Ecole Polytechnique Fédérale de Lausanne

Optimizing Front-running Protection

by Julie Bettens
Master Project Report
Approved by the Examining Committee:
Prof. Dr. Bryan Ford
Thesis Advisor
Haogqgian Zhang
Thesis Supervisor
EPFL IC IINFCOM DEDIS
BC 210 (Batiment BC)
Station 14

CH-1015 Lausanne

June 28th, 2023

Abstract

The F3B architecture [12] provides frontrunning protection for blockchains using threshold cryp-
tography. This work extends F3B with a variant based on an identity-based encryption scheme.

Contents

Abstract
1 Introduction

2 Background
2.1 Decentralizedsystemso
2.2 Cryptography e e
23 Ourcontribution

3 Design
3.1 Fullprotocol e e

4 Implementation
5 Evaluation

6 Discussion

7 Conclusion

Bibliography

11

12

15

16

17

Chapter 1

Introduction

Since the launch of Bitcoin [8] in 2009, distributed ledger technologies have been an active area
of research in the field of decentralized systems and cryptography. Allowing any computer user
to safely trade and take ownership of digital assets without relying on an intermediary such as a
broker or a bank proved to be an endless source of stimulating research questions. Today, public
blockchains, which are distributed ledgers that no single entity has control over, are increasingly
used for a variety of purposes. For instance in May 2023, decentralized exchange Uniswap re-
cently self-reported a record of 400’000 monthly active users. [1]

A necessary attribute of public blockchains is that users cannot be prevented from adopt-
ing trading strategies that are outlawed in regulated markets. One such strategy is frontrunning,
which involves learning about a future trade and executing a trade ahead of it to benefit from the
price impact. Not only is this practice harmful to less sophisticated market participants, it has
also been argued to pose a risk to the operation of the blockchain itself. [5]

F3B: the solution proposed by Zhang et al., involves users being able to share their transac-
tions in encrypted form, and in such a way that the plaintext will be revealed after the transaction
is committed on chain. The timely decryption of the transaction is enforced by the Secret Man-
agement Committee (SMC): a properly incentivized group of nodes cooperating using threshold

cryptography. [12]

In this work, we implement and evaluate a different cryptographic scheme than the one cho-
sen by Zhang et al. to better understand the possible tradeoffs.

Chapter 2

Background

2.1 Decentralized systems

In most areas of computer science, programmers are allowed to assume that the computer sys-
tems their programs will run on will always execute their instructions faithfully. In the area of
decentralized computing, this is not the case: programs — protocols rather — are expected to
be able to operate normally even if some fraction of the computers — known as nodes — go of-
fline, or even actively try to sabotage the system. It is more difficult to design systems in this way
because the assumption that no nodes are compromised is handy, but on the other hand, de-
centralized protocols are more resilient to attacks and can operate on environments that other
protocols could not.

One such environment is the problem of distributed ledgers or blockchains. In such systems,
participants want to be able to perform arbitrarily complex financial transactions without relying
on trusted intermediaries to resolve disputes. There are non-financial uses as well. Part of the
solution to this challenge is the use of a consensus mechanism, which is a system through which
nodes can discover which transactions were processed in which order, without the possibility of
any participant removing or reordering transactions long after the fact. This eventually results an
immutable, append-only database.

A consensus mechanism typically involves a group of nodes called the Consensus Group (CG),
executing a protocol which results in picking a new batch of transactions called a block to add to
the append-only ledger. At each round, a new block is selected, and a sequence of consecutive
canonical blocks eventually emerges. There is an underlying assumption that no one party con-
trols a threshold of nodes in the CG, otherwise they would be able to arbitrarily manipulate the
ledger. As a result, blockchains try to attract a diverse set of nodes to the CG and to incentivize
them in some way to act in a way that benefits the protocol.

Due to the decentralized design, users who wish to make transactions have typically been
forced to broadcast their transactions to all the nodes in the CG, whom they do not trust. As a
result, CG nodes are in a privileged position in the protocol where they can see future transac-
tions and decide with full discretion whether to censor some of them, reorder, or insert their own
transactions in such a way that is beneficial to them. In particular, frontrunning can occur.

To mitigate this attack vector, F3B introduces a second group of nodes called the SMC. Trans-
actions are encrypted in such a way that the SMC can decrypt them, and the SMC is tasked with
decrypting them after the CG has committed them in a given order. This stops the CG from cen-
soring and frontrunning, unless they are able to collude with the SMC. Mechanisms to reward
and punish SMC nodes as needed are also being studied. [12]

2.2 Cryptography

We will now cover in a high-level way the advanced cryptographic building blocks we use in this
document.

A Distributed Key Generation (DKG) is a process by which multiple nodes generate a crypto-
graphic key in such a way that no node has access to the full key. Instead, they all keep overlapping
shares of the key. As a result, a number ¢ called the threshold of nodes need to cooperate to use
the key. The key can be for instance a signing key or a decryption key, provided there exists a
threshold cryptosystem to enable this usage of the key. If there are n nodes, the network can still
operate even if — 1 nodes are malicious, or n — ¢ nodes are unresponsive, making these protocols
very useful in a decentralized setting. [7]

An Identity-based Encryption (IBE) scheme is a system where there exists a trusted key gener-
ation center which is able to issue decryption keys matching arbitrary labels. The key generation
center also broadcasts a public key that allows anyone to derive encryption keys for arbitrary la-
bels. The main idea is that Alice can send an encrypted message to Bob simply by knowing his
unambiguous name and deriving the encryption key for it, and Bob can at any point authenticate
to the key generation center to receive his decryption key. [9]

2.3 Our contribution

In its first iteration, F3B relies on an implementation of the TDH2 cryptosystem introduced by
Shoup and Gennaro. It allows creating ciphertexts that can be decrypted by any ¢ out of n» mem-
bers of the SMC. [10] In this model, the user who wishes to perform a transaction first retrieves the
current state of the SMC. Then they symmetrically encrypt the transaction using a random secret

k, and encrypt k so that a threshold of the SMC can decrypt it. The two resulting ciphertexts are
then published on-chain. Once the transaction is committed, the SMC cooperatively decrypt k
and submit it to the CG, who are thus able to execute the transaction. [12]

Zhang et al. want to explore alternatives to the TDH2-based design. In particular, they wish to
implement and evaluate a protocol that uses IBE and derives a decryption identity for each future
block based on its height. The key generation center role is performed by the SMC. Importantly,
this is less flexible than TDH2 since it does not allow the SMC to enact per-transaction decisions,
but it is expected that it has lower communication and computation costs, in particular due to
economies of scale.

Chapter 3

Design

The existing F3B implementation is composed of a modified go-ethereum client which plays the
role of the CG, and a version of Dela which includes code for TDH2. Go-ethereum communi-
cates with Dela by invoking a program called dkgcli. [11] We aim to keep compatibility with this
architecture.

Dela already implements a DKG procedure based on “Secure Distributed Key Generation for
Discrete-Log Based Cryptosystems”[7] which is used for TDH2. However, it supports the Ed25519
curve group [4] which does not support elliptic curve pairings. Thankfully, the procedure can be
adapted to work for other curve groups such as BN256 [3] or BLS12-381 [2] which are suitable for
BLS signatures.

Recently, Gailly, Melissaris, and Romailler presented tlock: a practical deployment of time-
lock encryption based on IBE and threshold networks. Given a random beacon that produces BLS
signatures at a predictable pace, tlock can produce a ciphertext that will only be decryptable at a
predetermined time in the future. [6] This scheme can be adapted to our task by having the SMC
act as a per-block random beacon by releasing per-block decryption keys once the corresponding
block becomes canonical.

We will now describe in a semi-formal way the high-level cryptographic protocol used in this
work. It is largely derived from Gailly, Melissaris, and Romailler. [6]

3.1 Full protocol

LetG,, G,, G be groups where the computational Diffie-Hellman assumption holds. g their order,
81, & gr their respective generators, e : G; x G, — G a non-degenerate bilinear pairing such that

e(g,8) = gr,andH, : {0,1}* — G, and H, : G; — {0, 1}’ cryptographic hash functions. We require
that the bilinear Diffie-Hellman problem on e be hard.

Step 0: DKG Setup Before declaring itself ready to manage encrypted transactions, the SMC
runs the synchronous DKG protocol proposed by Gennaro et al. [7] to generate a shared public key
cpk = csk- g,, and shares of the private key for each trustee are denoted as sk;. The corresponding
private key csk can be reconstructed only by combining ¢ private key shares. Specifically, for all
Sc{l,...,n} such that #S = 1, csk = ¥ ;5 sk;A; where A, is the i Lagrange element. We assume
that cpk and (7, pk;) where pk; = sk; - g, are written into the blockchain as metadata.

Step 1: Encrypt Transaction Given the plaintext transaction data tx € {0, 1}*, The sender starts
the protocol by preparing the ciphertext like so:

1. Derive the encryption key P = e(H,(L||n), cpk) from the label of the underlying blockchain
L and the target block number 7.

2. Pick arandom number r € Z;.
3. Compute the symmetric secret key k = H,(7P).

4. Form the ciphertext (U, V) = (rg,, enc(tx)).

Step 2: Shares Preparation by Trustees Once block 7 is finalized, each trustee i performs the
following steps:
1. Compute g; =sk;-H,(L||n).

2. Send (i,0;) to the CG.

Step 3: Key Reconstruction Upon receiving ¢ shares, each node in the CG executes the follow-
ing:

1. For each share, check that e(o0;, g,) = e(H,(Ll|In), pk;)

2. Combine shares using interpolation to find o0 = }_o;41,.

3. Verify that o is correct by checking that e(o, g,) = e(H,(L||n), cpk).

Step 4: Decryption and Execution For each encrypted transaction (U, V'), CG nodes continue
with the following:

1. Compute k = H,(e(o, U)) and tx = dec, (V).

2. Interpret tx according to the rules of the blockchain.

10

Chapter 4

Implementation

The delivered implementation of F3B with IBE is availableathttps://github. com/dedis/student_
23_dela_£3b_ibe. It consists of a modified version of Dela, and exposes an executable called
dkgcli whichis used both to set up and perform DKG ceremonies, and to derive decryption keys.

As a convenience, it is also able to encrypt arbitrary data and decrypt the resulting ciphertexts.

It is worth noting that the implementation does not enforce the security policies it normally
ought to in the real world. This was not a goal of this work. Specifically, it has no notion of time
or current block height: it will simply accept any IBE label passed as a command line argument.

The system uses BN256 as an elliptic curve pairing. This is because this configuration was
readily available in Dela. The pairing should be able to be changed if desired, e.g. when Kyber
provides support for BLS-12-381.! To implement H; which hashes to a G, point, we use the pro-
cedure provided by Kyber, which hashes to the x coordinate using SHA256. To implement H,,
we use HKDF-SHA512. To implement enc;, we use AES256-CTR with an all-zero initialization
vector. This ensures that the ciphertext is the same size as the plaintext, and is secure as long as
the symmetric key is different for each message, which is by design true except with negligible
probability.

Ideally, the implementation should be refactored to use Dela as a dependency instead of using
a fork. This is pending on the next release of Dela with Kyber 3.1.0 and the addition of a required
method.?

A simple demo script is also provided. It creates a 16-member DKG on the local machine,
shows the common public key and decryption keys for some fictional blocks, encrypts a transac-
tion with IBE, and decrypts it with the SMC.

'https://github.com/dedis/kyber/pull/487
*https://github. com/dedis/dela/pull/253

11

https://github.com/dedis/student_23_dela_f3b_ibe
https://github.com/dedis/student_23_dela_f3b_ibe
https://github.com/dedis/kyber/pull/487
https://github.com/dedis/dela/pull/253

Chapter 5

Evaluation

To ensure correctness of the software implementation, unit tests and integration tests written for
the existing TDH2 have been adapted for the implementation of the IBE variant, and new ad-hoc
tests have been written. The code coverage from tests is 96.7% of statements.

To evaluate the performance of the solution, the experiments from [12] were reproduced and
adapted to measure the performance of our system. We used a 40-core KVM virtual machine with
32GB of RAM running Debian GNU/Linux provided by the DEDIS laboratory. The experiments
are stored in the benchmark branch in the repository mentioned in Chapter 4.

As shown on 5.1, the DKG phase of our solution shows similar performance to TDH2. This is
not surprising considering that the former is based on the latter. The change of curve group has
a negligible impact at most.

When it comes to decrypting a single message, we can see on figure 5.2 that IBE is significantly
slower than TDH2. This was run on a single message and does not take into account the fact that
one IBE round would likely cover multiple transactions, or any batching techniques that can be
applied to TDH2. [12, p.14] One possible reason for this discrepancy is that curves that support
bilinear mapping operations are more computationally expensive. [13]

12

DKG Duration(sec)

10005
] —— BN256
| —— Ed25519
100'E
10_5
11
0.1'E
001 T T T T T
8 16 32 64 128

Size of Secret-management Committee

Figure 5.1: Performance of the DKG procedure on different curve groups

13

Latency(sec)

{ Z2 TDH2 [Shares Preparation by Trustees
1 &1 IBE [Key Reconstruction

_ 0l 1 B Z_
R AT R g A1
Al Al Al ARl WY
1 4l dal 48 ur
AWl AWl Ab 1
e | 4 A [1A [/
8 16 32 64 128

Size of Secret-management Committee

Figure 5.2: Performance of IBE compared to TDH2 for one message

14

Chapter 6

Discussion

Overall, we found that the F3B IBE protocol performs worse in a lab setting than its current rival.
We also produced an implementation of the protocol that fits within the existing framework and
can be further extended and studied. In particular, future work could involve connecting it with
an Ethereum chain, as Wang has done. [11] Some tweaks such as using different elliptic curve
groups could also be investigated.

As it stands, the IBE protocol makes the ciphertext longer than the plaintext by 128 bytes. This
is the length of an uncompressed BN256 G, point. This is not ideal since every additional byte
on a transaction has to be stored and transmitted many times over. We suggest that this can be
reduced with clever choices of groups. In particular, elements in BLS12-381’s G, can be stored in
only 48 bytes.

Due to the performance impact, we might want to look for a faster IBE scheme. The scheme
presented by Zheng, Zhou, and Cui does not require a pairing, and thus may be suitable. [13]

Coming back to the current F3B IBE protocol, a known and inherent weakness of it is that
transactions can be decrypted even if they don’t make it into the intended block. [12, p. 6] This
may be partially or totally remedied by having a delay between block commitment and key reveal
so that, if the transaction makes it to the next few blocks, it is still safe. This raises the question of
how much it costs any given actor to delay inclusion for a target transaction in order to frontrun
it, which depends heavily on the design of the underlying blockchain.

15

Chapter 7

Conclusion

In this work, we described the implementation of an IBE variant of the F3B protocol and its evalu-
ation. We found that pairing-based cryptography delivered a conceptually simpler scheme, albeit
at the cost of higher latency and computational costs. This lead us to propose multiple avenues
for future research and development of the IBE approach to frontrunning protection.

16

Acronyms

CG Consensus Group
DKG Distributed Key Generation
IBE Identity-based Encryption

SMC Secret Management Committee

17

Bibliography

[1] Uniswap Labs K, @Uniswap. Last month, Uniswap interface users hit an ATH since v3 launch
in May 21.Thanks for choosing Uniswap as your go-to place to swap tokens R pic.twitter.com/
5GaaCNdxUs.May31,2023. URL: https://twitter.com/Uniswap/status/1663907328280653824.

[2] Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott. Constructing Elliptic Curves with Pre-
scribed Embedding Degrees. Cryptology ePrint Archive, Paper 2002/088. https://eprint.
iacr.org/2002/088.2002. URL: https://eprint.iacr.org/2002/088.

[3] PauloS.L. M. Barreto and Michael Naehrig. Pairing-Friendly Elliptic Curves of Prime Order.
Cryptology ePrint Archive, Paper 2005/133. https://eprint.iacr.org/2005/133. 2005.
URL: https://eprint.iacr.org/2005/133.

[4] DanielJ. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. “High-speed
high-security signatures”. In: Journal of Cryptographic Engineering 2 (2011), pp. 77-89.

[5] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov, Lorenz
Breidenbach, and Ari Juels. Flash Boys 2.0: Frontrunning, Transaction Reordering, and Con-
sensus Instability in Decentralized Exchanges. 2019. arXiv: 1904 .05234 [cs.CR].

[6] Nicolas Gailly, Kelsey Melissaris, and Yolan Romailler. tlock: Practical Timelock Encryption
from Threshold BLS. Cryptology ePrint Archive, Paper 2023/189. https://eprint.iacr.
org/2023/189. 2023. URL: https://eprint.iacr.org/2023/189.

[7] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. “Secure Distributed
Key Generation for Discrete-Log Based Cryptosystems”. In: Journal of Cryptology 20 (1999),
pp- 51-83.

[8] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. Accessed: 2015-07-01.
2008. URL: https://bitcoin.org/bitcoin.pdf.

[9] AdiShamir. “Identity-Based Cryptosystems and Signature Schemes”. In: Advances in Cryp-
tology. Ed. by George Robert Blakley and David Chaum. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1985, pp. 47-53. 1SBN: 978-3-540-39568-3.

[10] Victor Shoup and Rosario Gennaro. “Securing Threshold Cryptosystems against Chosen
Ciphertext Attack”. In: J. Cryptology 15 (2002), pp. 75-96. por: 10 . 1007 / s00145- 001 -
0020-9.

18

https://twitter.com/Uniswap/status/1663907328280653824
https://eprint.iacr.org/2002/088
https://eprint.iacr.org/2002/088
https://eprint.iacr.org/2002/088
https://eprint.iacr.org/2005/133
https://eprint.iacr.org/2005/133
https://arxiv.org/abs/1904.05234
https://eprint.iacr.org/2023/189
https://eprint.iacr.org/2023/189
https://eprint.iacr.org/2023/189
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/s00145-001-0020-9
https://doi.org/10.1007/s00145-001-0020-9

[11] Shufan Wang. “Execution Layer Based Front-running Protection on Ethereum”. Available
athttps://www.epfl.ch/labs/dedis/wp-content /uploads/2023/01/report-
2022 - 3- ShufanWang - FrontRunningProtection . pdf. Master’s thesis. Ecole Polytech-
nique Fédérale de Lausanne, 2023.

[12] Haogian Zhang, Louis-Henri Merino, Mahsa Bastankhah, Vero Estrada-Galinanes, and Bryan
Ford. F3B: A Low-Overhead Blockchain Architecture with Per-Transaction Front-Running
Protection. 2023. arXiv: 2205.08529 [cs.CR].

[13] Minghui Zheng, Huihua Zhou, and Guohua Cui. “An Improved Identity-Based Encryption
Scheme Without Bilinear Map”. In: 2009 International Conference on Multimedia Informa-
tion Networking and Security. Vol. 1. 2009, pp. 374-377. po1: 10.1109/MINES.2009.171.

19

https://www.epfl.ch/labs/dedis/wp-content/uploads/2023/01/report-2022-3-ShufanWang-FrontRunningProtection.pdf
https://www.epfl.ch/labs/dedis/wp-content/uploads/2023/01/report-2022-3-ShufanWang-FrontRunningProtection.pdf
https://arxiv.org/abs/2205.08529
https://doi.org/10.1109/MINES.2009.171

	Abstract
	Contents
	Introduction
	Background
	Decentralized systems
	Cryptography
	Our contribution

	Design
	Full protocol

	Implementation
	Evaluation
	Discussion
	Conclusion
	Bibliography

