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Introduction
We present a principled probabilistic formalization of batch MTT introducing two 
general constraints to the tracking problem.  The �rst constraint enforces a learned 
correlation between a target’s appearance and its motion. The second constraint 
encourages proposed target paths to enter and exit near scene boundaries. 

The First Constraint

We relax the conventional assumption that motion is 
independent from appearance and learn a motion-
appearance correlation model to assist tracking. 

For some objects, motion and 
appearance are correlated.

Problem Formulation

arg max  p(XT|ZT)
XT

p(XT|ZT) ∝ p(Z1|X1) p(X1) ∏t=2..T p(Zt|Xt) p(Xt|Xt-1)

Constraint 1: The movement of a target and its 
appearance are not necessarily independent.

Time-lapse images of a migrating neuron precursor cell.  The nucleus elongates in the direction of travel.

p(At|v(Mt)) is modeled as a 5-component GMM learned from nucleus motion and 
appearance training data.

Constraint 1 gives rise to a new term in the observation model from p(XT|ZT)
p(Zt | Xt) =  ∏ p(Zt |Xt) = ∏ p(Zt  is false alarm) + Σ p(Zt | Xt) p(Xt created Zt) + higher order...j j j ji
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p(Zt | Xt) = p(Lt, At | Mt, Ot, Rt) ∝ p(Lt | pos(Mt) )  p(At | Ot)  p(At | v(Mt) ) j j jj j ji i i i i i i
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Models the probability of an observed appearance given a motion hypothesis.

We search for good target paths by evaluating proposed paths according to the 
motion, appearance, and joint motion-appearance models.

motion:
appearance:

appearance+motion:

The Second Constraint

The term p(Xt|Xt-1) is traditionally limited to a motion 
model.  To enforce Constraint 2, p(Xt|Xt-1) also de-
pends on the presence of targets at t and t-1.

Constraint 2: The entrance and departure of a 
target should occur near a boundary of the scene.

Results for Neuron Videomicroscopy
We collaborate with neuroscientists 
studying neuroplasticity.  A lentivirus 
is injected into the SVZ causing newly 
born neurons to express GFP.  We 
image a 270 x 270 x 62 μm OB tissue 
sample with a 2-photon microscope.

Inference

p(Xt|Xt-1) = ∏i  p(Xt | Xt-1)  = p(Mt, Ot, Rt | Mt-1, Ot-1, Rt-1) i i i i i i i i

ii= p(Mt | Mt-1, Rt, Rt-1)          p(Ot | Ot-1, Rt, Rt-1)          p(Rt | Mt-1, Rt-1)
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A set of nucleus detections ZT 
is extracted from a time-series 
of image stacks.growth cone
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Neuron nuclei are detected as dark, compact 
contours surrounded by a bright membrane.

Our goal is to link detections ZT to form the most 
likely set of target paths XT:

motion:
appearance:

appearance+motion:

t=1 t=2 t=3

(1)

Presence is de�ned by 
Rt, Rt-1 for four cases.

Rt=1
Rt=0

Rt-1=1 Rt-1=0 Rt-1=1 Rt-1=0 Rt-1=1 Rt-1=0

We use MCMC to e�ciently estimate the MAP of (1).  We initialize a Markov chain 
to an empty state and generate new samples by proposing changes to the previ-
ous state via a randomly selected MCMC move: birth, death, associate, dissociate, 
merge, split, or swap [1, 2].  The proposed state is added to the chain according to 
an acceptance probability, otherwise the previous state is added.  After generating 
N samples, the MAP solution is given by the state with this highest posterior, XT.

pB(M) 

Mt 

Mt-1 

scene boundary

pB(M) is a piecewise distribution modeling the probability of a target 
path entering or departing the scene.

The likelihood of the target path entering here is evaluated in the 
motion model for Rt-1=0, Rt=1 using back-prediction Mt-1, pB(Mt-1).

The likelihood of the target path exiting here is evaluated in the pres-
ence model for Rt-1=1, Rt=0 using the prediction Mt , pB(Mt) .
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Maximum intensity projection with recovered neuron nuclei paths.  Errors are shown in red.
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