
Cothority Mobile: a mobile application to
perform distributed tasks using the

cothority-framework

Lucio Romerio

School of Computer and Communication Sciences

Decentralized and Distributed Systems lab

Bachelor Project

Spring 2017

Responsible
Prof. Bryan Ford
EPFL / DEDIS

Supervisor
Linus Gasser

EPFL / DEDIS

Summary

1 Introduction 1
1.1 PhoneGap . 1
1.2 Cisc . 2
1.3 Libraries . 3

2 Architecture 3
2.1 Cothority Protobuf . 4
2.2 CryptoJS . 5
2.3 Project Setup . 5
2.4 Database . 6

3 Implementation 7
3.1 Database . 7
3.2 Conode Status . 7
3.3 WebSocket . 8
3.4 Device registration . 8
3.5 Check Config . 9
3.6 Vote . 9
3.7 SSH keys registration . 10
3.8 General considerations . 11

4 Results analysis 11
4.1 Ecountered problems . 11
4.2 Limitations . 13

5 Future work 14

6 Installation 15

7 Conclusion 15

8 Bibliography 16

1 Introduction

The main goal of this project, as suggested by its title, is to implement a mo-
bile application to perform distributed tasks with the cothority-framework.
Actually, when I started working on this project, there already was an ex-
isting android application using the cisc service. Anyway there were two
main reasons to restart from scratch and to implement a new app:

1. The already existing application used a json-interface to send mes-
sages, which has been now substituted by a websocket-interface.

2. Make your application available both for iOS and Android is obviously
better than only providing an Android version.

My project was built starting from this two points. There are a couple of
cross-platform frameworks which allows you to code the Android and the
iOS application both at the same time. The first thing I did was to gather
information about those frameworks; then, together with Mr. Gasser, we
chose one of them: PhoneGap, which I will shortly describe in the next
subsection. To use it you have to code in JavaScript, therefore we added
another task to this project: to create two libraries. One to use the crypto
primitives implemented by the DEDIS Go library in JavaScript, and another
one to send/receive the cothority messages through the protobuf protocol in
JavaScript.

In the next few pages I will give you a quick overview on PhoneGap, as
well as on cisc – the service which I ended up implementing – and on the
two libraries introduced above.

1.1 PhoneGap

PhoneGap [9] is a framework originally developed by Nitobi, which was
purchased by Adobe Systems in 2011 [12]. It allows to build mobile appli-
cations using CSS3, HTML5 and JavaScript instead of the native languages
(Java for Android and Swift for iOS). Thanks to PhoneGap Build [13], CSS,
HTML and JavaScript code can be wrapped according to the device oper-
ating system. The result is an hybrid application that has access to most
of the native APIs functionalities, but in which the layout is rendered via
web views (instead of the native UI). PhoneGap Build offers three plans,
including a free one. The main limitations of this latter are a maximum app
size of 50MB and the prohibition to have more than one private application.
Both of those limitations are not a problem for this project, thus we decided
to use the free plan.

To build an application with PhoneGap Build is quite straightforward,
you simply have to provide a link to your project repository and launch the
build. There is an additional step to do in order to build the iOS version of

1

your application: to provide a valid certificate for the build. Obviously, if
you want to release your application you will need a certificate also for the
Android version. You can find information about how to create and register
those certificates by looking at the PhoneGap tutorial 11.

1.2 Cisc

The official README [3] of the cisc service defines this latter as follows.

“Cisc uses a personal blockchain handled by the cothority. It can store
key/value pairs, and has a special module for managing ssh-public-keys.

Based upon skipchains, cisc serves a data-block with different en-
tries that can be handled by a number of devices who propose changes
and cryptographically vote to approve or deny those changes. Different
data-types exist that will interpret the data-block and offer a service.

Besides having devices that can vote on changes, simple followers
can download the data-block and get cryptographically signed updates
to that data-block to be sure of the authenticity of the new data-block”.

In the quote above, there may be a couple of terms worth an explanation. A
blockchain is a form of distributed append-only log, often used in cryptocur-
rencies. As its name suggests, a blockchain is composed of blocks. Usually
those blocks contain some application-specific data as well as the hash of
the last block, a timestamp and a nonce. Skipchains combine blockchains
with skiplists. Those authenticated data structures allow to traverse in
a secure way the timeline in both forward and backward directions, and,
thanks to multi-hop links, long distances can also be efficiently traversed.
As in blockchains, the backward links are hashes of past blocks; while for-
ward links are added retroactively and consist in cryptographic signatures
of future blocks [7].

Figure 1: Skipchain structure [7]

On top of those structures, DEDIS has developed a collective authority
(cothority) which basically consists on a set of servers that provides a series
of services – like cisc – in a collectively and decentralized way. From now
on those servers will be called “conodes”.

2

In order to fully understand what explained in the next sections, a more
detailed but still general overview of the cisc service is necessary. As you
now know, cisc is a key-manager tool; its more relevant functionalities, for
what concerns this project, are listed below.

1. Add your device to an access-control-list.

2. Proposing to add, remove or update a key/value pair to this access-
control-list.

3. Define the threshold of the votes that a proposition has to reach in
order to be accepted.

4. Vote an existing proposition.

Every conode is provided with a config file in which are stored the threshold,
a collection containing all the devices on the skipchain and another collection
containing the key/value pairs. Note that usually, the values stored on this
latter are ssh-public-keys.

Figure 2: Cothority Architecture [6]

1.3 Libraries

The two libraries were already introduced and their goals should be clear
enough; what I want to explain here is just how we decided to proceed for
their implementation. During this semester there also was a master student
doing a project in the DEDIS laboratory. He also needed those two libraries
for his project, therefore we decided to implement them together. I have to
say that he had a better JavaScript knowledge than me, thus he coordinated
the implementation of those libraries. Nevertheless he gave me a lot of useful
advices, not only for what concerns the libraries but also for JavaScript in
general.

2 Architecture

In the next two sections I will try to describe all what bounded with the
development of Cothority Mobile, the application I implemented. Doing

3

this, I will follow the logical order of the process which, from my point of
view, also reflects the best approach to build this mobile application.

1. Extend the two libraries, Cothority Protobuf and CryptoJS, to support
the needs of the cisc service.

2. Setup a Phonegap project.

3. Design and implement the database of the application, after analyzing
its needs.

4. Implement all the cisc features one by one.

Unfortunately, for a couple of reasons, I was unable to always follow this
logical order, but it still makes sense to follow it while describing my project.

This section, Architecture, includes the first two points, as well as the
design of the database. Then, in the next section, I’ll proceed explaining
the implementation of Cothority Mobile itself more in detail.

2.1 Cothority Protobuf

As already outlined, DEDIS conodes are using the Protobuf protocol in order
to communicate. In particular there are a series of messages used by the cisc
service; the ones used by Cothority Mobile are the following: ConfigUpdate,
ConfigUpdateReply, ProposeSend, ProposeUpdate, ProposeUpdateReply and
ProposeVote. Some of those messages contain one or more complex fields,
which are special structures like Config, Device or SchnorrSign.

I do not think explaining the above structures in detail would be useful,
thus I will rather focus on explaining the general idea behind the implemen-
tation of one of them. Anyway you can find their definition by looking at
the library source code [2], as well as at the DEDIS repository on github [4].

Cothority Protobuf has three “core” files: root.js takes care of wrapping
and exporting all the messages defined inside the library, index.js defines
a couple of helper methods that are then used in cothority-protobuf.js to
define the library API, which basically consists in a series of functions to
encode/decode the previously defined messages. Given the structure above,
the implementation of a single message was the following.

1. Analyze and understand the structure of the original message.

2. Define additional structures, if any is needed.

3. Define the message itself.

4. Add to cothority-protobuf.js some methods to decode and/or encode
the new message.

One final note on the Cothority Protobuf: during the last weeks of the
semester its structure has been changed to use .proto files. I was not involved
into this change, thus I am not going to explain this library structure further.

4

2.2 CryptoJS

This library uses GopherJS [5] in order to compile Go code to pure JavaScript
code. The key idea is to take the cryptographic functions included in the
DEDIS Go library, to adapt them to be compatible with JavaScript but still
coding in Go, and finally to transpile them. This library is provided with
some common primitives that allow – for example – to create an EdDSA
key pair, to extract public keys and aggregate them, as well as computing
sha256 and sha512 hashes. Beside those basic functions, there are some
more specific ones that may be bounded to one of the services provided by
DEDIS conodes.

Figure 3: simplified JSON representa-
tion of a Config

I think an interesting thing here
would be to give an overview of the
cisc specific functions implementa-
tion, which are namely: HashCon-
fig and SchnorrSignature. Both of
those functions are hardly inspired
to their respective ones in the orig-
inal Go library, this is something
that holds in general for the whole
CryptoJS. As already outlined, the
biggest challenge was bounded to
compatibility. For example, consid-
ering HashConfig, the original func-
tion takes a Config – which repre-
sents the access-control-list – as an argument, while here all what we have
is a JavaScript Object. As a consequence we need to get all fields from the
object one by one and, at the same time, cast them to the correct type.
Apart from that, the function is basically an exact copy of the existing one.
The same holds for SchnorrSignature, which computes a Schnorr signature
from a given key pair and a message: apart from the type of the arguments
and from the return value, the function is identical to the original one.

All the functions defined in the library are then wrapped into a JavaScript
Object : cryptoJS. Thus, once compiled with GopherJS and correctly im-
ported into your project, the function of this library can be used with a
syntax similar to ’cryptoJS.myCryptoFunction(args)’.

2.3 Project Setup

There are two different ways to setup a PhoneGap project: through the
Desktop Application or the CLI. I chose the second one and used npm to
install the CLI, then the setup was quite straightforward, given the official
tutorial [8]. What you need to know about the structure of the project
is that it is almost identical to a simple website; in addition there is a

5

config.xml file which controls options related to the device operating system.

Figure 4: Cothority Mobile
sidebar

The next step was to include the two libraries
described above. Here I have to underline the
fact that a pure PhoneGap project can import
external libraries/JavaScript files only through
the script tag1.

After importing the two libraries, I created
a simple sidebar to simplify the debug and to
make all functionalities easily accessible to the
user. In figure 4 you see the final version of the
sidebar, which includes all the functionalities
that we will soon analyze.

Another thing I did before starting the
development of the mobile application it-
self, was to include the phonegap-plugin-
barcodescanner [1] into the project. In fact the
ability of scanning a qr-code is quite important
for the cisc service.

2.4 Database

As you should now know, the cisc service allows the user to add a device
to an access-control-list by giving his public key, and then to store multiple
SSH keys on it. Obviously you are not storing the private keys into the
skipchain, but you have to store them somewhere: this justifies the need of
a local database for the application.

We need to store two kinds of public key, thus it seems natural to create
two tables, one for each.

conodes (address TEXT PRIMARY KEY, serverId TEXT NOT NULL, deviceId TEXT NOT
NULL, keyPair TEXT NOT NULL, UNIQUE (serverId), UNIQUE (keyPair))

ssh (serverAddr TEXT, sshName TEXT, sshKeyPair TEXT NOT NULL, PRIMARY KEY
(serverAddr, sshName), UNIQUE (sshKeyPair))

Each time the device is added to a different access-control-list, a new
entry is added to the first table. Such entry contains: the IP address and
the ID of the server, respectively in the address and serverId fields, the
unique ID that identifies the device inside the access-control-list as deviceId,
and of course the keyPair. As suggested by Mr. Gasser the IP address of a
conode is unique, therefore it’s used as primary key.

A single device can store multiple SSH keys into the same access-control-
list, as long as it gives a different name to each key, thus the primary key of
the second table is composed by serverAddr and sshName. The third field
of the ssh table is sshKeyPair, the SSH key pair itself.

1<script type=”text/javascript” src=”...” ></script>

6

For completness, figure 5 shows the ER Schema of the database. In real-
ity the database structure evolved during the development of the application
and I had to overhaul it – almost completely – more than once. Obviously
the structure described above is the final one.

Figure 5: database ER Schema

3 Implementation

Now that you have an overview of the database structure and the setup
procedure, we will discuss the implementation of the database and all func-
tionalities of the mobile application.

Note that this application is based on the branch cisc qrcode of the
DEDIS repository cothority [6].

3.1 Database

After analyzing different possibilities, I decided to use the database API
described in the PhoneGap documentation, mainly because I wanted to
keep the project as vanilla PhoneGap as possible.

There is not much to say about the implementation of the database
itself, apart from the fact that each call to it is asynchronous. So, ideally,
whenever you access the database, you have to wait for the database action
to finish before doing anything else. You may know that ES6 introduced
promises, which solve this problem, but with pure PhoneGap you have to
use common JavaScript. Therefore I created a database helper that wraps
the official API in a series of functions taking an handler as an argument.
Once the database action has been completed, the handler is triggered.

3.2 Conode Status

All DEDIS conodes, when receiving an empty message, send a message2

containing information about their status. The first functionality I added to
the application was, given a valid conode address, sending an empty message
to it and showing its current status to the user. The main reason for this
feature – which is not strictly bounded to cisc – was to test whether the
communication between the device and the conodes was working correctly.

2more precisely a StatusResponse

7

3.3 WebSocket

The conodes communicate through the ProtoBuf protocol over WebSocket.
Thus, while implementing the simple feature described above, I also started
coding a JavaScript file that basically became my WebSocket API through
the whole project. It includes a “core” function that takes care of using a
WebSocket connection in order to send a message, and eventually manage
the response. This function is then used by a series of other methods, one
for each kind of message, that basically forward their arguments – after
adapting them – to the “core” function.

The idea behind WebSocket connections is to reuse the same connection
for subsequent messages, instead of a different one for each message. The
conodes accept just one kind of message over a given connection, therefore
I defined one map for each kind of message. Each map, when indexed with
a conode address, returns the existing connection with this conode for this
kind of message, if there is one.

As you can guess, sending a message usually implies to wait for a re-
sponse, which is another asynchronous task. As for the database, I dealt
with it by using some handlers.

3.4 Device registration

The procedure to register a device to a conode is composed by two main
phases.

1. Scanning the qr-code encoding the conode ID.

2. Creating and sending a proposition.

The html file for this feature contains an element for each phase. The
style of those elements is changed programmatically to display them or not,
according to the current phase.

Phase one
Through the command ‘cisc id qr’ the user can print a qr-code, encoding
the conode ID, to the terminal. Once the qr-code is displayed, the user has
to scan it with his device: the result of the scan will be a string of the form
‘cisc://ipAddress:port/conodeId’. If the qr-code is a valid “cisc qr-code”, the
application will then extract the conode address and the ID from it. Since a
given device can be added only once to a single access-control-list, we need
to check whether the device has already been registered to the conode before
sending a ConfigUpdate message to it. Finally the Config3 file of the conode
is extracted from the conode response: we move to the next phase.

3Figure 3 shows its structure

8

Phase two
In this phase the user has to insert a unique ID that will be used to identify
the device inside the access-control-list. After that a valid ID has been
inserted, a new key pair will be created using the CryproJS library. The
key pair, together with the unique ID and the information extracted from
the qr-code, will be stored into the conodes table. Then an entry for the
device is added to the Config obtained in phase one and a ProposeSend is
sent to the conode. One of the fields of a ProposeSend message is the Config
structure: in order to make a proposition it suffices to initialize this field
to be the updated Config. The server will then send a response to confirm
it received the proposition; when this happens an informative message is
displayed to the user and the procedure is ended. The user has to wait that
his proposition reaches the needed threshold of vote.

3.5 Check Config

After proposing a new device you may want to check whether it has been
accepted yet or not. The simplest way to do this is sending a ConfigUpdate
and verifying if your device appears inside the Config you receive as a re-
sponse. Another thing you can do, knowing a conode address and ID, is to
check if there are any propositions ready to be voted. This two function-
alities are very similar and, for this reason, are provided both by the same
page inside the application.

The “Check Config” page comes with a simple tab menu and with a
list of all skipchains joined by the device, constructed from the conodes
table. The entries of the tab menu are “Status” and “Update”. Clicking
on one of the conodes will send a ConfigUpdate or a ProposeUpdate to it,
depending on the current tab. In the first case the response of the server
will contain the actual Config of the conode. In the second, the response
will contain the modified Config that has not reached the threshold yet, or
it will be empty in case there is no active proposition. At this point the
received Config is displayed to the user, unless the response was an empty
message. Fortunately the user can finally check whether his proposition has
been accepted or if there is any proposition to vote. Additionally, if there
is any proposition to vote, the “vote button” will appear when sending a
ProposeUpdate, but this will be discussed in the next subsection.

For what concerns implementation detail, the idea explained before –
changing programmatically the style of a given html element – is reused
here. Apart from that, there is not much to say.

3.6 Vote

As anticipated, Cothority Mobile offers to the user the possibility to vote
propositions and make them reach the votes threshold. The procedure to

9

vote a proposition is the following one.

1. Compute the hash of the Config containing the proposition.

2. Sign the resulting hash with the private key used to register the device.

3. Send a ProposeVote message to the interested conode with the Schnorr
signature generated in the previous point.

Points 1. and 2. are completed thanks to the CryptoJS library. It suffices
to have the Config and the correct key pair to reduce their implementation
to a simple function call. Usually the Config is obtained by sending a Pro-
poseUpdate, which implies you know the conode address. Given this latter
you can easily retrieve from the database the corresponding key pair.

Once the Schnorr signature has been computed, all what remains to do is
to send the ProposeVote message, which is done with the aid of the Cothority
Protobuf library and of the WebSocket pseudo API described above.

3.7 SSH keys registration

From a certain point, of view adding SSH keys to access-control-lists can be
defined as the main feature of the cisc service. As usual, I will now list the
steps involved in this procedure one by one.

1. Choose a conode between the ones to which your device has been
added.

2. Send a ConfigUpdate message to it, in order to obtain the actual Config
of the conode.

3. Create a new SSH key pair, give it a unique name and store it into the
local database.

4. Add the public key along with its unique name to the Config.

5. Propose the updated Config.

6. Vote your own proposition.

Those steps are subdivided in three different phases, which – once again – are
implemented by changing programmatically the visibility of each element of
the html body.

Phase one
It includes the first two points and it is implemented in a similar way as
the Check Config page described in section 3.5. All conode addresses stored
in the database are shown to the user, he can select one of them and, as a
result, a ConfigUpdate message is sent to this conode.

10

Phase two
The user has to insert a unique ID for the new SSH key pair. Once a
valid ID has been inserted, a new SSH key pair is generated and stored
as a new row in the ssh table, together with its fresh ID and the conode
address. Then, the Config obtained in phase one is updated with the new
ssh public key and used to create a ProposeSend message. As soon as the
conode answers to this message, a ProposeVote is sent with the purpose of
voting the proposition you just made. Obviously the vote is constructed as
explained in the previous section.

Note that what just described, from the user point of view, is reduced
to a simple button click, but in reality it includes the last four points listed
above.

Phase three
Phase three basically consists in showing a simple informative message to the
user. This is done when receiving from the conode a message that confirms
it has received your vote.

3.8 General considerations

The philosophy I adopted is to wrap – when possible – all functions needed
for a given functionality into a single JavaScript file. As a side effect, this
implies some duplicate code.

Regarding test implementation, as you will discover in the ”Results Anal-
ysis” section I had to completely overhaul some parts of the project more
than once. I started by coding tests together with functionalities, but see-
ing that most of them became useless one week after being coded, I stopped
doing it. At the end of the project I found a node module4 which allows
to setup a mock server for unit testing, but unfortunately I did not have
enough time to set it up. As a result the coverage and the quality of some
tests are not optimal.

4 Results analysis

Now it should be clear enough what Cothority Mobile can do, thus in this
section we will mainly discuss what it cannot do. But first, I think it would
be worth the effort to quickly go through the problems encountered during
the development, in order to fully understand those limitations.

4.1 Ecountered problems

There are some minor issues and a couple of major ones I encountered while
developing this application.

4karma-websocket-server

11

https://www.npmjs.com/package/karma-websocket-server

Minor issues
With “minor issues” I mean those that only made me lose time but were not
a big deal. Nevertheless some of them were easily avoidable, thus I think it
would be useful to quickly go through them to allow anyone who will build
a similar application to prevent those situations and to save time.

I already said that in reality I did not implemented the libraries and
the application in the same order they were presented in this report. As a
result I had to rewrite some parts of code in order to adapt them to the new
task I just received. As already explained, this mostly happened with the
database.

In the introduction section I outlined how, in order to build an iOS
application with PhoneGap Build, you need a valid Apple certificate. During
the first part of the semester I had no certificate and, as a consequence, I
was unable to test the iOS version. When I finally received the certificate5

I had to partially revise the code – especially for what concerned the layout
– in order to make the application work correctly in both Android and iOS
devices.

React and ES6
The new website of the laboratory, implemented during the semester, is
written in React and ES6, therefore the initial idea was to do the same with
the mobile application. I found an official template [10] to make it possible
and started building the application on top of it. After a series of problems
I discovered, reading an issue on the github page of the template, that at
this time6 the template was not working on real devices. As a result I had
to restart almost from scratch.

From PoP to cisc
At the beginning of the project I started working on PoP, another service
developed by the DEDIS, but I was unable to contact a conode. At a certain
moment we decided, together with Mr. Gasser, to give up with PoP and to
try with cisc. After a week I was stuck at the same point: the server was
not sending any response to my messages. During a meeting, Mr. Gasser
setup PuTTY on my laptop so that I could connect to the conode and see
the output generated by my messages, but there was none. At this point,
talking with the master student doing a project in the same laboratory, I
discovered two things. First of all the conodes are not sending any response
in case of error, they simply ignore the received message, exactly as in my
case. Secondly they may not even write information about the error to the
terminal. In other words, the only thing you can do in this situation is to

5The 12 April 2017 (week 8 of the semester)
6It was the 25 March April 2017 (week 5 of the semester)

12

use debug printing and try to understand what is going wrong. After a few
weeks, I finally knew how to proceed in order to solve this issue.

In the end the problem was not bounded to my code as we thought,
but rather to the server itself. Unfortunately I did not have enough time to
verify whether the problem with PoP was a similar one.

4.2 Limitations

Now that you have a global overview of all problems that arose during
the development of this mobile application, you may better understand the
origins of its limitations.

PhoneGap
There is one major limitation directly bounded to PhoneGap. After reach-
ing a blind alley with the React/ES6 template, we decided to use vanilla
PhoneGap. With it, you cannot use node modules, the require syntax or
everything different from a script tag to import an external library.

Beside this if you develop a native Android application – for example
– you have access to tools like Espresso, which simplifies automated test-
ing. When using PhoneGap there is no such tool available, thus automated
testing is more complicated.

Cothority Mobile
Considering Cothority Mobile itself, there is a main weakness: in case an
error occurs while communicating with the server, it will stuck. The problem
is due to the fact that – as already pointed out – the server is not sending
any message in case of error, making this situation hard to handle. While
developing the database and the WebSocket pseudo API, I experimented a
couple of different ways to manage asynchronous events in PhoneGap. The
only one – between my tries – that seemed to be trustworthy, and worked
on both Android and iOS, was to use some kind of handler, but in order to
use this approach we have to receive an error message. Probably – keeping
the server as it is – the best solution would have been to use some sort
of timer, although the inability to use node modules would have made the
implementation more complex.

Beside this robustness problem, this mobile application comes with an-
other quite important limitation. As you should know at this point, the idea
behind cisc is to add multiple SSH public key to an access-control-list. Ob-
viously before adding an SSH public key you have to create it, but right now
you cannot. The mobile application allows the user to make a proposition,
but in reality what you are adding to the access-control-list is an EdDSA
public key instead of an SSH one.

Another little problem is the layout. You are not sure that with the
same code you obtain the same result both on iOS and on Android. Usually

13

you can find a compromise to make it work on both devices, sometimes this
is harder to do. Cothority Mobile tries to find a compromise whenever is
possible, giving priority to Android when it is not.

5 Future work

Talking about future work, I think the list here below resumes quite well
what can be done.

1. Handle server errors.

2. Allow the user to create SSH key pairs through the application.

3. Finalize and test the Cothority Protobuf library.

4. Finalize the CryptoJS library.

5. Extend the application with other DEDIS services.

The first two points were already discussed in the previous section and should
be quite clear. For what concerns the other three, we may give them a closer
look here.

Cothority Protobuf
Right now the library does not provide all the messages supported by the
conodes. Actually, beside the cisc messages, I have also implemented the
ones used by PoP, but – as you now know – they have not been tested yet.
It may be interesting to test them and to finalize the library by adding all
remaining messages. Note that an important part of this work would be the
test phase, which may imply to debug the server itself.

CryptoJS
I did not implemented a function to verify a Schnorr signature: such func-
tion is not used by Cothority Mobile but it would make the library more
complete. Beside this function there may be other functionalities that can
be added to this library. While working on the CryptoJS library, the main
difficulty would be linked to the compatibility between JavaScript and Go,
as explained in the ”Architecture” section.

Other services
There are some other services beside cisc (like PoP for example) that have
been developed by DEDIS. Thus, a possible idea for future work, would
surely be to extend Cothority Mobile to use one or more of those services.

14

6 Installation

Note that this sections, as well as the whole report, is based on the source
code as it is today, the 9th June 2017. This also holds for the libraries
Cothority Protobuf and CryptoJS. A link to the source code of both the
two libraries and of Cothority Mobile is provided below.

Cothority Mobile: https://github.com/lromerio/cothority-mobile
Cothority Protobuf: https://github.com/Gilthoniel/CothorityProtoBuf
CryptoJS: https://github.com/Gilthoniel/CryptoJS

In order to get the project working on your machine, first run the com-
mand ’npm i’ to install the dependencies, then ’npm i -g phonegap’ to install
PhoneGap.

To preview the application on a real device you need to download Phone-
Gap Developer on it, then run the command ’phonegap serve’ on your com-
puter, insert into PhoneGap Developer the ip address that will be displayed
on the terminal, and finally press connect. Note that your computer and
your device have to be connected to the same WLAN.

If you want to test the application on an Android emulator you first
have to install the Android SDK, then simply run ’phonegap run android’.
A similar command for iOS should exist, but I never used it since in order to
run an iOS emulator you have to work on an iOS machine and it is not my
case. You can give a look to the official tutorial [8] for further information.

Note that the source code includes the apk of the application. I could not
do the same for the iOS version because of the certificate problem already
explained.

7 Conclusion

PhoneGap
One of the goals of this project was to experiment PhoneGap and evaluate
this cross-platform framework.

In my opinion, PhoneGap can be very powerful for developing an appli-
cation which aims to provide some kind of information, and thus has not a
lot of functionalities. If instead your application has a lot of functionalities,
in particular if some of them are really specific, I don’t think PhoneGap
would be the best pick. In other words, when choosing this framework, you
are giving priority to saving time – by developing both Android and iOS
version at once – over having full access to the native API of the device
operating system.

In the specific case of Cothority Mobile there are some other factors to
consider and – from my point of view – the line is very subtle. It needs some
very specific functionalities like sending messages over WebSocket and the
use of cryptographic functions. Therefore it seems that PhoneGap would

15

be the wrong choice. In reality, given the two libraries implemented during
this semester, those functionalities are no more complicated to provide with
JavaScript. Anyway it still remains the fact that, with vanilla PhoneGap,
you cannot use node modules.

Thus, in this case, the determiner factor would probably be a personal
preference.

Personal experience
I have to say that the final result is not exactly what I hoped at the beginning
of this project, mainly because of the already discussed problematics that
slowed me down. However I think one of the main objectives of a bachelor
project is to acquire new knowledges: during this semester I have learned
how to develop an application with PhoneGap, how to setup a web project
from scratch and many other things. Also I now have more confidence in
my capabilities as a programmer, thus, in conclusion, I am overall satisfied.

8 Bibliography

[1] Barcodescanner Plugin. Master, 3 June
2017

[2] Cothority Protobuf. Master, 3 June 2017

[3] DEDIS. Cisc, 2 June 2017

[4] DEDIS. Cothority, 3 June 2017

[5] GopherJS. Master, 3 June 2017

[6] Kokoris-Kogias E., Gasser L., Khoffi I., Jo-
vanovic P., Gailly N., Ford B. Managing
Identities Using Blockchains and CoSi

[7] Nikitin K., Kokoris-Kogias E., Jovanovic
P., Gasser L., Gailly N., Khoffi I.,

Cappos J., and Ford B. CHAINIAC:
Software-Update Transparency via Col-
lectively Signed Skipchains and Verified
Builds

[8] PhoneGap. Getting Started, 7 June 2017

[9] PhoneGap. Homepage, 2 June 2017

[10] PhoneGap. PhoneGap CLI 6.0.0, 7 June
2017

[11] PhoneGap. Signing, 8 June 2017

[12] PhoneGap Build. Homepage, 2 June 2017

[13] Wikipedia. PhoneGap, 2 June 2017

16

https://github.com/gopherjs/gopherjs
https://github.com/Gilthoniel/CothorityProtoBuf/tree/master
https://github.com/dedis/cothority/blob/master/cisc/README.md
https://github.com/dedis/cothority
https://github.com/gopherjs/gopherjs
http://docs.phonegap.com/getting-started/1-install-phonegap/cli/
https://phonegap.com/
https://phonegap.com/blog/2016/02/24/phonegap-cli-6-0-0/
http://docs.phonegap.com/phonegap-build/signing/ios/
https://build.phonegap.com/
https://en.wikipedia.org/wiki/Apache_Cordova

	Introduction
	PhoneGap
	Cisc
	Libraries

	Architecture
	Cothority Protobuf
	CryptoJS
	Project Setup
	Database

	Implementation
	Database
	Conode Status
	WebSocket
	Device registration
	Check Config
	Vote
	SSH keys registration
	General considerations

	Results analysis
	Ecountered problems
	Limitations

	Future work
	Installation
	Conclusion
	Bibliography

