
Implementation of an Algorithm for
Peer-to-Peer Collaborative Editing

Damien Aymon

School of Computer and Communication Sciences

Decentralized and Distributed Systems lab

Bachelor Semester Project

June 2017

Responsible
Prof. Bryan Ford
EPFL / DEDIS

Supervisor
Kirill Nikitin

EPFL / DEDIS

List of Figures

1 Execution of an Operation on a String. Own Illustration . . . 3
2 Generation of two Concurrent Operations. Own Illustration. . 3
3 Effects Relation. Own Illustration. 5
4 General Organization of the Software. Own Illustration. . . . 8
5 ABTUInstance Struct. Own Code. 9
6 Receiving Buffer Manager Struct. Own Code. 10
7 Receiving Buffer Manager Control Structure. Own Code. . . 11
8 Frontend Controller. Own Code. 13
9 ABTU Controller. Own Code. 14
10 Remote Thread. Own Code. 15
11 The Big Picture. Own Illustration 16
12 Communication. Own Code. 17
13 Instantiation of an ABTU Instance. Own Code. 20
14 Instantiation of a Communication Service. Own Code. 21
15 Local Thread. [SLG10]. 21
16 IntegrateL. [SLG10]. 22
17 Remote Thread. [SLG10]. 22
18 IntegrateR. [SLG10]. 23

Contents

List of Figures 2

1 Introduction 1

2 Goals 2

3 Corresponding Background 2
3.1 Operational Transformation 2
3.2 ABTU Algorithm . 4

3.2.1 Notions and Notations 4
3.2.2 Undo of Operations 5
3.2.3 Description of the Algorithm 6

4 Design and Implementation 8
4.1 ABTU Instance . 8
4.2 Receiving Buffer Manager . 9
4.3 Communication with Frontend 10
4.4 ABTU Control Structure . 12
4.5 ABTU Local Thread . 12
4.6 ABTU Remote Thread . 13
4.7 The Big Picture . 14
4.8 Communication with Peers 14

5 Results 16

6 Limitations of the Project and Future Work 18

7 Conclusion 18

References 19

A Installation 20

B Psoeudocode snaphots for local and remote thread 20

1 Introduction

Nowadays, real-time collaborative editing tools are well-known and almost
daily used amongst students and employees who need an easy and ready-
to-use solution to work on a common project. In contrast to version control
systems like Git, users must be able to edit the same document simulta-
neously and at any time. The changes inferred by one user need to be
integrated at every other site and the algorithm must converge towards a
unique definitive document version. The most popular and used amongst
current implementations are Etherpad and Google Docs, the latter having
been launched in 2007.

Despite their accessibility and convenience of use, those existing systems
rely on a central organ to process and redistribute operations generated at
each site. This involves the loss of control over the data by users. In other
words, current solutions infer a trust relation between users and the service
provider. Possible system failure or data leakage towards other organizations
might break this trust relation.

This problem can be addressed by using a distributed and independent algo-
rithm, which communicates by secured peer-to-peer communication between
sites. Collaborative groups can now have ultimate control over their data,
communication and how different sites converge to a definitive version of
their document.

The task is to implement an admissibility based operational transformation
algorithm for peer-to-peer collaborative editing (ABTU) and evaluate its
performance. The algorithm will be based on [LL10] and [SLG10]. This
algorithm is the only one that has been proved to enable parties to converge
their state in a peer-to-peer configuration. The possibility to undo any
changes is also a key feature of such an algorithm and must therefore also
be implemented. This part will be based on [reference.] The programming
language of choice for the backend in this project will be Go!.

In order to complete this task, one will first have to study the ABTU algo-
rithm. In parallel, the implementation of peer-to-peer communication will
be done to learn the programming language. After having finished the im-
plementation of the algorithm, testing will take place. The last part will be
to define limitations and further improvement to be done.

Firstly, goals for the project will be further defined. The paper will then go
through an introduction on operational transformation and the algorithm
which will be used. The design and implementation will be precisely ex-
plained. Results and limitations of the project will be presented and lead
to a discussion on the improvements and future work to be done. Details
about the installation will be provided in the appendix.

1

2 Goals

In this section, we will further define the goals of this project.

The algorithm which will be implemented is part of a software which is
organized as follows. The graphical interface and database management
are implemented in JavaScript, this represents the frontend. The ABTU
algorithm is implemented in Go. The two parts are linked by a management
part, also implemented in Go, which handles different instances of the ABTU
algorithm and the communication with other peers. The ABTU algorithm
and the management represent the backend.

The goals for this project are:

1. Implement peer-to-peer communication between to sites.

2. Design and implement the ABTU algorithm and the interface with the
management.

If the two first goals are achieved and time is left, the next goals are:

3. Test the implementation of the ABTU algorithm.

4. Evaluate the performance of the ABTU algorithm.

5. Link the implementation of the ABTU algorithm with the manage-
ment and the frontend.

3 Corresponding Background

3.1 Operational Transformation

The ABTU algorithm is based on operational transformation, this subsec-
tion will introduce this concept.

A document is represented by a string of characters. The positions of the
characters start from 0 and increase until the end of the document. A
modification of the document is represented by two types of operations:
insertions (INS) and deletions (DEL). As we will see, the identity of the
site at which the operation was generated is also important. An opera-
tion is therefore defined by its site identity, type, position and character:
OP (siteId, type, position, character).

In figure 1, the initial state of the document is ”abc”. We apply the operation
OP (1, INS, 4, d), and the resulting string is ”abcd”.

In collaborative editing, multiple users simultaneously generate operations
at different site, this means that they edit the document concurrently. When

2

’abc’ ’abcd’

OP(0, INS, 4, d)

Figure 1: Execution of an Operation on a String. Own Illustration

an operation is generated at one site, it is first applied to the local copy of
the document and then distributed to other peers. Therefore, at a given
time, two sites do not necessarily have the same version of the document.

The following example from figure 2 will show why operations need to be
transformed. Starting from the same document state ”abc”, site 1 and 2
respectively generate, apply and distribute operations o1 = OP (1, INS, 0, z)
and o2 = OP (2, DEL, 3, c). After site 1 has executed operation o1, its state
is ”zabc”, one easily see that the operation o2 no longer has the desired effect
on the document: instead of deleting the character ”c”, it would remove ”b”,
resulting in the state ”zac”. This example illustrates the fact that operation
o2 should be transformed to o2 = OP (2, DEL, 4, z). On the contrary, at
site 2, the operation o2 is already valid in the document state ‘ab’. This is
what is called operational transformation.

Site 1

”abc2

o1 = OP (1, INS, 0, z′)

”zabc”

o2

”zac”

Site 2

”abc”

o2 = OP (2, DEL, 4, c)

”ab”

o1

”zab”

Figure 2: Generation of two Concurrent Operations. Own Illustration.

When multiple collaborators are editing a document concurrently, opera-
tions must be verified and transformed if necessary before being applied to
the local copy of the document, this is what the ABTU algorithm handles.

3

3.2 ABTU Algorithm

In this subsection, notions about the framework of the algorithm and nota-
tions from [LL10] and [SLG10] will first be introduced, the algorithm will
then be described.

3.2.1 Notions and Notations

Operation As seen in section 3.1, an operation is defined by its site id:
o.id, type: o.t, character: o.c and position: o.p.

Definition state: The definition state dst(o) of an operation o, is the state
of the document in which the operation has been generated. The result of
the execution of o in dst(o) is written dst(o) ◦ o.

We note o1 t o2 if both operation o1 and o2 have the same definition state
dst(o1) = dst(o2) and o1 7→ o2 if dst(o1) ◦ o1 = dst(o2).

Operation sequence: The execution of a sequence of operations sq =
[o1, o2, · · · , on] is the result of the consecutive execution of its operations to
the definition state of o1: dst(o1) ◦ o1 ◦ o2 ◦ · · · ◦ on = dst(o1) ◦ sq. Two
operation sequences sq1 and sq2 are equivalent if dst(sq1) = dst(sq2) and
dst(sq1) ◦ sq1 = dst(sq2) ◦ sq2.

Vector time and timestamp: In order to keep track of time in multiple
places, the ABTU algorithm uses the concept of vector clock. For n sites,
the time is represented by an array of integers of length n. Time increases
as operations are applied at each site.

Each site has its own time vector SV . When an operation is generated
at site i, the time vector SVi is incremented by 1 at index i: SVi[i] =
SVi[i] + 1. When a remote operation from site j is integrated at site i, SVi

is incremented at index j.

Time vectors can be partially ordered: t1 < t2 iff ∀i : t1[i] ≤ t2[i] and
∃j : t1[j] < t2[j].

An operation also carries its own timestamp o.v. For an operation o gen-
erated at site i, o.v is the time SVi from site i at which o was generated.
We write o1 → o2 if o1.v < o2.v and we say that o1 and o2 are concurrent
(o1 || o2) if neither o1 → o2 nor o2 → o1 hold.

Effects relation: A first definition can be given as follows: a ≺ b if the
position of a is smaller than the position of b in the document.

However, this definition is not entirely satisfactory, this can be shown by
an example from [SLG10] in figure 3. Three sites start with the same state

4

”ab”, the effect relation is a ≺ b. Site 2 first generates OP (2, INS, x, 2) and
then receives OP (1, DEL, 0, a) and OP (1, DEL, 0, b) from site 1 and then
OP (3, INS, x, 1) from site 3.

As x and y were not generated at the same site, there is no direct effect
relation between them, but it is still possible to order them by transitivity.
As a ≺ b ≺ x and y ≺ a ≺ b, by transitivity y ≺ a ≺ b ≺ x and y ≺ x.

If two sites concurrently insert a character at the same position, the ordering
is made accordingly to the id of both sites.

Site 0

’ab’

OP (2, INS, 0, x)

OP (1, DEL, 0, a)

OP (1, DEL, 0, a)

OP (3, INS, 0, y)

Figure 3: Effects Relation. Own Illustration.

Effects relation order: A sequence of operation is said to be in effects
relation order if its operations are ordered according to the effect relation of
their characters. This order is denoted by <e, =e and >e.

For two operations o1 and o2 where o1to2 holds, o1 <e o2 if (1) o1.p < o2.p;
(2) o1.p = o2.p, o1.t = INS, o2.t = DEL ; or (3) o1.p = o2.p, o1.t = o2.t =
INS, o1.id < o2.id. When o1 7→ o2 holds, o1 <e o2 if (1) o1.p < o2.p; (2)
o1.p = o2.p, o1.t = o2.t = DEL.

The >e operator is completely symmetric to <e, and o1 =e o2 is true if
neither <e nor >e hold.

3.2.2 Undo of Operations

The undoing of an operation can simply be achieved by generating and
executing its inverse operation. However, there are some subtleties to this
process.

If o is an undo operation, o.ov is the timestamp of the operation it undoes.

As an operation cannot be undone twice, we use o.uv as the set of times-
tamps of operations that undo (or try to re-undo) o. When an operation is

5

undone twice, the two undo operation get merged into one. Their respective
timestamps also get merged to form sets of timestamps.

Some operations cannot be undone. If we have o1 = OP (1, INS, 0, a) and
o2 = OP (1, DEL, 0, a) then o1 can no longer be undone because o2 is depen-
dent on o1. To keep track of those dependencies, o.dv, the set of timestamps
of operations that depend on o is used.

The set of timestamps o.tv contains the timestamps of all operations whose
effect objects are identical to o.c.

3.2.3 Description of the Algorithm

The ABTU algorithm is based on two important principles which are Causal-
ity Preservation and Admissibility Preservation.

Causality Preservation: Causality is preserved if, for any two opera-
tions o1 and o2, if o1 → o2, then o1 must be invoked before o2 at any
site. Therefore, a remote operation from site j is causally ready at site i iff
∀k 6=jSVi[k] ≤ o.v[k] and o.v[j] = SVi[j] + 1. If remote operations are only
executed when they are causally ready, causality preservation is respected.

Admissibility Preservation: Admissibility is preserved if the execution
of any operation respects the effects relation ≺ of the system. At any site,
remote operation must be transformed so that they become admissible and
can be executed.

As seen in 3.1, before being executed, remote operations need to be trans-
formed. In order to transform operations against each other, each site must
maintain a history buffer H of every operation already executed. H is an
operation sequence maintained in effects relation order. When remote op-
erations are received, each site will transform, execute and integrate them
into H.

When an undo operation is generated, the original operation must be recov-
ered from the history buffer and its inverse generated. The undo operation
is then executed, distributed and stored just after the original operation in
H.

The ABTU algorithm has been proved to converge at some point in the
future, i.e. all history buffers in all sites of the system will, at some point,
end up to be equivalent sequences of operations.

Both local and remote operations need to be handled by the ABTU al-
gorithm. The psoeudocode for the described functions is available in Ap-
pendix A.

6

Local Operations

Local operation must be timestamped, integrated into H and distributed to
other peers, this is done by localThread and integrateL functions.

Function localThread: When an operation o is generated at site i, func-
tion localThread simply increments SVi[i], adds this timestamp to o, calls
integrateL and propagates the result to other sites.

If the operation is an undo, localThread searches the original operation o in
H, and checks if an undo is possible with o.uv and o.dv. It then generates
its inverse and sets all the necessary timestamps. The time SVi[i] is then
incremented, integrateL called and the result distributed.

Function integrateL: Function integrateL scans H from right to left and
modifies the position of all operations H[k] as long as H[k] <e o. If H[k] =e

o, o.tv and H[k].dv are set accordingly. It is important to notice that H[j] 7→
o to make the correct checks for the <e relation.

For an undo operation u, the index j in H of the original operation is
recovered with the help of u.uv. All operations H[k] ∀k>j are transformed
against u and u is inserted at position k + 1.

Remote Operations

Remote operations are first stored in a receiving buffer RB. When no local
operation has to be integrated, the remoteThread and integrateR function
can transform, integrate and execute the first causally ready operation from
RB.

Function remoteThread: When a causally ready operation form site
j is integrated at site i, the remoteThread function calls integrateR and
increments SVi[j].

If the operation is an undo u, the original operation o is also recovered from
H and o.uv is set to u.v. If o.uv 6=, then o has already been undone by
some operation u′. The timestamps of u′ are updated accordingly and u
discarded. The time SVi[j] is then incremented, integrateR called and the
result distributed.

Function integrateR: The function integrateR serves two purposes:

1. Transform o against all operations H[k] where o || H[k] holds and
integrate o in H. Indeed, at the generation of o, H[k] was unknown
to the site j and therefore o has not taken into account H[k]. As H is
sorted in effects relation order, the transformation must only be done
as long as H[k] <e o. It is important to notice that H[k] t o holds
when the <e check is made.

2. Transform all operations H[k] for which H[k] >e o is true against o.

7

If the operation is an undo u, the original operation o is recovered from H
with the help of o.tv and u.p is set to o.p+1. H is then scanned from left to
right, starting from o, to integrate the effect of concurrent operation whose
effect object are identical to u.c. If ∃H[k] s.t. H[k] =e u, then o has already
been undone by H[k] and the two operations are merged. The operation u
is finally integrated into H just after o and executed.

4 Design and Implementation

As explained in section 2, the general structure of the software is organized
in three parts. The frontend manages the interaction with the user and the
database. It is coded in JavaScript. The ABTU algorithm is implemented
in Go and represented by an ABTUInstance structure. Communication
with the ABTU instance is made through four different channels. The man-
agement, also implemented in Go, manages different instances of the ABTU
algorithm, handles the communication between frontend and the ABTU
instance, and the communication with other peers. The communication
between frontend and backend is done through a web socket.

The design of the model has been modularized to allow for greater flexibil-
ity: the ABTU instance can be simply be plugged in any management and
frontend which respect the interface and the communication protocol.

Frontend

Management ABTU Instance

TCP Connection

Go Channels

Figure 4: General Organization of the Software. Own Illustration.

4.1 ABTU Instance

The ABTUInstance struct is shown in figure 5. It stores the siteId, site
timestamp and history buffer, and uses four channels for the communication
with the management.

8

1 type ABTUInstance struct {
2 id S i t e I d
3 sv Timestamp // S i t e timestamp
4 h [] Operation // His tory b u f f e r
5
6 // . . .
7
8 // channel f o r r e c e i v i n g from l o c a l f ron tend
9 localToABTU chan [] byte

10 // channel f o r sending to l o c a l f ron tend
11 aBTUToLocal chan [] byte
12
13 // channel f o r r e c e i v i n g remote opera t i ons
14 remoteToABTU chan [] byte
15 // channel f o r d i s pa t c h i n g l o c a l ope ra t i ons to remote s i t e s .
16 aBTUToRemote chan [] byte
17
18 }

Figure 5: ABTUInstance Struct. Own Code.

4.2 Receiving Buffer Manager

When remote operations are received through the remoteToABTU channel,
they must be stored in a receiving buffer. Concurrently, the remote thread
reads in the remote buffer to find the first causally ready operation to inte-
grate. There is a clear need for a concurrent data structure in this situation,
the receivingBufferManager (rbm) serves this purpose. This data structure
is inspired from [McG].

As shown in figure 6, requests to the datastructure are represented by
structs, containing a return channel, and sent through channels to the rbm.
The possible requests are adding a remote operation to the buffer, getting
the first causally ready operation given a SV or delete the last causally
ready operation returned from the buffer.

Once started, the rbm continuously checks for incoming requests by using
a select control structure on different channels. When the first causally
ready operation is requested, it might still not be present in the buffer, in
that case, the rbm checks the aBTUIsWaitingCausallyReadyOp flag, handles
other requests and sends the operation when it is available. Figure 7 shows
a simplified version of the control structure.

9

1 // A reque s t opera t ion
2 type GetCausallyReadyOp struct {
3 CurrentTime Timestamp
4 Return chan Operation
5 }
6
7 type RemoteBufferManager struct {
8 // Channels f o r r e qu e s t s
9 Add chan AddOp

10 Get chan GetCausallyReadyOp
11 RemoveRearrange chan RemoveRearrangeOp
12
13 // The ac t ua l r e c e i v i n g b u f f e r .
14 rb [] Operation
15
16 // . . .
17 }

Figure 6: Receiving Buffer Manager Struct. Own Code.

4.3 Communication with Frontend

When the user generates a new operation, it is directly executed on the doc-
ument in the frontend, and then sent to the ABTU instance for integration
and distribution. If the operation is an undo, the frontend sends an undo
request to the ABTU instance and waits for the operation. When a remote
operation is handled in the ABTU instance, the resulting operation must be
sent to the frontend.

Priority is given to local operations on remote ones. When a local operation
o is created, o must be integrated into H before any other remote operation.
If this is not the case, then the processing of the remote operation will not
take into account o and the result will not be valid in the already modified
state of the document. This problem can be illustrated by the following set
of events. The starting state of the document is ’abc’.

1. User generates operation ol = OP (1, INS, 0, x) and sends it to ABTU.

2. ABTU integrates remote operation or = OP (2, DEL, 3, c). The defi-
nition state of or is ”abc”. The goal of or is to remove ”c” from the
document.

3. ABTU sends the resulting operation or, which remains unchanged, to
the frontend.

4. The frontend applies or to the document. The resulting state is ”xac”
whereas if ol had been integrated into H before or, the result would
be ”xab”. Contrary to the first, the second result is the correct one.

This shows the importance of giving the priority to local operations. As

10

1 func (rbm ∗RemoteBufferManager) Sta r t (rb [] Operation){
2 // . . .
3
4 // Used to manage pending GetCausallyReadyOp r e qu e s t s
5 rbm . aBTUIsWaitingCausallyReadyOp = fa l se
6
7 go func () {
8 for {
9 select {

10 case addOp := <− rbm .Add :
11 rbm . rb = append(rbm . rb , addOp . Operation)
12 addOp . Ack <− true
13 // I f ABTU i s wa i t ing f o r a c au s a l l y ready opera t ion
14 i f rbm . aBTUIsWaitingCausallyReadyOp {
15 // Get c a u s a l l y ready op
16 // I f p re sen t :
17 // sen t i t through rbm . causallyReadyOpRetChan
18 // s e t rbm . aBTUIsWaitingCausallyReadyOp = f a l s e
19 }
20 // Return the f i r s t c a u s a l l y ready opera t ion i f a v a i l a b l e
21 case getCausallyReadyOp := <− rbm . Get :
22 // Get c a u s a l l y ready op
23 // I f p re sen t :
24 // sen t i t through rbm . causallyReadyOpRetChan
25 // and s e t rbm . aBTUIsWaitingCausallyReadyOp = f a l s e
26 // I f not pre sen t :
27 // s e t rbm . aBTUIsWaitingCausallyReadyOp = true
28 case removeRearrangeOp := <− rbm . RemoveRearrange :
29 // remove the l a s t c a u s a l l y ready op from the b u f f e r
30 }
31 }
32 } ()
33 }

Figure 7: Receiving Buffer Manager Control Structure. Own Code.

local operations can be generated by the user at any time, when a local
operation is received by the ABTU instance, the processing of the remote
operation must be cancelled. In the frontend, if a remote operation or is
received from the ABTU instance before the acknowledgement for the last
local operation, or must be discarded.

The operations shared between the frontend and the ABTU instance are
encoded into Json objects: SimpleOperation: {”OpType”: OpType, ”Char-
acter”: []byte, ”Position”: Number}. OpType is 0 for insertion and 1 for
deletion. The ”Character” field is simply the byte representation of the
character in utf-8 encoding.

As the use of control messages is needed, the Json representation of simple
operations can be wrapped in. The control messages have the following

11

format: {”Type”: TypeToken, ”Content”: Content}.

TypeToken is one of the following.

• ”localOperation”

• ”undo”

• ”ackRemoteOperation”

• ”ackLocalOperation”

• ”nackLocalUndo”

• ”acklocalUndo”

• ”remoteOperation”

The content is either a SimpleOperation, a number for the undo, or nil.

The frontend manages the execution of operations and the communication
by following the schema in figure 8. When an undo is requested (16-18),
the frontend waits for the the undo operation or a ”nack” (33-39), noth-
ing can happen during that time (7-11 and 26-28). When local operations
are generated, they are executed and sent to the frontend (13-15). No re-
mote operation can be executed as long as some operations have not been
integrated into H (no ”ackLocalOperation” received) (26-28), a ”nackRe-
moteOperation” is sent in that case. In the other, the remote operation is
executed.

4.4 ABTU Control Structure

The control structure of the ABTU instance (figure 9) gives the priority to
local operations by selecting the frontendToABTU channel first (4). If no
message is coming from there, it requests the first causally ready operation
from the receiving buffer manager (8-10). Again, priority is given to local
operations over the waiting for the answer from the rbm (15-18).

4.5 ABTU Local Thread

The function handleFrontendMessage distributes the work between han-
dleLocalOperation and handleLocalUndo. Operations get integrated, dis-
tributed and acknowledgments are sent to the frontend.

In the undo case, localThreadUndo is called. For a ”localUndo” message
where the content is n, the nth last locally generated operation must be
undone. Therefore, a buffer (localTimestampHistory) with the timestamps
of locally generated operations is kept in memory. LocalThreadUndo recov-
ers the original operation from H using the localTimestampHistory. If the

12

1 var numberOfPendingLocalOperations int = 0
2 var pendingUndo = fa l se
3
4 // Sending messages when l o c a l opera t ion i s genera ted :
5 switch {
6 case localOp generated :
7 i f pendingUndo {
8 // Wait f o r ”ackLocalUndo” or ”nackLocalUndo”
9 // Te l l the user he cannot wr i t e .

10 // Handle the incoming message
11 }
12
13 numberOfPendingLocalOperations ++
14 execute (localOp)
15 send ({Type : ” l o ca lOpera t i on ” , Content : localOp })
16 case undo u generated :
17 pendingUndo = true
18 send ({Type : ”undo” , Content : u})
19 }
20
21 // Rece iv ing messages
22 switch incoming message msg {
23 case msg . Type == ”ackLocalOperat ion ” :
24 numberOfPendingLocalOperations −−
25 case m.Type == ” remoteOperation ” :
26 i f numberOfPendingLocalOperations>0 | | pendingUndo {
27 send ({Type : ”nackRemoteOperation” , Content : ni l })
28 } else {
29 execute (msg . Content)
30 send ({Type : ”ackRemoteOperation” , Content : ni l })
31 }
32 case msg . Type == ”ackLocalUndo” :
33 pendingUndo = fa l se
34 execute (msg . Content)
35 case msg . Type == ”nackLocalUndo” :
36 pendingUndo = fa l se
37 // Te l l the user t h i s opera t ion cannot be undone .
38 }

Figure 8: Frontend Controller. Own Code.

original operation cannot be undone, a ”nackLocalUndo” message is sent to
the frontend.

The function integrateL directly operates on abtu.sv and abtu.h.

4.6 ABTU Remote Thread

The function handleCausallyRemoteOperation in figure 10 calls the remoteThread
function. The remoteThread and integrateR functions operate on copies of

13

1 for {
2 select {
3 // P r i o r i t i z e l o c a l ope ra t i ons
4 case bytes := <− abtu . localToABTU :
5 abtu . handleFrontendMessage (bytes)
6 default :
7 // Request c a u s a l l y ready opera t ion
8 causal lyReadyOperationChannel := make(chan Operation , 1)
9 abtu . rbm . Get <− GetCausallyReadyOp{

10 abtu . sv , causal lyReadyOperationChannel }
11
12 select {
13 // P r i o r i t i z e l o c a l opera t ion
14 case causallyReadyOp := <− causal lyReadyOperationChannel :
15 abtu . handleCausal lyReadyOperation (causallyReadyOp)
16 case bytes := <− abtu . localToABTU :
17 abtu . handleFrontendMessage (bytes)
18 }
19 }
20 }

Figure 9: ABTU Controller. Own Code.

abtu.h and abtu.sv and return the resulting operation, time and history
buffer to the caller (3). If the resulting operation is of type unit, it is dis-
carded and the changes applied (25).

At the end of the handleCausallyRemoteOperation function, an answer from
the frontend is awaited: if the message is a ”ackLocalUndo”, the changes
are applies to abtu.h and abtu.sv (13-22). However, if the message is a
”localOperation”, it means that a local operation has been generated by the
user in the meantime, and the changes to the history buffer and time should
not be executed (9-12).

4.7 The Big Picture

Figure 11 shows the general organization of the implementation of the algo-
rithm. The labeled arrows represent Go channels.

4.8 Communication with Peers

The communication with other peers is done by using the go-libp2p library
from [lib]. This library implements advanced peer-to-peer communication
features. The Run function in figure 12 is inspired from the echo example
in the go-libp2p repository from [lib].

14

1 func (abtu ∗ABTUInstance)
2 handleCausal lyReadyOperation (causallyReadyOp Operation){
3 toExecuteOp , h , sv := abtu . remoteThread (causallyReadyOp)
4
5 i f toExecuteOp .OpType () != UNIT {
6 // Send r e s u l t to f ron tend
7 // Wait f o r answer
8 switch frontendMsg . Type {
9 case LocalOp :

10 abtu . handleLocalOperat ion (frontendMsg . Content)
11 case Undo :
12 abtu . handleLocalUndo (frontendMsg . Content)
13 case AckRemoteOp :
14 // Apply changes
15 abtu . sv = sv
16 abtu . localTimestampHistory =
17 append(abtu . localTimestampHistory , sv)
18 abtu . h = h
19 // Remove c au s a l l y ready op from rbm
20 ack := make(chan bool)
21 abtu . rbm . RemoveRearrange <− RemoveRearrangeOp{ack}
22 <− ack
23 }
24 } else {
25 //Apply changes
26 }
27 }

Figure 10: Remote Thread. Own Code.

The CommunicationService struct contains a Host and two channels for
sending and receiving operations. A peer is represented by the ABTUPeer
struct. As secured communication is not yet implemented, a random peer
identity can be generated using the testutils.RandPeerID() function from
the lib-p2p library.

In the Init function, the peers are added to the host.Peerstore (4-8). In the
Run function, messages from the mgmtToPeers channel are sent to all peers
from the peerstore on the ”epflDedisAbtu/Dispatch/0.0.1” protocol (20-28).
On the other hand, incoming messages are put in the peersTomgmt channel
in the streamHandler function (14-17).

With this simple design, the management can simply feed a channel to
distribute messages and listen to a channel to receive messages.

15

Remote Listener RBM

ABTU

Controller
Local Thread

Remote Thread

remoteToABTU

localToABTU

ABTUToLocal

ABTUToRemote

AddOp

GetCausallyReadyOperation RemoveRearrange

Figure 11: The Big Picture. Own Illustration

5 Results

The following tests on the code base have been completed:

• The receiving buffer manager is tested in the TestSimpleRequests func-
tion.

• Some unit tests have been written for the Timestamp struct, mostly
for debugging.

The ABTU instance has been tested in three different ways:

1. The TestOneABTUInstance from abtu1 test.go simply feeds one ABTU
instance with one local operation and one remote operation. The out-
going messages are simply printed out.

2. The TestABTU2Instances connects two ABTU instances only with
their respective channels. Two local operation and one undo are fed
into the first instance which then communicates the resulting remote
operations to the second instance. Messages are again printed in the
console. The test function must answer to ”remoteOperation” mes-
sages sent to the frontend to avoid a deadlock situation.

3. The TestABTUWithCommunication1 from abtu1 test.go and TestAB-
TUWithCommunication2 from abtu2 test.go work the same way as
TestABTU2Instances but use the peer to peer communication. The

16

1 func I n i t (myId S i t e Id , ABTUPeers map[S i t e I d]ABTUPeer)
2 ∗CommunicationService {
3 // . . .
4 for sId , ABTUPeer := range ABTUPeers {
5 // . . .
6 host . Pee r s to r e () .
7 AddAddr(peerId , multiAddress , p s to r e . PermanentAddrTTL)
8 }
9 // . . .

10 }
11 // . . .
12 func (comService ∗CommunicationService) Run()
13 (chan<− [] byte , <−chan [] byte) {
14 comService . host . SetStreamHandler (COMMUNICATIONPROTOCOL ,
15 func (s net . Stream) {
16 // . . .
17 comService . peersToMgmt <− incomingMsg
18 })
19 // . . .
20 go func () {
21 for {
22 outGoingMsg := <− comService . mgmtToPeers
23 for , peer := range comService . host . Pee r s to r e () . Peers () {
24 // . . .
25 outGoingStream . Write (outGoingMsg)
26 }
27 }
28 } ()
29 }
30 // . . .

Figure 12: Communication. Own Code.

ip addresses must be correctly set in the setupCommunicationService
from abtu test.go.
This test can be done between two computers. As TestABTUWith-
Communication2 is the receiver, it must be launched first, the thread
then sleeps for 10 seconds to allow TestABTUWithCommunication1
to be launched. Messages are again printed out in the console.

These tests show that the global design of the implementation is correct.
However, they do not guarantee that the implementation of the algorithm
is faultless. Further testing will have to be done in the future.

17

6 Limitations of the Project and Future Work

A lot of effort has been put into the design of the implementation to allow
for a good understanding and easy maintainability of the project. However,
there is room for improvement in some areas.

For the moment, an ABTU instance can be started but not stopped correctly.
The mechanism which stops the instance should recover the history buffer,
time and receiving buffer. Furthermore, when a peer leaves the collaborative
editing, other peers must be informed.

This leads to the second point: messages which are shared between peers
only contain operations. There needs to be a more complex communica-
tion protocol in order to add features such as a peer leaving or joining a
collaborative editing session.

The problem of peers joining is not easy to solve. Indeed, a joining site must
first recover the state of the document, the corresponding time and history
buffer from another site. Timestamps - now basically implemented as slices
of integers in a basic structure - also need to be extended for the joining of
peers.

Another area where the implementation can be improved is error handling.
For now, if an error occurs in the ABTU instance, the whole program sim-
ply fails with log.Fatal(). This has the repercussion of also crashing the
management, thus making the frontend and the user completely clueless.
An error should be recovered and error messages between the three parts of
the software must be integrated in the communication protocol so that the
management, frontend or user can be informed and react properly.

One of the main goals for the software this project is part of, is to make it
as secure as possible. Adding security to the peer to peer communication
would be a cornerstone for achieving this goal.

7 Conclusion

The first goal of the project is completed as the peer-to-peer communication
between two sites has been implemented and is fully operational. The second
goal is also completed as the implementation of an algorithm for peer-to-
peer collaborative editing has been done. The third goal is partly achieved,
as some basic tests have been done between two ABTU instances. The two
last goals have not entirely been completed. The frontend, management and
ABTU instance are almost ready for a linking. Nevertheless, there was not

18

enough time left to properly join the three parts. For the the performance
evaluation, a Go benchmarking file must be set up.

The next phase of the project would be to further test the implementation,
evaluate its performance and terminate the linking with the management
and frontend. More features could then be added to the software, such
as stopping, managing errors, secure peer-to-peer communication and allow
peers to join and leave the collaborative editing.

Algorithms for peer-to-peer collaborative editing is a complex but nonethe-
less interesting subject. The implementation of such an algorithm is chal-
lenging and requires a good understanding of the ABTU framework de-
scribed in [SLG10] and [LL10]. Finally, the project of creating a complete
software with an intuitive graphical interface is exciting. The work accom-
plished during this project will hopefully provide a solid base towards that
aim!

References

[lib] libp2p. Github repository of the libp2p implementation in go.
https://github.com/libp2p/go-libp2p.

[LL10] Du Li and Rui Li. An admissibility-based operational transforma-
tion framework for collaborative editing systems. 2010.

[McG] Mark McGranaghan. Stateful goroutines.
https://gobyexample.com/stateful-goroutines.

[SLG10] Bin Shao, Du Li, and Ning Gu. An algorithm for selective undo of
any operation in collaborative applications. 2010.

19

A Installation

The code of the project is available at https://github.com/DamienAy/

epflDedisABTU. Go must be installed according to these instructions: https:
//golang.org/doc/install. For the peer-to-peer communication, the go-
libp2p library must be installed from https://github.com/libp2p/go-libp2p.

An ABTU instance can finally be instantiated and run with the code in
figure 13:

1 var s i t e I d S i t e I d = 1
2 var numberOfSites int = 3
3 var i n i t i a lS i t eT imes tamp Timestamp = NewTimestamp(numberOfSites)
4 var i n i t i a l H i s t o r yBu f f e r [] Operation = make ([] Operation , 0)
5 var i n i t i a lRemoteBu f f e r [] Operation = make ([] Operation , 0)
6
7 // I n s t a n t i a t e
8 var abtu ABTUInstance =
9 I n i t (s i t e I d ,

10 in i t i a lS i t eT imes tamp ,
11 i n i t i a lH i s t o r yBu f f e r ,
12 i n i t i a lRemoteBu f f e r)
13
14 // Run
15 LocalToABTU , ABTUToLocal , RemoteToABTU , ABTUToRemote :=
16 abtu .Run()

Figure 13: Instantiation of an ABTU Instance. Own Code.

The communication service can be instantiated and run as shown in fig-
ure 14.

B Psoeudocode snaphots for local and remote thread

The snapshots from figure 15, 16, 17 and 18 provide from the [SLG10]
paper.

20

https://github.com/DamienAy/epflDedisABTU
https://github.com/DamienAy/epflDedisABTU
https://golang.org/doc/install
https://golang.org/doc/install
https://github.com/libp2p/go-libp2p

1 var s i t e I d S i t e I d = 1
2
3 peer1 := ABTUPeer{1 ,
4 ”QmVvtzcZgCkMnSFf2dnrBPXrWuNFWNM9J3MpZQCvWPuVZf” ,
5 ” 1 2 7 . 0 . 0 . 1 ” ,
6 ”1234” }
7 peer2 := ABTUPeer{2 ,
8 ”QmT1VesmGjDy4LnGzqSAbkr7ntqh67cgedU2dhsMk7dVGL” ,
9 ” 1 2 7 . 0 . 0 . 1 ” ,

10 ”1235” }
11
12 ABTUPeers := map[S i t e I d]ABTUPeer{1 : peer1 , 2 : peer2 }
13
14 // I n s t a n t i a t e
15 var comService CommunicationService = I n i t (s i t e I d , ABTUPeers)
16
17 // Run
18 mgmtToPeers , peersToMgmt := comService .Run()

Figure 14: Instantiation of a Communication Service. Own Code.

Figure 15: Local Thread. [SLG10].

21

Figure 16: IntegrateL. [SLG10].

Figure 17: Remote Thread. [SLG10].

22

Figure 18: IntegrateR. [SLG10].

23

	List of Figures
	Introduction
	Goals
	Corresponding Background
	Operational Transformation
	ABTU Algorithm
	Notions and Notations
	Undo of Operations
	Description of the Algorithm

	Design and Implementation
	ABTU Instance
	Receiving Buffer Manager
	Communication with Frontend
	ABTU Control Structure
	ABTU Local Thread
	ABTU Remote Thread
	The Big Picture
	Communication with Peers

	Results
	Limitations of the Project and Future Work
	Conclusion
	References
	Installation
	Psoeudocode snaphots for local and remote thread

