Computing in \mathbb{Z}_{N}

- $N \in \mathbb{N}, a \in \mathbb{Z}:[a]=\{x \in \mathbb{Z}: N \mid(a-x)\} \quad[u]$ set of inkier that have
- $\mathbb{Z}_{N}=(\{[a]: a \in \mathbb{Z}\}, \oplus, \odot)$ is a ring $\}$
- \mathbb{Z}_{N}^{*} is (multiplicative) group of invertible elements.
$\left(\mathcal{L}_{N}, \oplus\right)$ ty group. $\left(\mathcal{L}_{N}, \odot\right)$ is not a group
$(\overbrace{N}^{*}$, (0) is an abelion group.
Theorem
$[a] \in \mathbb{Z}_{N}$ is invertible if and only if $\operatorname{gcd}(a, N)=1$.
proof: if $\operatorname{gcd}(a, N)=1$, then there exist $x, y \in \lambda$ with $x \cdot a+y \cdot N=1 \Rightarrow N \mid x \cdot a-1$ i.e. $[x]$ is inverse of $[e]$.
if $\quad \partial[x]$ wis $[x] \cdot[a]=[1]$,
then $N \mid X \cdot a-1 \Rightarrow \operatorname{ggd}(Q, N)=1$

Computing the inverse

- Given: $a \in \mathbb{Z}, N \in \mathbb{N}$
- Compute $x, y \in \mathbb{Z}$ with $\operatorname{gcd}(a, N)=x \cdot a+y \cdot N$ with extended Euclidean algorithm
- If $\operatorname{gcd}(a, N) \neq 1$, then $a \notin \mathbb{Z}_{N}^{*}$
- Else: $a^{-1}=x$
[] []

Fast exponentiation

- Given: a, e, $N \in \mathbb{N}$ input in binary representation.
- Task: Compute $a^{e}(\bmod N)$
- Suppose: e has n bits, ie.,

$$
e=\underline{\left\langle b_{n-1}, \ldots, b_{0}\right\rangle}=\sum_{j=0}^{n-1} b_{i} 2^{i}
$$

$$
S=1
$$

For $i=1$ toe count multiplications:

$$
S:=S \cdot a
$$

Return S.

$$
\begin{aligned}
\left.\Rightarrow a^{2}\right)^{2} & =a^{2 \cdot 2^{i}}=h=a^{2^{2+1}} \\
& h=a^{2^{i}}
\end{aligned}
$$

lost bit

$$
\begin{aligned}
e & =\langle 1,1,0,1\rangle \\
a^{e} & =a^{2^{3}+2^{2}+2^{2}} \\
& =a^{2^{3}} \cdot a^{2^{2}} \cdot a^{2^{0}}
\end{aligned}
$$

$$
\begin{aligned}
& S=1 \\
& h=a \\
& \text { For } i=0 \text { to } 3 \\
& \text { if } b i=1 \\
& S_{i}=S \cdot h \\
& h=h^{2}
\end{aligned}
$$

Retains

Fast exponentiation algorithm
function $\exp (a, e, N)$

Input: $a, e, N \in \mathbb{N}$
Output: $h \in \mathbb{N}$ with $h \equiv a^{e}(\bmod N)$

$$
h=1, s=a
$$

for $j=0$ to $n-1$
if $b_{j}=1$
$h=h \cdot s(\bmod N)$
$s=s^{2}(\bmod \bar{N})$

Theorem: a^{e} can be computed with $O(\log (e))$ ariermetic operations.

$$
\begin{aligned}
\operatorname{size}\left(a^{e}\right) & =\theta\left(\log ^{\log a^{e}}\right) \\
& =\theta(\underbrace{\underbrace{e} \cdot \underbrace{\operatorname{sig}(\theta)})}_{\left.2^{\operatorname{sizece}}\right)})
\end{aligned}
$$

\# of brits of a^{l} is exporentid in $\#$ bits of R.
return h \& of bits of h is

$$
O(\lg N)=O(\operatorname{size}(N))
$$

Analysis

Theorem
Given $a, e, N \in \mathbb{N}$ with $0 \leq a \leq N$, one can compute $s \in \mathbb{N}$ with $s \equiv a^{e}(\bmod N)$ in time $O(M(\operatorname{size}(N)) \cdot \operatorname{size}(e))$, where $M(n)$ denotes the time required for n-bit multiplication.

Demark: $M(n)$ is also time required for division will vemarich. in put two n-bit numbers.

Subgroups

Definition
Let G together with \odot be a group. A subset $H \subseteq G$ is called a subgroup of G, if H together with \odot is itself a group. We write $H \unlhd G$.

Theorem $H \neq \phi$
$H \unlhd G$ if and only if for each $a, b \in H$ one has $a \odot b^{-1} \in H$.
proof. if $H \triangle G$, then $f\left(a, b \in H\right.$, one hes 1.) $b^{-1} \in H$
2.) $a \ominus b^{1} \in H$

Suppose now that $a \in b^{-1} \in H$ for $a, b \in H$.
i) e (Nental element) is in $H, \quad Q \cdot a^{-1}=e \in H$
ii) $a \in H$ to show $a^{-\lambda} \in H: \quad e, a \in \mathbb{H} \Rightarrow e \cdot a^{-\lambda} \in H \rightarrow a^{2} \in \mathbb{A}$
(ii) associativity char: iv) $a \in b \in H$? whenever $a, b \in H$?
since $b^{-1} \in A$ we have $a \in\left(b^{-1}\right)^{-1} \in t$

$$
=a \odot b
$$

Example

$$
H=203
$$

$H=7 l_{5}$ ore onf reboromps. Whes?

$$
|1+| \begin{gathered}
\left|7 L_{5}\right| \\
11 \\
5
\end{gathered}
$$

$$
\Rightarrow T 25 \text { hes ong two }
$$

Jubyoups.

$$
\begin{align*}
& \text { - } \left.H \unlhd \mathbb{Z},+\quad \exists d \in \mathbb{N}_{0} \text { oth. } H=\alpha d z: z \in \mathbb{Z}\right\} \\
& \text { - } H \unlhd \mathbb{Z}_{5} \\
& \left.\left.Z_{5}=\{[0],[1],[2],[5], C 4\}\right\} \begin{array}{ll}
\text { cose2: } & H
\end{array}>20\right\} .\left(H \in \cap N_{31}\right) \neq 0
\end{align*}
$$

Let $H \unlhd G$. The relation $a \sim b$ if $a \odot b^{-1} \in H$ is an equivalence relation with equivalence class $[a]=a \odot H=\{a \odot h: h \in H\}$.
Proof: Reflexivity. $\forall g \in G: g \sim g$ because $g \circ g^{-1}=e \in H$
Symmetry. $\forall a, b \in G$ if $a \sim b \quad\left(a \odot b^{-1} \in H\right)$ ore hos

$$
b \sim a \text { since }\left(a 0 b^{-1}\right)^{-1}=b \cdot a^{-1} \in H
$$

Tronsitivily: suppose $a \sim b, b \sim c$

$$
\begin{aligned}
& a \odot b^{1} \in H, b \in c^{-1} \in H
\end{aligned}
$$

$$
\begin{aligned}
& \text {, } c \in(Q) \text {, thengu } Q \sim c \Rightarrow a \cdot c \cdot c^{\cdot n}=h \text { fr som hardy } \sin H \Rightarrow a=c \cdot h \quad a \in c \cdot H
\end{aligned}
$$

$$
\begin{aligned}
& G=725 \\
& H \pm G \\
& H=203 \\
& H=725
\end{aligned}
$$

$$
|6| \leqslant \infty
$$

$$
H \cong G
$$

or ars tovimetilis.

$$
\begin{aligned}
& \text { lies. }|a \cdot H|=|H| \\
& \\
& \\
& \\
& a^{-1} a \cdot h_{1}=\hat{a_{a}} \cdot h_{2}=h_{1}=h_{2}
\end{aligned}
$$

\Rightarrow Theom of Lagienge.

Example

$$
\text { - } G=\mathbb{Z}, \odot=+, H=N \cdot \mathbb{Z}
$$

$a \sim b \quad a-b \in N \cdot Z$

$$
[a]=[a]
$$

Cosets

Lemma $\quad H \simeq G, H \neq \phi$
If H is finite, then $|a \odot H|=|b \odot H|$ for each $a, b \in G$.
Corollary (Theorem of Lagrange) If G is a finite group and $H \unlhd G$, then $|H|||G|$.
\uparrow
divides.

Fermat's little theorem

Theorem
If N is a prime number, then

$$
\forall a \in 1, \ldots, N-1 \quad: \quad a^{N-1}=1 \quad(\bmod N)
$$

proof: $\quad\left|\mathbb{Z}_{N}^{*}\right|=\mathrm{N}-1$

$$
\begin{aligned}
& \left\langle\mathbb{Z}_{N}^{*}\right|=N-1 \\
& H=\langle a\rangle \Delta \mathbb{Z}_{N}^{*} \quad\langle a\rangle=\left\{a^{0}, a^{1}, a^{2}, \ldots, a^{\operatorname{ard}(a)-1}\right\} .
\end{aligned}
$$

$\langle a\rangle$ is a subgroup of TN^{*}.
Lagrong tho om:. $\operatorname{Grdar}(Q) \mid N-1 . \quad(N-1)=\operatorname{ardan}(Q) \cdot x$ with son $x \in \mathbb{Z}$.

$$
\Rightarrow \quad a^{N-1}=\left(a^{\operatorname{arbc}(a)}\right)^{x}=1^{x}=1 \quad \operatorname{mal}(N) .
$$

We swept two thing under the vug.
1.) $\operatorname{order}(a)=\operatorname{men}\left\{x: x 21, a^{x}=1\right.$ nolen $\}$ exists.
2.) $\langle Q\rangle=\left\langle a^{0}, Q^{1}, \ldots, Q^{\operatorname{arde}(e)-1}\right\rangle \triangleq \mathbb{Z}_{N^{*}}$.

Asscuming 1) lets slow 2-). $\quad \forall=c, d \in\langle a\rangle \quad c \cdot d^{-1} \in\langle a\rangle$.

$$
\begin{aligned}
& c=a^{i}, d=a^{j} \\
& c \cdot d^{11}=a^{i} \cdot a^{\text {(dUl(a)-j}} \\
&=a^{i+a(a(a)-j}=a^{r} \quad r=r \text { mamien of }
\end{aligned}
$$

1.) $\underbrace{\underbrace{1, a_{1} \ldots, a^{s-1}}, a^{s+1}, a^{11} \quad a^{3}=a \text { vepetition befoe! }}_{\underbrace{a^{1}, a^{2}, a^{3}, \ldots,}_{\text {Norepetition. }}, a^{s}}$

Definition
For $N \in \mathbb{N}$ we define $\phi(N)=\left|\mathbb{Z}_{N}^{*}\right|$.
Example
then.

- $\phi(N)=N-1$ if N is prime. $\quad Q \in\{1,2, \ldots, N-1\} \quad g<d(Q, N)=1$
- $\phi(15)=. \quad \mid 2 \lambda, 2,4,7,8,11,13,143\}=8$

$$
=\phi(5) \cdot \phi(3)=4 \cdot 2
$$

IF $N=N_{1} \cdot N_{2} \cdots \cdot N_{k}$ with $\operatorname{gcd}\left(N_{i}, N_{j}\right)=1 \quad \forall_{i} \neq j$
Hen $\phi(N)=\phi\left(N_{1}\right) \cdot \phi\left(N_{2}\right) \cdots \phi\left(N e_{2}\right)$
ϕ is multiplicative.

Recap: Rings

$$
(\mathbb{Z},+, \cdot)
$$

A set R is a ring if it has two binary operations, written as addition and multiplication, such that for all $a, b, c \in R$
(RI) $a+b=b+a \in R$
(R2) $(a+b)+c=a+(b+c)$
(R3) There exists an element $0 \in R$ with $a+0=a$
(R4) There exists an element $-a \in R$ with $a+(-a)=0$

(R, t) is on abelion group.
(RS) $a(b c)=(a b) c \quad$ - Associditl.
(R6) There exists an element $\underline{1 \in R}$ with $\underline{1 \cdot a}=\underline{a \cdot 1}=\underline{a}$
(RT) $a(b+c)=a b+a c$ and $(b+c) a=b a+c a$. \& Distributive Lows.

- was commutative, flan R is called commutative ring. if $a \cdot b \neq 0$ whevere

Example: $N \in \mathbb{N}_{+}, \quad\left(\mathbb{Z}_{N}, \Theta, O\right)$ is oaring

$$
N=15 . \quad \begin{aligned}
& \text { aib*o } \\
& \text { Bis } \\
& \text { interpol } \\
& \text { domain }
\end{aligned}
$$

Recap: Rings

Examples:

- \mathbb{Z} a- commutative, integral Domain
- $\mathbb{Z}_{N} C-$ comma dative.
$\left(Q_{i}, \Theta_{i}, O_{i}\right)$ be rings.
- $R_{1} \times \cdots \times R_{k}$, where R_{1}, \ldots, R_{k} are rings.
not id. not commutative.
- The set of $n \times n$ matrices over \mathbb{Z} with the standard matrix addition and multiplication.

$$
R_{1} \times R_{2} \times \cdots \times R_{2}=\left\{\left(r_{1}, r_{2}, \ldots, r_{a}\right): r_{i} \in R_{i}\right\} .
$$

(f): $\left(r_{1}, \ldots v_{r}\right) \oplus\left(g_{1} \ldots, y_{r}\right)=\left(r_{1} \theta_{1} y_{1}, \ldots, r_{2} \theta_{2} y_{r}\right)$
$\begin{aligned} \bullet\left(r_{1 \ldots,}, r_{a}\right) \Theta\left(y_{1} \ldots y_{r}\right) & =\left(r_{1} \theta_{1} y_{1}, \ldots\right. \\ & \text { Ring }\end{aligned}$

Example of an easy ring-theorem

Theorem
Let R be a ring, then for each $r \in R$ one has

$$
\begin{aligned}
& 0 \cdot r=0=r \cdot 0 . \\
& 0 \cdot r=(0+0) \cdot r=0 \cdot r+0 \cdot r \\
& 0=0 \cdot r .
\end{aligned}
$$

Prove:

Ring homomorphism

If R and R_{1} are rings, a mapping $\theta: R \rightarrow R_{1}$ is called a ring homomorphism if for all $r, s \in R$:
(1) $\theta(r+s)=\theta(r)+\theta(s)$
(2) $\theta(r s)=\theta(r) \cdot \theta(s)$
(3) $\theta\left(1_{R}\right)=1_{R_{1}}$

Examples:
Chinese Remerice Thu

- $f: \mathbb{Z} \rightarrow \mathbb{Z}_{N}, f(x)=[x]_{N}$
- $g: \mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z}_{N}, f(x)=\left(x,[x]_{N}\right)$.
\rightarrow Efficient primally tests

Chinese remainder theorem

Theorem
Suppose a and b are relatively prime integers. Then the map

$$
\begin{aligned}
f: & \rightarrow \mathbb{Z}_{a} \times \mathbb{Z}_{b} \\
{[x]_{a \cdot b} } & \mapsto\left([x]_{a},[x]_{b}\right)
\end{aligned}
$$

is a ring isomorphism, that is, a ring homomorphism that is also a bijection.

$\phi(\cdot)$ is multiplicative

Corollary
If $a, b \in \mathbb{N}$ and $\operatorname{gcd}(a, b)=1$, then $\phi(a \cdot b)=\phi(a) \cdot \phi(b)$.

$\phi(\cdot)$ and factoring

Corollary
Let $N=p_{1}^{e_{1}} \cdots p_{k}^{e_{k}}$ be the factorization of N into distinct prime numbers p_{1}, \ldots, p_{k}, then

$$
\phi(N)=\prod_{i=1}^{k}\left(p_{i}-1\right) \cdot p_{i}^{e_{i}-1}
$$

