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Using Pairing-Based Cryptography to Improve ByzCoin’s Robustness to Faults

by Christopher BENZ

Scaling distributed ledgers has been a long-standing issue. One proven way of
scaling out is by sharding; in sharding, nodes are partitioned into shards that each
need to reach consensus on a particular part of the state. Hence, they can commit
transactions in parallel.
Sharding, however, requires a strongly consistent consensus to be run inside each
shard, in order to achieve fast finality and also requires this consensus to be run
among hundreds to a thousand nodes, in order for the system to be secure. Pre-
vious work on consensus mechanisms has not managed to deliver a consensus
algorithm suitable for sharding: (1) PBFT does not scale much. The original paper
tested only 4 and 7 nodes, which is way too small for a true permissionless dis-
tributed ledger. (2) Bitcoin, the first and most prominent blockchain, is currently
limited to 3-7 transactions per second and its finality guarantees are only prob-
abilistic. Finally, (3) ByzCoin takes Bitcoin and improves on it with a PBFT-like
consensus mechanism, using Collective Signing, which is based on the Schnorr
signature scheme.
Unfortunately, in order for ByzCoin to scale it uses a tree communication pat-
tern, which can be fragile in an adversarial environment. Furthermore, the use of
Schnorr signatures makes ByzCoin susceptible to Denial-of-Service or slowdown
attacks during the Schnorr randomness disclosure step.
We propose to use pairing-based cryptography and a fixed three-level tree com-
munication pattern to create a consensus mechanism that both scales and is fault
tolerant, even under strong adversaries.
Furthermore, we describe and implement Bls-ByzCoinX, which uses the Boneh-
Lynn-Shacham signature scheme to improve scalability of the consensus mecha-
nism and to make it more reliable. Finally, we evaluate the implementation per-
formance by comparing it with existing solutions and show that Bls-ByzCoinX,
which provides more robustness than ByzCoin, scales up to 1000 nodes while be-
ing at most two times slower than ByzCoin.
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1 Introduction

Since its inception 10 years ago, blockchain technology has emerged as a new way
of designing decentralized ledgers. Being truly permissionless and incentivizing
nodes to join the network to make it more secure, Bitcoin [17] revolutionized the
field and brought a new spark to the development of decentralized databases for
many different use-cases [16] [9] [10].

While most decentralized ledgers have proven strength in decentralization
and security [11], most do not scale out well [24], which means that augmenting
the number of validators in the network does not scale the transaction throughput.

One proven way to scale out distributed systems is by sharding [7]: nodes are
partitioned into separate shards that each compute a different state of the block
validations. This allows for faster validation of transaction logs, as each shard
can validate a subset of them in parallel. Previous work shows that around 600
validators per shard is good enough to scale out to thousands of nodes with very
low probability of failure [14].

PBFT [3] is an early work that works well for very few nodes only (the original
paper only mentioned 4 and 7 nodes, and most deployements never go above 16
nodes [15] [6] [8]) because of its communication pattern, which involves broad-
casting each message to all other nodes. On top of that, it is not permissionless
because the consensus group is closed. These reasons make it unsuitable for scal-
able consensus.

ByzCoin [13] and ByzCoinX [12] take Bitcoin and improve it with a PBFT-like
consensus mechanism and a new tree communication pattern for high scalability.
ByzCoin uses either a two-level flat tree, or a deeper tree communication pat-
tern. ByzCoinX compromises between the two and uses a three-level tree. But
both have a fault tolerance problems. A single node can make the protocol fail
and start again without being able to discriminate the attacker by exploiting the
Schnorr signature mechanism. Such an easy Denial-of-Service attack makes it eas-
ily exploitable to slow downs at a low cost for the attacker.

Pairing-based cryptography could solve the fault tolerance issue because it
only needs one round of communication and does not use randomness, contrary
to the Schnorr signature scheme, which eliminates the possibility of a Denial-of-
Service attack. It also decouples the signing phase from the aggregation, which
allows nodes to incrementally aggregate signatures and move rapidly to the next
step once a threshold of participants is reached.

We introduce Bls-ByzCoinX, a consensus mechanism capable of issuing col-
lective signatures that uses the Boneh–Lynn–Shacham signature scheme [1]. Its
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one-round trip defends against Denial-of-Service attacks that are possible in Byz-
Coin, making it more robust while keeping good scalability.

Our evaluation of Bls-ByzCoinX shows that it can confirm transactions with
strong consistency under 30 seconds for a 1 MB block, which can make it useful
for near real-time transactions in sharding protocols. We evaluated our implemen-
tation in terms of latency, block size and transactions per second and compared it
to the aforementioned works.
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2 Background

This section presents the necessary backgrounds needed to understand the report
from a technical point of view.

2.1 Practical Byzantine Fault Tolerance

Historically, previous work on distributed consensus comes from Byzantine Fault
Tolerance (BFT) research. It all begins with the question of how to reach an agreement
among multiple parties, while knowing some of them can by malicious or faulty.

To explain better, the Byzantine General Problem story was imagined by Leslie
Lamport, Robert Shostak and Marshall Pease in their 1982 paper, which is sum-
marized here:

A group of generals, each commanding a portion of the Byzantine army, en-
circle a city. These generals wish to formulate a plan for attacking the city. In its
simplest form, the generals must only decide whether to attack or retreat. Some
generals may prefer to attack, while others prefer to retreat. The important thing
is that every general agrees on a common decision, for a halfhearted attack by a
few generals would become a rout and be worse than a coordinated attack or a
coordinated retreat [23].

This allegory also transcribes to algorithmic consensus protocols. The generals
become nodes in a network and, upon receiving a computation request, we want
them to be able to agree on the result, even if some of the nodes break down or are
corrupted (i.e. they are maliciously trying to falsify or block the result).

Published in 1999 by Castro and Liskov, the Practical Byzantine Fault Toler-
ance (PBFT) [3] algorithm is the first practical implementation of a Byzantine Fault
Tolerant algorithm, and it worked in an asynchronous environment such as a com-
puter network, which made it useful for real-world cases. Provided no more than
(n− 1)/3 nodes are faulty, the algorithm satisfies both safety ("nothing bad will
ever happen", i.e. the protocol cannot get blocked in some state) and liveness
("something good eventually happens", i.e. the algorithm will always return a
result), two properties that are important for real-world use-cases of a database
[19].

However, PBFT was not designed for scalability and only works for very few
replicas. Experiments often use only 4 or 7 nodes [15], which limits its use-case to
keeping a system tolerant to software errors or single server breakdown, but not
for scaling a decentralized system to thousands of nodes.

One of the reasons it doesn’t scale well is because at every step, each node
needs to broadcast its message to all other nodes, creating a complexity of O(n2).
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FIGURE 2.1: The normal case of a run of PBFT.

Additionally, the system is not permissionless, in the sense that it cannot ac-
cept any new node to join the network at any time. The nodes are a closed-group
of servers that are defined before the system starts and cannot be changed. For
a decentralized ledger, we need any node to be able to join the network in a free
and open way.

We give a simple description of the main steps in the protocol, composed of
three phases pre-prepare, prepare and commit:

One of the nodes is the primary, which will receive the request from the client,
and all other nodes are the backups. When it receives a message, the primary will
broadcast it to all the backups during a pre-prepare phase, along with the message’s
digest. Every backup verifies the message, and if everything is correct, it enters
the prepare phase, during which it broadcasts the message alongside its own id
to all other nodes. It then waits for receiving at least d2/3 + 1e of the prepare
messages from other nodes. After the threshold, it enters the commit phase, where
it will once again broadcast the message to all other nodes. It then again waits
for d2/3 + 1e of the commit broadcasts from other nodes. When the threshold is
reached, the node knows that the message is validated by the network, and it
sends a confirmation to the client.

This mechanisme guarantees that the network has reached consensus if less
than 1/3 nodes are faulty.

To resume, the drawbacks of PBFT are the following:

• It doesn’t scale out nor scale up. PBFT works well only for very few replicas.
In the original paper, only 4 and 7 replicas were tested.

• It is not permissionless. Nodes are fixed and static, which makes the algo-
rithm unusable for an open and permissionless system.

• The complexity of communication between nodes is O(n2). This complexity
comes from the fact that each node in the network has to communicate with
every other one during the algorithm.

• A client waits for a response from d2/3 + 1e of the nodes in order to confirm
that the transaction was completed and is correct. Before then, it cannot
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know if the received answer is correct or not. It therefore has to keep track
of how many responses it got from the network, how many nodes are in the
network, and verify each response.

2.2 Bitcoin

Bitcoin [17] as presented in Satoshi Nakamoto’s 2009 paper proposed a novel way
of making consensus in a distributed ledger, by using a Proof-of-Work system.

The solution was revolutionary. Unlike other works such as PBFT, Bitcoin was
permisionless in the sense that any node can arbitrarily join the network of val-
idators without prior permission. Not only that, but the Bitcoin system is made so
that nodes are incentivized to join the network [22], by earning monetary rewards
in the form of bitcoin.

Today, Bitcoin’s Proof-of-Work solution has proved its strength by scaling up
to thousand of nodes without issues, and offers one of the most powerful de-
centralized distributed ledger against attacks. To attack the network, an attacker
would need an enormous amount of hashing power. At the time of writing, the
Bitcoin network has a total hashing power of 30 million TH/s. That puts the cost
of a 51% attack, which is needed for a 100% attack success, at over $6 billion USD
[5].

The computation put into the network by the miners is what makes Bitcoin
secure, but it has the undesirable effect of consuming enormously lot of energy
power [18], which has been largely critisized because of the effect on the environ-
ment.

Bitcoin can not scale out either: the transaction throughput is limited to 3-7
per second, whatever the number of validators is. Bitcoin’s throughput is often
compared to the one of Visa, considered as a competitor in the area of digital
exchange of money, and a good point of comparison. At its peak, Visa achieves
above 47000 transactions per second [20]. Bitcoin has no way of scaling out the
number of transactions per second in its current form. We could even argue that
with a growing number of validators, the Bitcoin network becomes slower and
less decentralized because of the time for sending the new blocks through a bigger
network.

Bitcoin also has a high transaction confirmation time. Assuming no group of
miners has more than 50% of the total hashing power of the network, a transaction
is confirmed with very high probability after one hour (6 blocks of 10 minutes)
[confirmation]. This makes Bitcoin unsuitable for real-time transactions.

2.3 CoSi

CoSi [21] is a protocol for scalable collective signing. It allows a client to request
that a message is publicly signed by a group of witnesses, resulting in a collective
signature that has the same length and verification cost as a single signature.
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Such a system has many applications, particularly in the area of signing au-
thorities. Very important internet services are provided by centralized author-
ities: time and timestamp services, certificate authorities, directory authorities,
software update services, randomness services, etc. These services are high-value
targets for hackers.

CoSi is a proactive solution to replace or complement the authorities.

It works in the following way:

• When an authority publishes a new signing key (e.g. a browser root certifi-
cate bundle), it also publishes with it the identities and public keys of a large
set of trusted witnesses.

• Whenever the authority signs a new authoritative statement (e.g. certificate,
timestamp, log record, etc.), it sends the statement to the witnesses.

• It then collects all the cosignatures.

• Finally, it aggregates all the cosignatures along with its own signature. The
final signature is attached to the statement, which is sent to the receiving
client.

• The client verifies that the statement has been signed by a great enough sub-
set of witnesses (e.g. 50%).

The client can therefore verify without communication that a large number of
parties have witnessed and logged the statement before it accepts it.

With W witnesses, a MITM attacker needs the secret key of the authority
and those of W witnesses, or submit faked statement to witnesses for cosigning,
thereby exposing it publicly and risking detection.

We do not expect witnesses to detect all malicious statements immediately. But
they can sanity-check the correctness and consitency of proposed statements be-
fore cosigning. If a conflict is detected, even if we do not know which is malicious,
it is now publicly known that there is a conflict.

CoSi uses a spanning tree with the leader at the top and all witnesses dis-
tributed so that the tree has depth O(logN). This communication pattern is uti-
lized in other multicast and aggregation protocols [4] [2].

To perform one round, the CoSi protocol needs 2 round-trips (composed of
four messages) between the leader and all the witnesses: the leader first sends
an Announcement down the tree. All the nodes then respond with a Commit
message, which contains a Schnorr randomness. While going up the three, the
commits are aggregated sequentially by nodes to arrive at one aggregated commit.
The leader then sends a Challenge back down the tree, containing a collective
Schnorr challenge. The witnesses finally respond with a Response containing the
answer to the collective challenge, and they aggregate the messages similarly to
the commit phase.

CoSi can be used for collective signing, but for reaching consensus, we cannot
simply run a single round because of the following issues:



2.4. ByzCoin 13

FIGURE 2.2: Communication pattern of CoSi.

• If a node fails to respond at any step of the protocol, we have no way of
knowing if it is malicious or if it failed due to one of its children. In other
words, the deep tree structure makes it impossible to blame one node for
failing without him blaming another honest node.

• If a node fails to respond during the second round-trip, we cannot start an-
other run of CoSi while guaranteeing that the node will not finalize the sig-
nature later on.

2.4 ByzCoin

Bitcoin only provides probabilistic consistency: because of the possibility of a fork
(e.g. multiple miners find different valid blocks before the network has reached
consensus, or in the case of an attacker with a high amount of hash power), it is
recommended to wait 6 subsequent blocks (called confirmations) [confirmation]
before being able to consider a transaction to be valid with high probability.

ByzCoin [13] improves on this and provides strong consistency, meaning that
once a transaction is commited to the blockchain, it can immediately be considered
as valid. There is also no wasted computation power on inconsistent forks.

To do so, ByzCoin is based on PBFT and uses CoSi to make it more scalable.
Two rounds of CoSi are performed: the first one is to ensure that all the nodes are
willing to sign the statement. The protocol moves on to the second round only if
a threshold of participating nodes is attained during the first round.

If a node doesn’t respond during the first round, we restart the protocol and
ignore the non-responding node. If a node participates in the first round and for
whatever reason doesn’t respond during the second round, all nodes can detect
that he did promise during the first round that he would participate. The node can
then be blamed by banning it from the system, before launching a new instance of
CoSi.

ByzCoin can either work with a deep tree structure or a flat tree (two-level).
The latter choice is less scalable because of the network overhead on the root,
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and is also more susceptible to Denial-of-Service on the root, who has to handle
messages with all the other nodes. In the evaluation, we compare only to a deep
tree structure, which is more fair to ByzCoin’s scalability.

ByzCoin has a communication cost of O(logN) with N the number of nodes,
thanks to the tree communication pattern, which scales way better than PBFT’s
full broadcast system.

ByzCoin solves the problems that we have with a single round of CoSi (see
2.3), but it still has drawbacks and is not completely fault tolerant because it is sus-
ceptible to Denial-of-Service attacks: during the Commit Phase, a malicious node
can begin by sending a correct commitment message, which contains a Schnorr
randomness, to its parent. At the Challenge phase, this node can then not send
its Response. The aggregated Commitment and Challenge will need this node’s
Response in order for the protocol to work. By not responding, the node can make
the system wait for a timeout. Then, the network has to begin a whole new round
of the signing process. It is therefore very easy for a single node to create Denial-
of-Service attacks on the full protocol.

Note that even without malicious nodes, failure of a (single) node at the Re-
sponse step results in the whole protocol to restart. With the goal in mind of
building a scalable blockchain, the probability of a node failing gets higher with a
large number of nodes in the network and a good system should support without
problem the failure of a single node.

2.5 ByzCoinX

ByzCoinX [12] is an improved version of ByzCoin that is able to prevent the
Byzantine Denial-of-Service attack.

It uses two rounds of CoSi for the same reason as ByzCoin, but uses a three-
level tree, so that there’s only one intermediate layer of nodes in the communica-
tion pattern. Nodes are separated into groups of equal size, and each group has a
subleader (second-level nodes) which is in charge of collecting the signature of all
its children (leafs).

With this communication pattern, a non-responding node can be ignored by
the subleader, who waits for collecting a certain threshold of responses from all
its children. If the subleader itself isn’t responding, the root leader elects a new
subleader inside the group. If it’s the root node who fails, the protocol is restarted
with a new leader.

2.6 The Boneh–Lynn–Shacham signature scheme

The Boneh–Lynn–Shacham (BLS) signature scheme [1] uses pairing-based cryp-
tography, which is an extension of elliptic curve cryptography, to allow a party to
verify that a signer is authentic. One of its strengths is the ability to easily aggre-
gate signatures, which we use here for cosigning messages.

First, we describe the basic operation of BLS.
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Let G0, G1 and GT be three cyclic groups of prime order q, and let g0, g1 and gt

be their respective generators. We introduce the following definitions, which are
necessary ingredients for BLS:

• Pairing e : G0×G1→ GT , with a bilinear property satisfying

e(g0
a, g1

b) = e(g0
b, g1

a) = e(g0, g1)
ab

Basically, applying the exponents to either generator or the output of the
pairing gives the same result. The pairing is efficiently computable and non-
degenerate.

• Hash function H :M→ G0, which takes an input (the message) and maps
it to a pseudorandom point on G0.

The scheme is then composed of three functions:

• GenerateKey(): the private key is a random: x ∈ Zq and the public key is
pk← g1

x ∈ G1.

• Sign(x, m): σ← H(m)x ∈ G0. Returns the signature σ.

• Veri f y(pk, m, σ): returns True if e(g1, σ) = e(pk, H(m)), False otherwise.

Thus, the pairing operation is used for the signature verification to check if
both the public key pk and the signature σ were generated by the same private
key.

BLS allows for easy aggregation of signatures as follows. Let (pki, m, σi) for
i = 1, ..., n be triples for n users and a same message m. The signatures can be
aggregated by σ← σ1 · · · σ2 ∈ G0, i.e. addition in the group G0.

To verify the aggregate signature σ, we then verify that

e(g1, σ) = e(pk1 · · · pkn, H(m))

If the equation holds, we know that the aggregated signature was signed by all
participating parties, thus also proving that the message was witnessed by all of
them.

The resulting signature is an element of an elliptic curve group and holds in
64 bytes.

As one can observe, the BLS scheme offers a very easy way of doing signature
aggregation and verification of signature for authentication.

This scheme is a central point of the project. Combined with a tree structure,
BLS can produce a collective signature in a single round-trip, instead of two with
the usual Schnorr signatures: a message is sent down the tree, and the nodes
simply respond with the signature, while intermediate nodes aggregate step by
step to obtain a single final collective signature.
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The one-round trip of BLS mitigates Denial-of-Service attacks. The powerful
difference of BLS with more classical Schnorr signatures is the ability to aggregate
signatures after they are created. With Schnorr (as used in CoSi), the signatures
have to be aggregated when they are computed. With BLS, it is possible to sign a
message, and aggregate multiple signatures later on, in any order.
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3 System Overview

3.1 Interface

From a client’s point of view, the system is a service that offers to make the collec-
tive signature of a given message. After receiving a client’s request for signature,
the network of validators computes the collective signature and sends the result
back to the client. Upon receiving the response from the server, the client knows
that the network has reached consensus and the collective signature proves that
at least d2/3 + 1e nodes witnessed the message and took part in the signing.

Any party can then verify that the message was indeed signed by an at-least
d2/3 + 1emajority of the nodes.

3.2 Assumptions

Any node in the network can join the consensus group. Each of them creates a
public-private key pair as described in 2.6, and makes the public key available to
the other nodes. There is no need for a trusted third-party key provider, so the
system is truly decentralized and open.

We assume the network has a weak synhrony property, as described in PBFT
[3].

The consensus group contains a root leader (e.g. elected by the sharding pro-
tocol), who is reponsible for creating the subtrees and electing subleaders.

3.3 Threat Model

With N total validators, we assume at most f with 3 ∗ f = N validators are Byzan-
tine. This means we must have at least d2/3 + 1e honest nodes that are com-
plaisant and follow the protocol correctly.

We assume the malicious nodes can behave arbitrarily: they can be coordi-
nated by an attacker to disrupt the state of the system, can refuse to participate,
break down, not respond to some of the messages, etc.

Bls-ByzCoinX is vulnerable to Denial-of-Service on some of the nodes in the
consensus group: if the attacker controls a subleader or the root node, it can not
respond to annoucements, which will trigger the parent node only after the time-
out. Single leaf nodes cannot trigger Denial-of-Service alone. For n =

√
N sub-

trees, there are
√

N + 1 (all subleaders and the root node) that can slow down the
protocol.
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3.4 System Model

Behind the scenes, the nodes in the network are arranged in a three-level tree
structure.

Let N be the number of validator nodes in the network. One of the N nodes
is the root leader. The remaining N − 1 nodes are partitioned into n subtrees of
same size and a subtree has a single subleader (directly below the root leader) and
other nodes in the sub-tree are leafs.

We use
⌈√

N
⌉

for the number of subtrees because it’s a fair compromise be-
tween more subtrees or more nodes per subtree. Simple simulations on our pro-
tocol support this argument.

FIGURE 3.1: Bls-ByzCoinX’s tree structure.

This structure allows for a better responsiveness in case of malicious or er-
ronous nodes: if a subleader is not responding, its subtree elects a new subleader,
but the protocol continues in the meanwhile. Because we only need d2/3 + 1e of
all the nodes to sign (under our assumption of no more than 1/3 dysfunctioning
nodes), we do not always have to wait on all nodes to respond.

A two-level tree makes the root node too easily vulnerable to a Denial-of-
Service attack. As the network scales, the root leader would find itself respon-
sible for more and more child nodes. While sending and receiving messages, the
overhead would augment linearly with the number of validators.

With more than three levels, the algorithm gets slowed down by the latency
between the root node and the leaves. Augmenting the number of levels in the
tree increases the round-trip time.

Therefore, a three-level tree is a good compromise between the two.

Each node in the network has a public/private key pair (pki, ski) generated
with the BLS GenerateKey() function. The public keys pki for all nodes i are
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known by every node in the system.

A round-trip happens in the following way during the protocol: the root leader
multicasts a message to all his children (the sub-leaders), which in turn multicast
the message to all their own children. Each node ni then signs the message m with
the Sign(ski, m) method, using its private key pki to get a signature σi. When a
leaf has computed the signature, it sends it up to its subleader. The subleader of
every subtree is responsible for collecting all of its child’s signatures, aggregating
them all together with its own signature, then sending the aggregated signature
for the subtree to the root leader. The root leader therefore receives one aggregated
signature per subtree. It can then compute its own signature, and aggregates all
the received aggregated signatures together. The final result is a single cosigned
signature, which is sent back to the client.

Here lies the power of the Boneh–Lynn–Shacham signature scheme: a signa-
ture can be computed by a node and sent to its parent, who aggregates the sig-
natures later, without the need of the node who created the signature anymore.
Without pairing-based cryptography, signature aggregation has to be done at the
moment of creating the signature.

3.5 Failures

Bls-ByzCoinX is fault tolerant and can handle up to 1/3 Byzantine nodes.

Each subtree can tolerate up to 1/3 failures, as d2/3 + 1e is the threshold for
the subleader to aggregate the signatures and send the result to the root. There-
fore, leaf failures are very well tolerated.

If a subleader is no responding after a timeout, the root node elects a new
subleader in that subtree.

Finally, if the root is failing, which is detected by the client after a timeout, the
system has to elect a new one and restart the round.

Compared to ByzCoin, we have removed the possibility of a single leaf node
to make the entire protocol fail. First- and second-level nodes are still a point of
failure. For n subtrees, this means that n + 1 nodes (subleaders and the root) are a
more fragile point of failure, while N − (n + 1) nodes are resistant.

3.6 Advantages

Bls-ByzCoinX solves many of the other solutions problems, and brings additional
advantages.

Because the BLS signature scheme allows for a one round-trip (instead of two
in the case of ByzCoin and ByzCoinX), we remove the possibility for a single node
to perform an easy Denial-of-Service attack, by commiting during the first round-
trip then ignoring the second. With Bls-ByzCoinX there is not commit phase,
therefore a node can not promise to participate then dissapear during the response
phase. A subleader waits for d2/3 + 1e of its children to respond, and once that
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threshold is reached it can aggregate the children’s signatures and send back to
the root leader. With the BLS mechanism, a single failing or malicious leaf cannot
block the protocol and is ignored. The robustness gain is enormous in this sense:
Denial-of-Service attacks are way more difficult and require many more resources,
because the attacker has to control a greater portion of the total nodes.

Another powerful trait of BLS is its ability to separate the signing phase from
the aggregation, which makes it easier to use in asynchronous environments.
Subleaders can incrementally aggregate signatures until the 2/3 + 1 threshold is
reached, at which point it can propagate back up the result.

3.7 Augmenting fault tolerance

In our implementation, once the subleader reaches the threshold, it sends the ag-
gregated signature the the root node and finishes its work, discarding any ad-
ditional childs that would send their response. This means that the root node
collects d2/3 + 1e responses only from each subtree, and therefore he needs the
responses from each subleader in order to reach the total threshold (which is also
d2/3 + 1e).

To improve fault tolerance even more, we could make the subleaders wait for
more than d2/3 + 1e responses from its subtree before sending up to the root node.
This way, a subleader would collect more signatures than needed, and the root
node could reach the global threshold faster, without having to wait on every sin-
gle subleader to respond. This different mechanism could thus tolerate Byzantine
subleaders.

Another similar way of improving fault tolerance is for the subleaders to send
the aggregated signature once the d2/3 + 1e of the subtree is met, and send ad-
ditional signatures later on, individually or grouped, to complete its contribution
incrementally. This solution makes the system less simple and augments the net-
work overhead on the root node, who has to manage more responses, but also
allows for Byzantine subleaders.
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4 Implementation

4.1 Bls-ByzCoinX

We implemented the protocol described in 3 in Go, using the onet framework of
DEDIS lab and made it available on Github. Below we describe the subtleties of
the implementation and also the intention of each file.

4.1.1 Messages

The protocol uses two messages:

• Annoucement Which is sent from the root down the tree. It contains the
message to be signed and data to verify it.

• Response Which is sent back up the tree in response to the annoucement,
starting from the leaves up to the root. It contains a signature or an aggrega-
tion of signatures, which are both binary marshaled elliptic curve points.

FIGURE 4.1: Communication pattern and messages in Bls-
ByzCoinX.

4.1.2 Tree structure abstraction

The root leader receives the signing request from the client and he starts the proto-
col. From his point of view, the leafs are hidden behind the abstract nodes which
are the subleaders. All he sees are the subleaders, which take care of their own
subtree.
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For n subtrees, the root leader runs n different protocols, each having one
unique child, which is a subleader of one of the subtrees. When each protocol
has finished aggregating the signatures for a subtree, the root leader aggregates
together the n aggregated signatures to obtain the final signature.

FIGURE 4.2: Instances run by each node.

4.1.3 Bitmask

To keep track of which node has sent a valid signature, we use bitmasks, i.e. arrays
of boolean flags. When a subleader receives the signature of a child, he verifies it
then sets the bitmask value of that child to 1. For childs that do not send correct
signature or simply do not send a signature, the bitmask value will be 0. This
allows us to know which node has participated in the final signature for the veri-
fication step.

4.1.4 Timeouts

Because any node can be non-responsive, we use timeouts at all levels of the pro-
tocol, in case a node is Byzantine or fails. If a node does not respond to a request
after the amount of time defined by the timeout, it is considered to have failed,
and the appropriate measures are taken. We use a global default timeout at the
root leader level, and for subleader, that timeout is divided by two. Our experi-
ments show that a root timeout of 60 seconds is good for 600 nodes and a 1 MB
message size.

4.1.5 Files

struct.go

Defines the different messages that are sent across the network and their content.
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protocol.go

This is the protocol run by the root leader. It is the entrance point of the whole
protocol.

sub_protocol.go

Every node runs one instance of sub_protocol.go. As stated in 4.1.2, the root leader
runs a number of instances of sub_protocol.go equal to the number of subtrees.

In a few words, this file tells the node to send the message signature request to
all its children (if any), wait for their responses, aggregate all answers, then send
the result to its parent.

helper_functions.go

Contains the logic for aggregating signatures, verifying them, and other utility
methods.

mask.go

Defines the Mask object and its functions. Is used for the bitmask: creating a
bitmask, setting values to 0 or 1, etc.

gen_tree.go

Generates the tree structure that is needed for Bls-ByzCoinX: a three-level
structure with the root leader as root, from the list of all nodes.

4.2 PBFT

For evaluating Bls-ByzCoinX, we wrote a PBFT implementation in Go using the
same framework for fair comparison.

PBFT has two round-trips with four messages, as defined in 2.1. At every step,
a node sends the message to all other nodes. On the receiving side, a node must
wait for d2/3 + 1e responses. Once it has received that amount of messages, it
confirms that step and continues the protocol.

At every step, the messages are digitaly signed to avoid spoofing. The receiv-
ing node can verify the correct identity of the sender.

We use Schnorr signatures for creating the signature.

4.3 ByzCoin

We use the ByzCoin implementation from DEDIS, as described in the original
paper.

We use the deep tree structure instead of the flat one, because it scales better,
which compares better to Bls-ByzCoinX.



24

5 Evaluation

In this section, we evaluate our Bls-ByzCoinX implementation with respect to net-
work and consensus latency, transaction throughput and overall scalability. We
compare it to a PBFT and a ByzCoin implementation and discuss the differences.

We ran simulations using a cluster of 35 physical machines and up to 980 vir-
tual nodes. To keep a constant bandwidth across all simulations with different
number of virtual nodes, we modified the physical machines’ bandwidth in order
to keep a constant 35 Mbps for every experiment. We also set a simulated round-
trip latency of 200ms between each machine. These values are meant to mimick
real-world conditions.

As messages to be signed, we use real Bitcoin blocks containing Bitcoin trans-
actions. This simulates once again real-world situations and allows us to compute
the throughput of the system and compare it to Bitcoin. The maximum Bitcoin
block size is 1 MB, which is equivalent to around 3000 transactions.

All experiments were run on 10 rounds and we took the mean values for our
results.

5.1 Number of nodes

First, we explore the scalability of Bls-ByzCoinX in terms of the number of nodes
participating in the consensus, and compare it to ByzCoin and PBFT.

We set the block size to 1 MB, which is equal to Bitcoin’s current limit and vary
the number of validators, ranging from 5 to 980 for each protocol. As explained
above, the bandwidth of the machines were modified for each number of nodes
to keep a constant 35 Mbps per simulated node.

For 5 nodes, PBFT has the smallest latency of the tree protocols, but when
scaling it quickly becomes unusable. It started failing at 105 nodes, so we display
its line to 100 nodes only. With it’s O(n2) communication complexity, scalability
is not possible and thus it cannot be used for large consensus groups in scalable
ledgers.

Bls-ByzCoinX’s latency augments linearly with the consensus group size, at
least up to 980 nodes. Up to 600 nodes, we deem the latency acceptable and in
range with other solutions (20-30 seconds).

As we can observe in figure 5.1, Bls-ByzCoinX has a slightly higher latency
than ByzCoin over the full range of total validators. This is because Bls-ByzCoinX’s
root node neads to send the message to more nodes than ByzCoin, which has
a smaller branching factor with a deeper tree. The difference accentuates as the
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FIGURE 5.1: Influence of the number of validators on the latency
for the three protocols.

number of nodes grows, which is expected because the tree in Bls-ByzCoinXwill
grow large faster than ByzCoin.

5.2 Block size

Next, we experiment how the block size affects the system’s latency.

Block size is an important factor for distributed ledgers. A greater block size
allows more transactions to be logged per epoch, but induces longer latency when
the block has to be propagated between nodes during the consensus.

We vary the block size betwen 1, 2, and 4 MB. For 8 MB and higher, our im-
plementation of Bls-ByzCoinX started failing quickly because of timeouts, so we
kept to smaller sizes. As a reminder, Bitcoin uses a 1 MB block size limit.

As we can observe in figure 5.2, a classic 1 MB block achieves latency that is in
an acceptable order of magnitude (below 30 seconds) and scales linearly.

Doubling the block size to 2 MB nearly doubles the latency across the range
of number of validators. The latency for 560 validators stays acceptable but more
nodes start to be out of range of desired values.

A 4 MB block also grows linearly with the number of validators, and has la-
tencies that are approximately two times greater than the 2 MB block.

Thus, we conclude that the latency scales proportionally to the block size.

5.3 Throughput

We ran an experiment to determine the maximum throughput in transactions per
second of Bls-ByzCoinX.
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FIGURE 5.2: Block size influence on latency in Bls-ByzCoinX

FIGURE 5.3: Latency in Bls-ByzCoinX for different block sizes.
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We fixed the number of nodes in the consensus group to three different values
turn by turn: 140, 280 and 560, and experimented with different block sizes.

From 8 MB and up, the protocol timed out so we stick with block sizes ranging
from 0.25 MB to 6 MB.

As figure 5.2 shows, the latency grows linearly with the block size. For a 1
MB block (Bitcoin’s block size), we have a latency of around 20 seconds for each
consensus group size. For 140 nodes and a 6 times bigger block, the latency is
2 times higher at 40 seconds. For 280 nodes and a 6 times bigger block it is 4
times higher at 80 seconds, and for 560 nodes and the same size multiplier we
get a latency that is a bit less than 6 times greater. We observe that for a typicaly
sharding ledger consensus group size, a bigger block size does not scale very well.
A 1 MB block yields good enough results but it is difficult to use a bigger block
size without compromising on latency.

We can compute the throughput of these runs by knowing the number of trans-
actions each block size contained. We can then see what latencies are achievable
for different throughputs. Results are presented in figure 5.4.

We see that for high number of nodes, the throughput hardly goes above 200
transactions per second.

A more modest number of nodes (140) will be able to achieve higher through-
put. This suggests that a sharding blockchain using Bls-ByzCoinX should either
stick with 1 MB block sizes or use less nodes than 600 per shard, to be able to
acheieve better throughput.

FIGURE 5.4: Latency for different throughputs.
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6 Conclusion

In this project we have developed a fault tolerant consensus protocol that handles
up to d2/3 + 1e failures and scales out to 600 nodes with a latency of 20-30 seconds
using a 1 MB block, making it suitable for decentralized ledgers that use sharding
for scalability, while guaranteeing security and staying permissionless.

It offers strong consistency, unlike Bitcoin’s weak consistency, meaning that
within a 20-30 seconds latency from transaction input, we can know that it is con-
firmed, which makes it suitable for near real-time transactions.

Bls-ByzCoinX makes use of the BLS signature scheme and a three-level tree
structure to mitigate the Denial-of-Service attack that is possible in ByzCoin, mak-
ing it more robust to Byzantine nodes and malicious adversaries that want to slow
the system down.

We implemented the solution and tested it out on a cluster of machines to
show and confirm its capabilities. While having a greater latency than ByzCoin,
it stays at most two times slower than it for any number of nodes, which stays
acceptable.
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