair

which has been found to perform very well on this database. The keypoints and the descriptors

are computed using the same software as before [21].

As in [26], we obtained the ground truth by using purely geometric methods, which is possible

because the cameras and the turn table are calibrated. The initial correspondences are obtained

by using the trifocal geometry between the top/bottom cameras in the center view and every

other camera as illustrated by Figure 12. We then reconstruct the 3D points for each such

correspondence in the bottom/center camera coordinate frame and use these to form the initial

tracks that span the −35 ◦/+35 ◦ rotation range around a central view. Since the database images

are separated by 5 ◦, the tracks span 15 images each for the top and bottom cameras. We eliminate

very short tracks and remaining tracks are extended by projecting the 3D point to each image

and searching for a keypoint in the vicinity of the projection. Finally to increase robustness

against spurious tracks formed by outliers, we eliminate tracks covering less then 30% of the

views and the remaining tracks form the ground truth for the evaluation, which is almost free of

outliers. Sample ground truth data is depicted by Figure 13, which shows the complex variations

in patch appearance induced by the 3D structure of the objects.

The training is done using views separated by 10 ◦, skipping every other frame in the ground

truth data. We then use the views we skipped for testing purposes.. This geometry based sampling

is shown in Figure 13. Sampling based on geometry creates uneven number of training and test

samples for different keypoints as there are gaps in the tracks. The sampling could have been

done differently to balance the number of test and training samples for each keypoint. However

our approach to sampling closely mimics what happens in practice when training data comes

from sparse views and the classifier must account for unequal numbers of training samples.

We train the Ferns in virtually the same way we do in the planar case. Each track is assigned

a class number and the training images are deformed by applying random affine deformations.

We then use all of them to estimate the probability distributions, as discussed in Section III.

1000 random affine deformations per training image are used to train 50 Ferns of size 11. Ferns

classify the test patches by selecting the track with the maximum probability. For SIFT, each

test example is classified by selecting the track number of the keypoint in the training set with

the nearest SIFT descriptor.
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Fig. 12. Generating ground truth data for 3D object detection. Each test object contains two sequences of images taken

by the Top and Bottom cameras while the object rotates on the turntable. The camera geometry has been calibrated using a

checkerboard calibration pattern. We use 15 consecutive camera views for evaluation purposes, because it is easy to obtain high

quality calibration for this range of rotation.

In our tests, we learn the appearance and the geometry of a 3D object from several views

and then detect it in new ones by matching keypoints. Hence the learned geometry can be used

to eliminate outliers while estimating the camera pose using the P3P algorithm [16] together

with a robust matching strategy such as RANSAC [14]. Unlike [26], we therefore do not use

the ratio test on descriptor distances or a similar heuristics to reject matches, as this might reject

correct correspondences. The additional computational burden can easily be overcome by using

the classification score for RANSAC sampling as presented by [9].

We compare the recognition rates of both methods on objects with different kinds of texture.

Figure 14 shows the recognition rate on each test image together with the average over all

frames. The Ferns perform as well as nearest neighbor matching with SIFT for a whole range

of objects with very different textures.

Note that, when using Ferns, there is almost no run-time speed penalty for using multiple

frames, since as more training frames are added we can increase the size of our Ferns. As

discussed in Section IV this requires more memory but does not slow down the algorithm in any
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Fig. 13. Samples from the ground truth for the Horse dataset. The image on the left shows the center view. The six keypoint

tracks on the right show the content variation for each patch as the camera center rotates around the turntable center. Each

track contains two lines that correspond to the Top and Bottom cameras, respectively. Black areas denote frames for which the

keypoint detector did not respond. The views produced by a rotation that is a multiple of 10 ◦ are used for training and are

denoted by red labels. The others are used for testing.

meaningful way. By contrast, using more frames for nearest neighbor SIFT matching linearly

slows down the matching, although a clever and approximate implementation might mitigate the

problem.

In theory it should be possible to improve the performance of SIFT-based approach by

replacing nearest neighbor matching with a more sophisticated technique such as K-Nearest

Neighbors with voting. However, this would further slow down the algorithm. Our purpose is to

show that the Fern based classifier can naturally integrate data from multiple images without the

need for a more complex training phase or any handicap in the run-time performance, reaching

the performance of standard SIFT matching.

C. Panorama and 3–D Scene Annotation

With the recent proliferation of mobile devices with significant processing power, there has

been a surge of interest in building real-world applications that can automatically annotate the

photos and provide useful information about places of interest. These applications test keypoint

November 7, 2008 DRAFT



22

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

<−−Top Camera Test Frames−−>            <−−Bottom Camera Test Frames−−>

R
e

c
o

g
n

it
io

n
 R

a
te

Recognition Rate for Horse Dataset

 

 

Average NN−SIFT

Average Ferns

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

<−−Top Camera Test Frames−−>            <−−Bottom Camera Test Frames−−>

R
e

c
o

g
n

it
io

n
 R

a
te

Recognition Rate for Desk Dataset

 

 

Average NN−SIFT

Average Ferns

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

<−−Top Camera Test Frames−−>            <−−Bottom Camera Test Frames−−>

R
e

c
o

g
n

it
io

n
 R

a
te

Recognition Rate for Vase Dataset

 

 

Average NN−SIFT

Average Ferns

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

<−−Top Camera Test Frames−−>            <−−Bottom Camera Test Frames−−>

R
e

c
o

g
n

it
io

n
 R

a
te

Recognition Rate for Dog Dataset

 

 

Average NN−SIFT

Average Ferns

Fig. 14. Recognition rates for 3D objects. Each pair of bars correspond to a test frame. The red bar on the left represents the

rate for Ferns and the light green bar on the right the rate for Nearest Neighbor SIFT matching. The weighted averages over

all frames also appear as dashed line for Ferns and solid line for NN-SIFT. The weights we use are the number of keypoints

per frame.

matching algorithms to their limits because they must operate under constantly changing lighting

conditions and potentially changing scene texture, both of which reduce the number of reliable

keypoints. We have tested Ferns on two such applications, annotation of panorama scenes and

parts of a historical building with 3–D structure. Both applications run smoothly at frame rate

using a standard laptop and an of the shelf web camera. By applying standard optimizations for

embedded hardware, we have ported this implementation onto a mobile device that runs at a few

frames per second. More recently, Ferns have been successfully integrated into commercially
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(a)

(b)

Fig. 15. Automated image annotation (a) We match an input image against a panorama. Despite occlusions, changes in weather

conditions and lighting, the Ferns return enough matches for reliable annotation of major landmarks in the city. (b) We match

an image to an annotated 3–D model, overlaid on the two leftmost images. This lets us display annotations at the right place.

available mobile phones to run at frame rates by taking into account specific limitations of the

hardware and integrating detection with frame-to-frame tracking [34].

For the panorama application, we trained Ferns using an annotated panorama image stitched

from multiple images. At run-time given an input image and after having established correspon-

dences between the panorama and the test image, we compute a 2–D homography and use it to

eliminate outliers and to transfer the annotation from the training image to the input image as

shown in Figure 15. We successfully run a number of tests under different weather conditions

and different times of day.

Annotating a 3–D object requires training using multiple images from different viewpoints,

which is easy to do in our framework as discussed in the previous subsection. We also built a

3–D model for the object using standard structure from motion algorithms to register the training

images followed by dense reconstruction [33], [32]. The resulting fine mesh is too detailed to

be used so it is approximated by a coarse one containing much less detail. Despite its rough

structure, this 3–D model allows annotation of important parts of the object and the correct
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Fig. 16. Ferns applied to SLAM. (a) Initialization: The pattern at the top is detected in the image yielding initial landmarks

and pose. (b) A later image from the sequence, which shows both strong camera shaking and motion blur. When the image is

that bad no correspondences can be established and the tracking is lost. Nevertheless, the system automatically recovers when

the image quality improves thanks to the Ferns.

reprojection of this information onto images taken from arbitrary viewpoints as depicted by

Figure 15.

D. SLAM using Ferns

In this section we demonstrate that Ferns can increase the robustness of a Visual SLAM system.

Their role is twofold. We first use them to bootstrap the system by localizing the camera with

respect to a known planar pattern in the scene. Second, we incrementally train a second set of

Ferns to recognize new landmarks reconstructed by the system. They make the system robust

against severe disturbances such as complete occlusion or strong shaking of the camera, as

evidenced by the smoothness of the recovered camera trajectory in Fig. 17 (a).
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For simplicity, we use a FastSLAM [24], [25] approach with a single particle to model the

distribution over the camera trajectory. This is therefore a simplified version of FastSLAM, but

the Ferns are sufficiently powerful to make it robust.

As discussed above, we use two different sets of Ferns. We will refer to the first set as

“Offline Ferns”, that we trained offline to recognize keypoints on the planar pattern. As shown

on Figure 16 (a), we make sure it is visible in the first frame of the sequence to bootstrap

the system and replace the four fiducial markers used by many other systems. This increases

the flexibility of our system since we can use any pattern we want provided that it is textured

enough. The second set of Ferns, the “Online Ferns”, are incrementally trained to recognize the

3D landmarks the SLAM system discovers and reconstructs.

The incremental training takes place over several frames, typically between 20 and 50, where

the corresponding landmark was matched. For each, we add a small number of random views

of the observed patch to the Ferns. In the case where a landmark is observed for the first time,

this number is substantially higher, around 100. The comparatively small number of views in the

beginning works because motion between frames are relatively small and by the time the viewing

angle has changed significantly the training will be complete. Of course, not all of the patches

need to be re-trained, but only the new ones. This is achieved by undoing the normalization step,

adding the new observations and then re-normalizing the posteriors. This incremental training is

computationally costly and future research will aim at reducing the cost of training [7].

Our complete algorithm goes through the following steps:

1) Initialize the camera pose and some landmarks by detecting a known pattern using the

Offline Ferns.

2) Detect keypoints and match them using the Offline and Online Ferns against the known

landmarks.

3) Estimate the camera pose from these correspondences using a P3P algorithm and RANSAC [14].

The estimated pose is refined via a non-linear optimization.

4) Refine the location estimates of the inlier landmarks using an Extended Kalman filter.

5) Create new landmarks. Choose a number of detected keypoints that do not belong to any

landmark in the map and initialize the new landmarks with a large uncertainty along the

line of sight and a much smaller uncertainty in the camera’s lateral directions.

6) Retrain Ferns with good matches from 2) and the new landmarks.
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7) Loop to step 2.

With this system we demonstrate that both smooth tracking and recovery from complete failure

can be naturally integrated by employing Ferns for the matching task.

The reconstructed trajectory in Fig. 17 shows only tiny jags in the order of a few millimeters

and appears as smooth as a trajectory that was estimated in a filtered approach to SLAM, such as

MonoSLAM [11], [10]. This is especially noteworthy as the camera’s state is re-estimated from

scratch in every frame and there is no such thing as a motion model.2 At the same time, this is

a strong indication for an overall correct operation, since an incorrect map induces an unstable

state estimation and vice versa. In total the system mapped 724 landmarks and ran stable over

all 2026 frames of the sequence.

Recently, [35] presented a system that is also capable of recovering from complete failure.

They achieved robustness with a hybrid combination between template matching and a modified

version of Randomized Trees. However, their map typically contains one order of magnitude

fewer landmarks and there has been no indication that the modified Trees will still be capable

of handling a larger number of interest-points.

We also validated our system quantitatively. First, we checked the relative accuracy for

reconstructed pairs of 3D points and we found an error between 3.5 to 8.8% on their Euclidean

distances. Second, the absolute accuracy was assessed by choosing two world planes parallel to

the ground plane on top of two boxes in the scene on which some points were reconstructed.

Their z-coordinates deviated on average 7–10 mm. Given that the camera is at roughly 0.6 to

1.4 m from the points under consideration, this represents very good accuracy.

VI. CONCLUSION

We have presented a powerful method for image patch recognition that performs well even

in the presence of severe perspective distortion. The “semi-naive” structure of ferns yields a

scalable, simple, and fast implementation to what is one of the most critical step in many

Computer Vision tasks. Furthermore the Ferns naturally allow trade offs between computational

complexity and discriminative power. As computers become more powerful, we can add more

2Other systems commonly use a motion model to predict the feature location in the next frame and accordingly restrict the

search area for template matching.
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Ferns to improve the performance. Conversely, we can adapt them to low computational power

such those on hand-held systems by reducing the number of ferns. This has actually been done

in recent work [34] to achieve real-time performance on a mobile phone.

A key component of our approach is the Naive-Bayesian combination of classifiers that

clearly outperforms the averaging of probabilities we used in earlier work [20]. To the best

of our knowledge, a clear theoretical argument motivating the superiority of Naive-Bayesian

(NB) techniques does not exist.

There is however strong emprical evidence that they are effective in our specific case. This

can be attributed to two different causes. First, unlike mixture models, the product models

can represent much sharper distributions [17]. Indeed, when averaging is used to combine

distributions, the resulting mixture has higher variance than the individual components. In other

words, if a single Fern strongly rejects a keypoint class, it can counter the combined effect of

all the other Ferns that gives a weak positive response. This increases the necessity of larger

amounts of training data and the help of a prior regularization term as discussed in Section III.

Second, the classification task, which just picks a single class, will not be adversely affected

by the approximation errors in the joint distribution as long as the maximum probability is

assigned to the correct class [15], [12]. We have shown that such a naive combination strategy

is a worthwhile alternative when the specific problem is not overly sensitive to the implied

independence assumptions.
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Fig. 17. Ferns applied to SLAM. (a) View from top on the xy-plane of the 3D space in which the trajectory and landmarks are

reconstructed. The landmarks are shown as cubes centered around the current mean value of the corresponding Kalman filter.

Note how smooth the trajectory is, given the difficulties the algorithm had to face. (b) Qualitative visual comparison: One group

of 3D points and the corresponding group of 2D points is marked. Comparing this group to the surroundings confirmes a basic

structural correctness of the reconstruction.
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