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In EM imagery of neural tissue, numerous cells and subcellular structures appear within a
single image, they exhibit irregular shapes that cannot be easily modeled by standard
techniques, and confusing textures clutter the background. We propose a tully automated
approach that handles these challenges by

1. Using all available image cues simultaneously: Texture and boundary cues are
coupled with shape cues that do not require an explicit shape model.

2. Learning the appearance of boundaries on a superpixel graph: We train a
classifier to predict where mitochondrial boundaries occur using these cues.

Overview
(a) Ongmal EM 1mage (¢) Superpixel graph
(d) SVM prediction (e) Graph-cut segmentation  (f) Final segmentation
Notations The graph nodes V correspond to superpixels z;. Edges & connect

neighboring superpixels. The following objective function is minimized using a
mincut-maxflow algorithm.
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P(c;|f(x;)) computed from the output of an SVM classifier.
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Extraction of global and local cues
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e Ray descriptors built from features in |2] provide a compact representation of local
shape for each point in an image.

e The descriptors are stable when subjected to rotation, scale, and afline transformations
but change dramatically for different images.

Edge classifier

Standard pairwise cuts

Leamed pa1rw1se cuts
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Red lines indicate strong probable boundaries, yellow lines indicate weaker boundaries.

e Boundaries predicted by a standard pairwise term (Eq. 3) correspond to strong
oradients, but not necessarily to mitochondrial boundaries.

exp ( ||I(:cz)2—012(arj)|| ) if ¢; ¢; 3

0 , otherwise,
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o A learned pairwise term (Eq. 2) using more sophisticated cues [f;", £]" results in
better boundary predictions.

Performance evaluation

TextonBoost [4] Fulkerson09 [1] Standard-f* Standard-f Learned-f

Accuracy  95% 96% 94%  96%  98%
VOC score 61% 69% 60%  68%  82%

Results

S‘egmentatlon results of our approach
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