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General Constraints for Batch Multiple-Target
Tracking Applied to Large-Scale Videomicroscopy

Introduction The Second Constraint
We present a principled probabilistic formalization of batch MTT introducing two Constraint 2: The entrance and departure of a enter
general constraints to the tracking problem. The first constraint enforces a learned target should occur near a boundary of the scene. I y :O
. . . . epart absent
correlation between a target’s appearance and its motion. The second constraint R.=0 Op_. Wiy
encourages proposed target paths to enter and exit near scene boundaries. The term p(X(|X;.1) is traditionally limited to a motion S .
moddel. Tohenforce Con?ctraint 2, P(tiét-l) also de- precence is defined by
- ends on the presence of targets at t and t-7. R,, R, , for four cases.
Problem Formulation P i ) a
--'--i------,&-------){------ i = . p(Xt‘Xt'l) — Hi p(X; ‘ X)ltl) :p(ML Oi’ Rf[ ‘ M’E-D Oé-l) R’El)
. I O . - ¥

"

f’__ Lﬂ‘ / ’.y_. =

J,, 2, ® :" oS : > = i y ,! . — p(M’E | M’E—D R‘E, R’i—l) p(oi | Of‘[—h RfD Ré(—l) p(Rf( ‘ Mi‘l’ Rf.[‘l)

s+«——dead cell matter

¥ ) J
'Y "_‘

N N 4 : \ ) : 0 o v motion appearance presence
A D RN EEEEE RN S E S A SN e SN .

. . A ~ . A — A
- - ‘ . Rt:1 N(Ml) M'Zp Z1\/[) pB(Mtz-l) N(Ola Otla z()) N(Ola O) z(_)) 1'PB(M'Z() pe
/ D A set of nucleus detections Z, R =0 \ \ \ \ () 1
. . . M M O O B\*Y7t -
’ / is extracted from a time-series :
\\. ! nucleus detections . Ryp=1 Ry =0 Ryp=1 Ry =0 Ryp=1 Ry =0
growth cone 7. of image stacks.
r_
\4 ; A . Neuron nuclei are detected as dark, compact
d contours surrounded by a bright membrane.

—o pp(M) is a piecewise distribution modeling the probability of a target
path entering or departing the scene.

—o The likelihood of the target path entering here is evaluated in the
motion model for R, ;=0, R=1 using back-prediction M, , pg(M;_;)-

f=2 =3
our goal is to link detections Z.. to form the most O ® The likelihood of the target path exiting here is evaluated in the pres-
. ! - ---scene boundary-- - ence model for R, ;=1, R;=0 using the prediction f/[\t,pB(Mt) .
likely set of target paths X.:  arg max p(X,|Z,)
X; O
p(Xi|Z,) o< p(Z,]Xy) p(Xy) | oo r p(Z4|X0) p(Xi|Xiy) (1) Q Infe rence
We use MCMC to efficiently estimate the MAP of (1). We initialize a Markov chain
The Fi rSt Constraint to an empty state and generate new samples by proposing changes to the previ-
ous state via a randomly selected MCMC move: birth, death, associate, dissociate,
Constraint 1: The movement of a target and its ww O merge, split, or swap [1, 2]. The proposed state is added to the chain according to
appearance are not necessarily independent. l >< \/ an acceptance probability, otherwise the previous state is added. After generating
< N samples, the MAP solution is given by the state with this highest posterior, X..
We relax the conventional assumption that motion is oy, O . .
independent from appearance and learn a motion- ¢, <;ime objects, motion and Resu |tS fOr Neu ron Vldeom ICYOSCO py
appearance correlation model to assist tracking. appearance are correlated.

We collaborate with neuroscientists
studying neuroplasticity. A lentivirus
is injected into the SVZ causing newly fe=” =
born neurons to express GFP. We
image a 270 x 270 x 62 um OB tissue
sample with a 2-photon microscope.
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Time-lapse images of a migrating neuron precursor cell. The nucleus elongates in the direction of travel. e Al ) ' ' % sof — ]
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Constraint 1 gives rise to a new term in the observation model from p(X;|Z;) e
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p(Zt| Xy) = p(Ly, At | My, Op, Ry) o< p(Lt | pos(My) ) p(At | Oy p(A% | v(My) ) -

Models the probability of an observed appearance given a motion hypothesis.—y

p(A¢[v(My)) is modeled as a 5-component GMM learned from nucleus motion and
appearance training data.
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(prototype nuclei constructed from centers of GMM components)

We search for good target paths by evaluating proposed paths according to the
motion, appearance, and joint motion-appearance models.

CO0OLe a ETET E X =
increasing depth
. Increasing time
motion: ~/ O=0=0—0—0— - o :
error L *
Q appearance: \/ . -
appearance+motion: +/ Maximum intensity projection with recovered neuron nuclei paths. Errors are shown in red.
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