Computing in \mathbb{Z}_N

Computing the inverse

- Given: $a \in \mathbb{Z}$, $N \in \mathbb{N}$
- ► Compute $x, y \in \mathbb{Z}$ with $gcd(a, N) = x \cdot a + y \cdot N$ with extended Euclidean algorithm
- If $\gcd(a,N)
 eq 1$, then $a \notin \mathbb{Z}_N^*$
- Else: $a^{-1} = x$

Fast exponentiation

- Task: Compute $a^e \pmod{N}$
- Suppose: *e* has *n* bits, i.e.,

$$\boldsymbol{\varTheta} = \langle \underline{\boldsymbol{b}_{n-1}, \dots, \boldsymbol{b}_0} \rangle = \sum_{j=0}^{n-1} \boldsymbol{b}_j \boldsymbol{2}^j.$$

n - 1

$$e = \langle \lambda_1 \lambda_1 o_1 \lambda \rangle$$

$$a^{\ell} = a^{2^3 + 2^2 + 2^2}$$

$$= a^{2^5} \cdot a^{2^5} \cdot a^{2^6}$$

٨

lost bit

S=1
For i=1 to e count multiplications:
S:= S:a e mong.
Return S. = exponential time alg.

$$(\alpha^{2i})^2 = \alpha^{2\cdot 2i} = n = \alpha^{2n}$$

 $h = \alpha^{2i}$

$$S=1$$

$$h=a$$

$$Far i=0 \quad to 3$$

$$if \quad bi=1$$

$$Si=S \cdot h$$

$$h=h^{2}$$

Fast exponentiation algorithm

function $\exp(a, e, N)$

Input: $a, e, N \in \mathbb{N}$ Output: $h \in \mathbb{N}$ with $h \equiv a^e \pmod{N}$ h = 1, s = afor i = 0 to n - 1

$$if b_j = 1$$

$$h = h \cdot s \pmod{N}$$

$$s = s^2 \pmod{N}$$

Thrown: at can be computed with O(log(e)) aitmetic operations. Size(ae) = O(logae) = $\Theta(e \cdot \log a)$ JSizeres assized) # of baits of al is exponential in # bits of e.

return h 4 + of bis of h is O(law) = O(Size (M))

Analysis

Theorem

Given $a, e, N \in \mathbb{N}$ with $0 \le a \le N$, one can compute $s \in \mathbb{N}$ with $s \equiv a^e \pmod{N}$ in time $O(M(\operatorname{size}(N)) \cdot \operatorname{size}(e))$, where M(n) denotes the time required for n-bit multiplication.

Demork: 42 (n) is also time required for division will remained. input two n-bit numbers.

Subgroups

Definition

Let G together with \odot be a group. A subset $H \subseteq G$ is called a subgroup of G, if H together with \odot is itself a group. We write $H \trianglelefteq G$.

Theorem
$$H \neq \beta$$

 $H \leq G$ if and only if for each $a, b \in H$ one has $a \odot b^{-1} \in H$.
Proof if $H \leq G$, H for each H , onchas H .) $b^{-1} \in H$
2.) $a \otimes b^{-1} \in H$
Suppose has that $(a \otimes b^{-1} \in H)$ for each $a \otimes b \in H$.
i) $a \otimes b^{-1} \in H$
ii) $a \otimes b^{-1} \in H$ for each $a \otimes b^{-1} \in H$
iii) $a \in H$ ($a \otimes b^{-1} \in H$ for each $a \otimes b^{-1} \in H$
iii) $a \in H$ to show $a^{-1} \in H$; $e_1 a \in H$
iii) $a \otimes b^{-1} \in H$ to show $a^{-1} \in H$; $e_1 a \in H$
iii) $a \otimes b^{-1} \in H$ to show $a^{-1} \in H$; $e_1 a \in H$
iii) $a \otimes b^{-1} \in H$ to show $a^{-1} \in H$; $e_1 a \in H$ e_2 undereven $a \in H$?
Since $b^{-1} \in H$ we have $a \otimes (b^{-1})^{-1} \in H$?

Example

$$H \leq \mathbb{Z}_{1} + \exists d \in \mathbb{N}_{0} \quad \exists \mathbb{R}_{1} \quad H = ddie : z \in \mathbb{Z}_{2}^{2}$$

$$H \leq \mathbb{Z}_{5} \qquad \underbrace{\operatorname{Courlis}_{1} \quad H = dOS}_{25} = 2d = 0$$

$$\widehat{\mathcal{I}}_{5} = \{ [OS, [C4], [C2](S), [C4]\} \qquad \underbrace{\operatorname{Courlis}_{2} \quad H \neq dOS}_{2} \quad (H = n \cdot N_{24}) \neq 0$$

$$d = nuin d(H \cap N_{24}). \qquad d = nuin d(H \cap N_{24}).$$

$$H = d: \mathbb{Z}_{2}.$$

$$H = 2OS$$

$$H = 2OS$$

$$H = 2OS$$

$$H = 2OS \quad Uhy Z$$

$$= 22 \operatorname{Courlis}_{2} \quad Uhy Z$$

$$= 22 \operatorname{Courlis}_{3} \quad Uhy Z$$

Cosets

on G Theorem Let $H \leq G$. The relation $a \sim b$ if $a \odot b^{-1} \in H$ is an equivalence relation with equivalence $class [a] = a \odot H = \{a \odot h : h \in H\}.$ Proof: Reflexivity. & geg: g~g because gog!= e e H Symuly: Yaibeh if and (abbiet) over hos bra since $(a ob^{n})^{n} = b \cdot a^{n} \in \mathcal{A}$ Transitivity: Suppose and, buc QOB'EH, DOC'EH $= 0 \text{ clisted} = 2 0 \text{ bit} 0 \text{ bo} 0^{-1} = 0 0 \text{ o} 0^{-1} \text{ clisted} = 2 0 0 \text{ bit} 0 \text{ bo} 0^{-1} = 0 0 \text{ co} 0^{-1} \text{ clisted} = 2 0 0 \text{ co} 0^{-1} \text{ clisted} = 2 0 0 \text{ co} 0^{-1} \text{ clisted} = 2 0 0 \text{ co} 0^{-1} \text{ clisted} = 2 0 0 \text{ co} 0^{-1} \text{ clisted} = 2 0 0 \text{ co} 0^{-1} \text{ clisted} = 2 0 0 \text{ co} 0^{-1} \text{ clisted} = 2 0 0 \text{ co} 0^{-1} \text{ clisted} = 2 0 0 \text{ co} 0^{-1} \text{ clisted} = 2 0 0 \text{ co} 0^{-1} \text{ clisted} = 2 0 0 \text{ co} 0^{-1} \text{ clisted} = 2 0 0 \text{ co} 0^{-1} \text{ clisted} = 2 0 0 \text{ co} 0^{-1} \text{ clisted} = 2 0 0 \text{ co} 0^{-1} \text{ clisted} = 2 0 0 \text{ co} 0^{-1} \text{ clisted} = 2 0 0 \text{ co} 0^{-1} \text{ clisted} = 2 0 \text{ co} 0^{-$

Example

0

Cosets

Lemma

If H is finite, then $|a \odot H| = |b \odot H|$ for each $a, b \in G$.

Corollary (Theorem of Lagrange)

If G is a finite group and $H \leq G$, then $|H| \mid |G|$.

divides.

Fermat's little theorem

Theorem

If N is a prime number, then $\forall a \in A_{n}, N \in A$ \therefore $a^{N-1} = 1 \pmod{N}$

$$\frac{\operatorname{proof}}{H} = \frac{1}{2N} = N-\Lambda$$

$$H = \langle a \rangle \leq 7L^{*} \langle a \rangle_{c} \langle a^{2}, a^{2}$$

We swept two things under the rug.
1) order(a) = min
$$dx : x \ge 1$$
, $dx = 1$ nove v] $exists.$
2.) $\langle a \rangle = \langle a^{0}, e^{1}, \dots, 1 e^{u(du(e)-1)} \rangle = \mathbb{Z}_{n+1}.$
 $x = \langle a^{0}, e^{1}, \dots, 1 e^{u(du(e)-1)} \rangle = \mathbb{Z}_{n+1}.$
 $x = \langle a^{0}, e^{1}, \dots, 1 e^{u(du(e)-1)} \rangle = \langle a^{0}, e^{1}, \dots, e^{1}, e^{1}, e^{1}, e^{1}, e^{1}, \dots, e^{1}, e^{1}, e^{1}, e^{1}, \dots, e^{1}, e^{1}, e^{1}, \dots, e^{1}, e^{1}, e^{1}, \dots, e^{1}, \dots, e^{1}, \dots, e^{1}, \dots, e^{1}, \dots, e^{1}, e^{1}, \dots, e^{1$

$\phi(N)$

Definition For $N \in \mathbb{N}$ we define $\phi(N) = |\mathbb{Z}_N^*|$. Hon. Example • $\phi(N) = N - 1$ if N is prime. QE $d \lambda_1 2, \dots, N - 1$ ged (0, W) = 1 • $\phi(15) = .$ $| d_{1,2}, u, 7, 8, u, 13, 143 | = 8$ $= \phi(s) \cdot \phi(s) = 4.2$ I.F N= N1. NZ .- . NE with ged(Ni, N;)=1 fi=j Hen $\phi(N) = \phi(N_A) \cdot \phi(N_Z) \cdots \phi(N_M)$ of is multiplicative.

Recap: Rings

 $(\mathbb{Z},+,\cdot)$

A set R is a *ring* if it has two binary operations, written as addition and multiplication, such that for all $a, b, c \in R$

(R1)
$$a + b = b + a \in R$$

(R2) $(a + b) + c = a + (b + c)$
(R3) There exists an element $0 \in R$ with $a + 0 = a$
(R4) There exists an element $-a \in R$ with $a + (-a) = 0$
(R5) $a(bc) = (ab)c$ • Associater l.
(R6) There exists an element $1 \in R$ with $1 \cdot a = a \cdot 1 = a$
(R7) $a(b + c) = ab + ac$ and $(b + c)a = ba + ca$.
• was commutatives for R is called commutative ring. if $a \cdot b \neq 0$ when we are a better to $a \cdot b \neq 0$
• we called commutative ring. if $a \cdot b \neq 0$ when we are the set of $a \cdot b \neq 0$ when we are the set of $a \cdot b \neq 0$ when we are the set of $R = 15$.
• we called commutative ring. if $a \cdot b \neq 0$ when we called commutative ring. $R = 15$.
• $R =$

Recap: Rings

Examples:

- Z ← commutative, integral domain
 Z_N ← commutative.

(Ri, Di, Di) se vings.

 \blacktriangleright $R_1 \times \cdots \times R_k$, where R_1, \ldots, R_k are rings.

- not i.d. not commutative.
- \blacktriangleright The set of $n \times n$ matrices over \mathbb{Z} with the standard matrix addition and multiplication.

$$R_{A} \times R_{2} \times \cdots \times R_{0} = \left(\left(Y_{A_{1}} Y_{2} \dots, Y_{A} \right) : Y_{i} \in \mathbb{R}^{i} \right).$$

$$(\textcircled{P}: (Y_{A_{1}} \dots, Y_{A}) \bigoplus (g_{A} \dots, g_{A}) = (Y_{A} \bigoplus g_{A}, \dots, g_{A} \bigoplus g_{A})$$

$$(\textcircled{O}: (Y_{A} \dots, Y_{A}) \bigoplus (g_{A} \dots, g_{A}) = (Y_{A} \bigoplus g_{A}, \dots, g_{A} \bigoplus g_{A})$$

$$(\overbrace{Y_{A} \dots, Y_{A}}) \bigoplus (g_{A} \dots, g_{A}) = (Y_{A} \bigoplus g_{A}, \dots, g_{A} \bigoplus g_{A})$$

$$(\overbrace{Y_{A} \dots, Y_{A}}) \bigoplus (g_{A} \dots, g_{A}) = (Y_{A} \bigoplus g_{A}, \dots, g_{A} \bigoplus g_{A})$$

$$(\overbrace{Y_{A} \dots, Y_{A}}) \bigoplus (g_{A} \dots, g_{A}) = (Y_{A} \bigoplus g_{A}, \dots, g_{A} \bigoplus g_{A})$$

$$(\overbrace{Y_{A} \dots, Y_{A}}) \bigoplus (g_{A} \dots, g_{A}) = (Y_{A} \bigoplus g_{A}, \dots, g_{A} \bigoplus g_{A})$$

$$(\overbrace{Y_{A} \dots, Y_{A}}) \bigoplus (g_{A} \dots, g_{A}) = (Y_{A} \bigoplus g_{A}, \dots, g_{A} \bigoplus g_{A})$$

Example of an easy ring-theorem

Theorem

Let R be a ring, then for each $r \in R$ one has

$$0 \cdot r = 0 = r \cdot 0.$$

$$Prouf: \quad (0 + 0) \cdot v = 0 \cdot v + 0 \cdot v \quad \Big| - 0 \cdot v$$

$$0 = 0 \cdot v.$$

Ring homomorphism

If R and R_1 are rings, a mapping $\theta : R \to R_1$ is called a *ring homomorphism* if for all $r, s \in R$: (1) $\theta(r+s) = \theta(r) + \theta(s)$ (2) $\theta(rs) = \theta(r) \cdot \theta(s)$ (3) $\theta(1_R) = 1_{R_1}$ Every law

Examples:

- $f: \mathbb{Z} \to \mathbb{Z}_N, f(x) = [x]_N$
- $g: \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}_N$, $f(x) = (x, [x]_N)$.

Chriese Remainer Thm. \$\Phi(N) multiplicative. B RSA. (5) Efficient primely tests

Chinese remainder theorem

Theorem

Suppose a and b are relatively prime integers. Then the map

$$egin{array}{rcl} f: & \mathbb{Z}_{a \cdot b} &
ightarrow & \mathbb{Z}_a imes \mathbb{Z}_b \ & [x]_{a \cdot b} &
ightarrow & ([x]_a, [x]_b) \end{array}$$

is a ring isomorphism, that is, a ring homomorphism that is also a bijection.

$\phi(\cdot)$ is multiplicative

Corollary

If $a, b \in \mathbb{N}$ and $\gcd(a, b) = 1$, then $\phi(a \cdot b) = \phi(a) \cdot \phi(b)$.

$\phi(\cdot)$ and factoring

Corollary

Let $N = p_1^{e_1} \cdots p_k^{e_k}$ be the factorization of N into distinct prime numbers p_1, \ldots, p_k , then

$$\phi(N) = \prod_{i=1}^{k} (p_i - 1) \cdot p_i^{e_i - 1}$$