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Abstract
3–D shape recovery of non-rigid surfaces from 3–D

to 2–D correspondences is an under-constrained problem
that requires prior knowledge of the possible deforma-
tions. State-of-the-art solutions involve enforcing smooth-
ness constraints that limit their applicability and prevent
the recovery of sharply folding and creasing surfaces.

Here, we propose a method that does not require such
smoothness constraints. Instead, we represent surfaces as
triangulated meshes and, assuming the pose in the first
frame to be known, disallow large changes of edge orien-
tation between consecutive frames, which is a generally ap-
plicable constraint when tracking surfaces in a 25 frames-
per-second video sequence. We will show that tracking un-
der these constraints can be formulated as a Second Order
Cone Programming feasibility problem. This yields a con-
vex optimization problem with stable solutions for a wide
range of surfaces with very different physical properties.

1. Introduction
Using point correspondences to recover the 3–D shape of

deformable surfaces from a single video is a severely under-
constrained problem: Surfaces with very different shapes
can look very similar under perspective projection.

This problem has been addressed by introducing a priori
shape models. Structure from motion techniques [18, 10,
22] and physics-based models [13, 14, 3, 5, 12] have been
proposed to retrieve the deformations of non-rigid surfaces.
However, these approaches typically incorporate regular-
ization terms or make linearity assumptions that constrain
the surface to deform smoothly. Machine learning meth-
ods [2, 15, 11] present an attractive alternative, but most
of them assume a linear mapping from a low-dimensional
manifold to the high-dimensional data space, which again
imposes smoothness constraints and is not always accu-
rate. Non-linear dimensionality reduction techniques would
avoid such problems, however they require training data
which often is not available.

(a) (b)

(c) (d)
Figure 1. Reconstructing highly deformable surfaces from single
video sequences. Because it does not impose smoothness con-
straints, our algorithm can use the same parameters to handle sur-
faces with very different physical properties. (a) Smoothly de-
forming paper. (b) Paper with two well marked creases. (c) Plastic
bag. (d) Piece of cloth.

Existing techniques are therefore not adapted to track 3–
D surfaces such as those of Fig. 1 that can fold or produce
sharp creases at unpredictable locations. In this paper, we
follow work on rigid objects [6, 8, 16] and show that recov-
ering 3–D surface shape from point correspondences can
also be described as a Second Order Cone Programming
(SOCP) problem. This yields a convex formulation with a
unique minimum and lets us handle highly-deformable sur-
faces without adding unwarranted smoothness constraints.

The central element of our approach is first to formulate
the constraints imposed by the correspondences as SOCP
constraints and second to introduce appropriate additional
constraints that force the solution of the SOCP problem to
be physically plausible. In practice, we simply disallow
overly large edge orientation changes from one frame to
the next and excessive edge stretching. This is generally



applicable when tracking in a 25 frames-per-second video
sequence. It has therefore proved effective at handling sur-
faces as different as the smoothly deforming piece of paper,
the same piece paper with sharp creases in it, and the much
more flexible plastic bag and piece cloth of Fig. 1.

2. Related Work
3–D shape recovery from a monocular video sequence

is an underconstrained problem. Thus, over the years, peo-
ple have proposed many approaches to introducing a priori
knowledge and resolving the ambiguities, most of which
make very strong and restrictive assumptions about the ob-
ject of interest.

In this section, we briefly review these methods. We then
discuss the Second Order Cone Programming framework
that has recently been introduced in our field to improve the
solvability of a number of classical problems and serves as
the basis for our own approach.

2.1. Deformable Shape Recovery
Structure from motion methods that rely on tracked fea-

ture points have proved to be effective. However, model-
ing deformations as a linear combination of constant basis
vectors [10, 18] greatly oversimplifies the general behavior
of a surface. Furthermore, describing the problem as sev-
eral rigid objects moving with respect to one another [22] is
not adapted to model the deformations of materials such as
cloth or thin plastic sheets.

Similarly, physics-based models have been a very pop-
ular way to introduce a priori knowledge. The original 2–
D models were first applied to shape recovery [7]. They
have been used for 2–D surface registration [1] and were
rapidly extended to various 3–D formulations [3, 13, 12].
To reduce the dimensionality of the models, linearity as-
sumptions have also been made through modal analy-
sis [14, 3, 5]. Even though the physics-based approach has
been extremely successful, it implies some knowledge of
the pseudo-physical properties of the surface, which may
not be available. Furthermore, the complexity of modeling
a true nonlinear behavior tends to restrict these methods to
cases where nonlinearities are small. In fact, modeling a
true nonlinear behavior is a complex task subject to conver-
gence instabilities well-known in the mechanical engineer-
ing community.

The complexity of modelling the true physical properties
of surfaces has made statistical learning techniques attrac-
tive. Training data is used to build a deformation model to
apply to new data. However, most existing techniques con-
sider the sub-space defined by the training data to be lin-
ear [4, 11, 2, 15], which is a restrictive assumption. Nonlin-
ear learning has been demonstrated for human body track-
ing [19] but involves a complex objective function that may

be difficult to optimize.
Another approach to disambiguating the surface recov-

ery problem is to use richer sources of information. For
example, it was recently shown that texture and shading in-
formation could be combined to retrieve the shape of a de-
formable surface [21]. However, very strong assumptions
on the lighting environment must be made, and therefore
the method lacks generality.

2.2. Convex Optimization
It was recently shown that several computer vision prob-

lems such as triangulation, camera resectioning and homog-
raphy estimation can be formulated as Second Order Cone
Programming feasibility problems [6, 8]. These are partic-
ular types of convex optimization problems where no func-
tion is minimized. Instead, one looks for a vector X that
satisfies the m constraints

‖AiX + bi‖2 ≤ (ci
T
X + di) , for i = 1, ..., m . (1)

Such problems can be solved very effectively using avail-
able packages such as SeDuMi [17]. The drawback of these
initial formulations is their sensitivity to outliers, but a so-
lution to this weakness was proposed in [16].

However, such formulation has only been demonstrated
for rigid objects. Here, we extend these approaches to de-
formable 3–D surfaces.

3. SOCP for Non-Rigid Meshes
In this section, we show that recovering the 3–D shape

of a deformable surface from a single video sequence can
be formulated as an SOCP problem, as described by Eq. 1.

The surface is represented as a triangulated mesh whose
vertices positions we want to retrieve in each frame of the
sequence. We automatically establish 3–D to 2–D corre-
spondences between the first frame, where the 3–D pose
is assumed to be known, and the others by first tracking
the surface in 2–D using normalized cross-correlation. We
then compute correspondences by picking random samples
in each facet and looking in each frame in an area limited
by the 2–D tracking result for 2–D points matching their
projections in the first frame. To this end we use standard
cross-correlation, which gives us a set of potentially noisy
3–D to 2–D correspondences between surface points xi and
image points (ûi, v̂i), which we will use to estimate the 3–D
coordinates of the mesh vertices at each time t as described
below. We also assume that the camera projection matrix P

is known and remains constant. This does not mean that the
camera cannot move, but that we can only recover a relative
motion of the surface with respect to it.



3.1. Correspondences as SOCP Constraints
Let xi be the 3–D coordinates of a surface point that we

express in terms of its barycentric coordinates of the facet j

inside which it lies as

xi = aivj,1 + bivj,2 + civj,3 , (2)

where vj,k is the kth vertex of facet j. The projection of
hi = (xi

T 1)T given the camera projection matrix P is
(

ui

vi

)

=

(

P1hi

P3hi

P2hi

P3hi

)

,

where Pk refers to the kth row of the projection matrix.
We define the reprojection error with respect to an image
measurement (ûi v̂i)

T as

‖
P1hi

P3hi

−ûi,
P2hi

P3hi

−v̂i‖ =
‖(P1 − ûiP3)hi, (P2 − v̂iP3)hi‖

P3hi

.

(3)

Ideally, we would want the reprojection error to be zero
for all xi , 1 ≤ i ≤ m for which we have found a cor-
responding (ûi, v̂i) image point. In practice, due to noise,
this is never possible. Therefore, as in [6], we introduce an
additional variable γ and write our problem as

min
γ,V

γ subject to γ ≥ 0 and

‖(P1 − ûiP3)hi, (P2 − v̂iP3)hi‖ ≤ γP3hi , (4)
for i = 1, ..., m .

where V is the concatenation of the three coordinates of all
the mesh vertices. Intuitively, γ represents the radius on the
image plane of the cone centered in the camera and whose
axis goes through the image measurement.

For a fixed value of γ, because the xi of Eq. 2 and there-
fore also the hi are linear combinations of the vertex coordi-
nates, Eq. 4 defines an SOCP problem of the form described
by Eq. 1. We can then find the minimal γ using a bisection
algorithm at each step of which we solve the corresponding
SOCP feasibility problem.

Note that the fact that the 3–D points are on the surface of
the mesh plays a critical role. Without this constraint, they
could move independently from each other. Since noth-
ing would then prevent them to match their 2–D projec-
tion within a zero-radius cone, this would result in a perfect
but meaningless solution. However, forcing them to remain
on the surface of the deformable mesh avoids that problem,
since the barycentric coordinates that define the 3–D points
impose a natural coherence between them.

A common criticism of SOCP formulations of the corre-
spondence problem is that they are very sensitive to outliers.
Indeed, the minimal γ will take the value that is a function

(a) (b)
Figure 2. Reconstructing a piece of paper using only the corre-
spondences constraints of Section 3.1 but not the deformation con-
straints of Section 3.2. (a) The reprojection of the mesh is correct.
(b) However, the 3–D shape as seen from a side view is completely
wrong because the depth ambiguities are not properly resolved.

of the worst correspondence, therefore allowing the repro-
jection error of correct matches to be worse than it should.
However, Sim et al. [16] proposed a method to remove the
outliers and get the correct pose of a rigid object using an
SOCP approach. They showed that, at the end of the bisec-
tion algorithm, the set of matches whose reprojection error
equals the minimal γ contains outliers. Therefore, remov-
ing these points and re-optimizing in the same manner as
before yields a better pose. In our implementation, we ap-
ply the same idea and iterate the bisection algorithm with
the correspondences having a reprojection error less than
the previous minimal γ, until we reach a maximal reprojec-
tion error of 2 pixels. In practice, this only implies running
the bisection algorithm at most 5 times.

3.2. Additional Constraints
In general, solving the minimization problem of Eq. 4

without additional constraints yields a surface whose points
project at the right place but whose overall shape may nev-
ertheless be wrong, as shown in Fig. 2. The global scale of
the surface can vary without affecting the reprojection er-
ror, and, more damagingly, given noisy data, the depth of
the vertices is hard to precisely estimate because many dif-
ferent shapes can yield very similar projections.

Penalty functions have often been used to address this
problem. They are usually designed either to prevent the
mesh from folding sharply or to stop it from expanding or
shrinking. The former results in a loss of generality as sur-
faces that crease cannot be modeled properly, while the lat-
ter typically involves a non-convex term to force the edges
of the mesh to retain their original length. Here, we in-
troduce a weaker and more generic constraint that fits into
our SOCP framework: As shown in Fig. 3, we avoid the
orientation of the edges to change irrationally between two
consecutive frames. In the meantime, our constraints also
ensure that an edge will not stretch or compress too much,
thus partially solving the global scale ambiguity. Indepen-
dently of the surface’s curvature, this is generally applicable
when tracking it in a 25 frames-per-second video sequence.
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Figure 3. We predict that the orientation of the edge between vi

and vj at time t+1 will be the same as at time t. We then constrain
the distance between vertex v

t+1
j and its prediction ṽ

t+1
j to be less

than some specified value.

Furthermore, it can be expressed as a convex constraint as
follows.

Let us assume that we know the shape of the mesh at
time t and let us consider an edge linking vertices v

t
i and

v
t
j in this configuration. Assuming that the orientation of

this edge will be similar at time t + 1, if the position v
t+1
i

of vertex i at that time were known, we could predict that of
vertex j to be close to

ṽ
t+1
j = v

t+1
i + Li,j

v
t
j − v

t
i

‖vt
j − vt

i ‖
, (5)

where Li,j is the original length of the edge. In practice we
do not know v

t+1
i but we can nevertheless require that

‖vt+1
j − ṽ

t+1
j ‖ ≤ λLi,j , (6)

where ṽ
t+1
j is defined in Eq. 5. This constraint fits perfectly

within our SOCP framework and we can add one for each
edge to those of Eq. 4. Note that these additional constraints
allow the mesh to expand or shrink, but only within an
amount controlled by the value of λ. Given a mesh that sat-
isfies the SOCP constraints, we handle the remaining scale
ambiguity by rescaling it so that its area remains the same
as in the initial position. As will be shown in Section 4,
this results in a system that is now sufficiently constrained
to yield good results.

4. Experimental Results
In the previous section, we showed how convex opti-

mization can be applied to the problem of recovering the
3–D shape of a surface from a single video sequence. We
presented constraints that do not prevent the surface from
folding sharply. Our method relies on 3–D to 2–D corre-
spondences and only requires the pose in the first frame of
the sequence to be known. This might be seen as a limita-
tion, however automated initialization of deformable sur-
faces from single images is a severely under-constrained
problem that requires much stronger deformation models
than ours. Such models could be learned from training data
if it were available, which is rarely the case. Since our

method makes few assumptions on the physical behavior
of the surface, it is ideal to acquire such data.

We first validate our approach using synthetic data. We
then use ordinary videos to demonstrate that it produces
good results for very different kinds of materials. In all our
experiments, both for synthetic and real data, the value of λ

in Eq. 6 was set to 0.1, independently of the properties of
the surface and of its deformations.

4.1. Synthetic Data
As a first experiment, we synthetically deformed the 88-

vertex mesh shown in Fig. 4 by applying forces to ran-
domly chosen vertices and strongly penalizing stretching of
its edges. This produced a sequence of 50 different shapes,
from which we could obtain correspondences by projecting
3–D points defined by their randomly chosen barycentric
coordinates using a perspective projection matrix. We then
added gaussian noise with mean zero and variance one and
two to their image locations. Fig. 4 shows the reconstruc-
tion results for variance two from a different perspective.
The differences are very small even though the surface folds
very sharply in some frames. The largest errors are in the
depth direction, as could be expected since motion in that
direction is hard to measure using point correspondences.
The deformation constraints of Section 3.2 resolve most of
the resulting ambiguities but still leave some uncertainty.

To compare the performance of SOCP against another
powerful optimization technique, we reimplemented our
tracking algorithm using CFSQP [9], which provides C
functions to solve constrained minimization problems us-
ing Sequential Quadratic Programming. We reformulated
our problem as the minimization of the sum of squared re-
projection errors under the deformation constraints of Sec-
tion 3.2. The top row of Fig. 5 shows the median vertex-
to-ground-truth-surface distances for noise variances 1 and
2 for each one of the frames in the synthetic sequence.
The distances are of the order of 0.1cm for a mesh of
size 10cm×7cm. Both the SOCP and CFSQP implementa-
tions produced roughly comparable errors. However, even
though SOCP was coded in Matlab whereas CFSQP was
coded in C, SOCP was about 50 times faster than CFSQP: It
took only 15 minutes against 12 hours to process the whole
sequence on the same 3.0 GHz PC. The second row of Fig. 5
shows the median reprojection errors over the correspon-
dences. CFSQP yields slightly higher accuracy, but the er-
rors still remain under one pixel for SOCP. This can be ex-
plained by the fact that SOCP does not minimize the repro-
jection errors, but finds a solution such that these errors are
smaller than a given value.

Since CFSQP can handle non-convex constraints, we re-
placed the deformation constraints of Section 3.2 by con-
straints that prevent the mesh edges from changing their
length. In theory, this should be more appropriate when



Figure 4. Reconstructing an 88-vertex mesh with sharp folds using perfect correspondences that were corrupted using zero-mean Gaussian
noise with variance two. The shape of the reconstructed mesh (blue) corresponds very closely to the original one (red). The meshes are
seen from a different perspective than the one used to retrieve the shapes in order to highlight the differences.

σ = 1 σ = 2

Figure 5. We compare the results of our SOCP formulation (solid
red) against those obtained using CFSQP, a constrained nonlinear
least-squares minimization (dashed blue) for the 50 frames of the
synthetic sequence of Fig. 4, for noise variance σ = 1 and 2. In
the top row, we show the distance between the original mesh and
its reconstruction. Both methods give similar results but SOCP
is about 50 times faster. In the second row, we give the median
reprojection errors. For both methods, they are less than one pixel,
even though CFSQP performs slightly better. Recall, however,
that SOCP does not precisely minimze the reprojection errors, but
enforces the reprojections to lie in a cone of a given radius.

tracking inextensible surfaces. In practice, as shown in
Fig. 6, even though CFSQP performs better in some frames,
it is less stable than SOCP. This is particularly visible to-
wards the end of the sequence. In some frames, CFSQP
failed to converge even after 2000 iterations, which ex-
plains why it is even slower than before and highlights the
complexity of the problem when non-convex constraints are
used.

Finally, in Fig. 7, we show the influence of the num-
ber of correspondences on the quality of our reconstruction
in the case of a variance 2 gaussian noise. We decreased
the number of correspondences in each facet from 10 to 1
and tracked the surface throughout the 50 frames of the se-
quence. For each frame, we computed the median vertex-
to-ground-truth distance and median reprojection error. For

σ = 1 σ = 2
Figure 6. Introducing non-convex inextensibility constraints, for
noise variance σ = 1 and 2. Since CFSQP can handle such con-
straints, we introduce them into our CFSQP formulation and, as
in Fig. 5, compare the results (in blue) against those of SOCP (in
red). In addition to being much slower, CFSQP gives unstable
results and fails to converge in some frames after 2000 iterations.

Figure 7. Influence of the number of correspondences in each facet
on the reconstruction for noise variance σ = 2. We decreased the
number of correspondences per facet from 10 to 1, and display
the median (red line) and maximum (blue crosses) values of the
same errors as in Fig. 5. We show the 3–D distance errors in the
left image, and the reprojection errors in the right one. Note that
the 3–D vertex-to-surface distance is little affected by the corre-
spondences, whereas the reprojection error decreases in a more
noticeable manner.

each number of correspondences per facet, we display on
the left image, the median and maximum values of such
3–D distances over the sequence, and on the right image,
the median and maximum values of such reprojection er-
rors over the sequence. The number of correspondences has
little influence on the 3–D distances, since the vertices can
slide along the true surface without changing these mea-
sures. The reprojection errors are more strongly affected,
but note that, from 4 correspondences per facet, they drop
below one pixel. Of course, this still assumes at least one
correspondence in each facet. With such a weak deforma-



Figure 8. Reconstructing a deforming sheet of paper from a 116 frames video. The mesh is reprojected in the image in the top row and
seen from a different perspective in the bottom one. Even though no smoothness constraint was enforced, the algorithm correctly recovered
smooth deformations.

tion model, if some facets did not contain any, the recon-
struction would inevitably degrade. This would especially
be the case for facets on the boundary of the surface, since
their vertices are constrained by fewer neighbors than the
ones in the middle.

4.2. Real Data
We now show reconstruction results of real deformable

surfaces made of paper, cloth, and plastic. The video se-
quences were acquired with an ordinary digital camera. Due
to their very different physical properties, the behavior of
the surfaces ranges from smooth deformations for the paper
to sharp folds and creases for the cloth and plastic. How-
ever, no parameter tuning was necessary to obtain these re-
sults with our algorithm. Videos of all the examples of the
section are submitted as supplementary material.

Smooth Deformations As a first experiment on real data,
we considered a sheet of paper that we modeled as an 88-
vertex mesh. Fig. 8 shows that we can retrieve the correct
shape of a surface that deforms smoothly, even though our
formulation involves no explicit penalty term on the curva-
ture of the reconstructed surface.

Sharper Folds Because we do not penalize curvature,
nothing stops our method from recovering the correct shape
in the presence of folds and creases, as demonstrated by the
reconstruction of the pre-folded sheet of paper of Fig. 9,
the plastic bag of Figs. 10 and 11, and the piece of cloth of
Figs. 12 and 13. All these examples would create problems
for approaches to surface reconstruction that impose strong
smoothness constraints.

5. Conclusion
In this paper, we have presented an approach to retriev-

ing the shape of a deformable surface from a single video
using convex optimization in the form of Second Order
Cone Programming. To this end, we have formulated both
the constraints imposed by the 3–D to 2–D correspondences
and the additional shape constraints required to handle the

depth ambiguities as SOCP constraints. These shape con-
straints restrict the motion from one frame to the next but
do not impose unwarranted surface smoothness. This lets
us recover sharp folds and creases that would create prob-
lems for most standard techniques, and yields much faster
convergence than constrained nonlinear least-square opti-
mization for quantitatively equivalent results.

In future work, we intend to show that a wider array of
constraints can also be expressed in a convex optimization
framework such as SOCP or the more general Semidefinite
Programming, so that additional sources of image informa-
tion can be exploited. We will therefore explore approaches
to reparameterizing the reconstruction problem in terms of
variables that result in convex formulations of constraints
that initially were not, as was done in [20] in the context of
image manifold learning under local isometry assumptions.
We further intend to build stronger deformation models of
lower dimensionality by learning them from training data.
Since such data is rarely available, we see the proposed ap-
proach as a practical solution to the problem of generic data
acquisition.

References
[1] A. Bartoli and A. Zisserman. Direct Estimation of Non-

Rigid Registration. In British Machine Vision Conference,
Kingston, UK, September 2004.

[2] V. Blanz and T. Vetter. A Morphable Model for The Synthe-
sis of 3–D Faces. In ACM SIGGRAPH, pages 187–194, Los
Angeles, CA, August 1999.

[3] L. Cohen and I. Cohen. Deformable models for 3-d medical
images using finite elements and balloons. In Conference on
Computer Vision and Pattern Recognition, pages 592–598,
1992.

[4] T. Cootes, G. Edwards, and C. Taylor. Active Appearance
Models. In European Conference on Computer Vision, pages
484–498, Freiburg, Germany, June 1998.

[5] H. Delingette, M. Hebert, and K. Ikeuchi. Deformable sur-
faces: A free-form shape representation. In SPIE Geomet-
ric Methods in Computer Vision, volume 1570, pages 21–30,
1991.



Figure 9. Reconstructing the deformations of a piece of paper with two sharp folds in it, so that that they are no longer smooth. Note that
our method correctly recovers the creases.

Figure 10. Recovering the deformations of a plastic bag with a sharp crease in it from from an 86 frames video.

[6] F. Kahl. Multiple view geometry and the L∞-norm. In Inter-
national Conference on Computer Vision, pages 1002–1009,
Beijing, China, 2005.

[7] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active
Contour Models. International Journal of Computer Vision,
1(4):321–331, 1988.

[8] Q. Ke and T. Kanade. Quasiconvex optimization for robust
geometric reconstruction. In International Conference on
Computer Vision, pages 986–993, 2005.

[9] C. Lawrence, J. L. Zhou, and A. L. Tits. User’s guide for
cfsqp version 2.5: A c code for solving (large scale) con-
strained nonlinear (minimax) optimization problems, gener-
ating iterates satisfying all inequality constraints.

[10] X. Llado, A. D. Bue, and L. Agapito. Non-rigid 3D Fac-
torization for Projective Reconstruction. In British Machine
Vision Conference, Oxford, UK, September 2005.

[11] I. Matthews and S. Baker. Active Appearance Models Revis-
ited. International Journal of Computer Vision, 60:135–164,
November 2004.

[12] T. McInerney and D. Terzopoulos. A Finite Element Model
for 3D Shape Reconstruction and Nonrigid Motion Tracking.
In International Conference on Computer Vision, pages 518–
523, Berlin, Germany, 1993.

[13] D. Metaxas and D. Terzopoulos. Constrained deformable
superquadrics and nonrigid motion tracking. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
15(6):580–591, 1993.

[14] A. Pentland. Automatic extraction of deformable part mod-
els. International Journal of Computer Vision, 4(2):107–126,
1990.
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Figure 11. Recovering more complex deformations of the plastic bag. The first two rows depict the reprojection of the mesh into the
original images and the mesh seen from a different perspective as before. In the third row, we overlay the mean curvature of the recovered
surface on the images. The high curvature areas, shown in red, correspond to the actual creases that can be seen in the top row. In the fourth
row, we overlay the level-lines of constant z on the images. We recommend viewing the last two rows in color as they might be difficult to
interpret on a greyscale printed copy.

Figure 12. Recovering the deformations of a piece of cloth with several folds.

Figure 13. Another example of a different deformation of that same cloth in a 61 frames sequence.


