Plan for today

- Recap: rings, groups, Lagrange's Theorem, Euler ϕ-function, Chinese remainder theorem
- Euler's and Fermat's little theorem
- RSA cryptography
- Primality tests

Recap: Rings

A set R is a ring if it has two binary operations, written as addition and multiplication, such that for all $a, b, c \in R$
\checkmark (R1) $a+b=b+a \in R$
ν (R2) $(a+b)+c=a+(b+c)$
\checkmark (R3) There exists an element $0 \in R$ with $a+0=a$
\checkmark (R4) There exists an element $-a \in R$ with $a+(-a)=0$
$\checkmark($ RF $) ~ a(b c)=(a b) c$
$\checkmark($ R6) There exists an element $1 \in R$ with $1 \cdot a=a \cdot 1=a$
$\checkmark($ RT $) ~ a(b+c)=a b+a c$ and $(b+c) a=b a+c a$.

```
WHAT IS NOT RFQUIRED:
```

- multiplication may not commute
- SOME ELEMENTS MAY NOT HAVE A MULTIRICATIVE INVERSE

Recap: Rings

Examples:
$\left.\begin{array}{l}-\mathbb{Z}^{-} \\ -\mathbb{Z}_{N}\end{array}\right\}$ nutbers here har not have a tuctiplicatine inverse

- $R_{1} \times \cdots \times R_{k}$, where R_{1}, \ldots, R_{k} are rings.
\rightarrow The set of $n \times n$ matrices over \mathbb{Z} with the standard matrix addition and multiplication.
HERF HULTIPLICATION DOES NOT COMANTE

Example of an easy ring-theorem

Theorem
Let R be a ring, then for each $r \in R$ one has

$$
0 \cdot r=0=r \cdot 0 .
$$

PF.

$$
\begin{aligned}
0=0+0 & \Rightarrow \quad 0 \cdot r=(0+0) \cdot r=0 r+0 r \\
& \Rightarrow \quad 0=0 \cdot r-0 \cdot r=0 r+2 r-d r=0 r
\end{aligned}
$$

Ring homomorphism

If R and R_{1} are rings, a mapping $\partial: R \rightarrow R_{1}$ is called a ring homomorphism if for all $r, s \in R$:
(1) $\partial(r+s)=\partial(r)+\partial(s)$
(2) $\partial(r s)=\partial(r) \cdot \partial(s)$
(3) $\partial\left(1_{R}\right)=1_{R_{1}}$

Examples:
$-f: \mathbb{Z} \rightarrow \mathbb{Z}_{N}, f(x)=[x]_{N}$

- $g: \mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z}_{N}, f(x)=\left(x,[x]_{N}\right)$.

$$
\begin{aligned}
& N=8 \\
& x=19 \\
& f(x)=3
\end{aligned}
$$

Chinese remainder theorem

Theorem
Suppose a and b are relatively prime integers. Then the map

$$
\begin{aligned}
f: & \mathbb{Z}_{a \cdot b}
\end{aligned} \rightarrow \mathbb{Z}_{a} \times \mathbb{Z}_{b},
$$

is a ring isomorphism, that is, a ring homomorphism that is also a bijection.
Equivalent statenent:

$$
\begin{aligned}
& \left.\forall x_{1} \in\{0, \ldots, a-1\}, x_{2} \in\{0, \ldots, b-1\} \quad\right]: x \in\{0, \ldots, a b-1\} \\
& x=x_{1} \bmod a \quad \frac{\operatorname{PRDOF}(S A E T C * \text {) }}{1) \rho \text { is HOMORPHIST }} \\
& x \equiv x_{2} \bmod b \\
& \text { 2) }\left|\mathbb{Z}_{a \cdot b}\right|=\left|\mathbb{Z}_{a} \times \mathbb{Z}_{b}\right|=\left|\mathbb{Z}_{a}\right| \cdot\left|\mathbb{Z}_{b}\right| \\
& \text { 3) } f \text { is SURJECTIVE }
\end{aligned}
$$

$\phi(\cdot)$ is multiplicative
$\underset{\substack{\text { For } N \in \mathbb{N} \\ \text { Corollary }}}{\boldsymbol{p}} \boldsymbol{\phi}(N)=\left|\mathbb{Z}_{N}^{*}\right|=\mid\{x \in\{0, \ldots, N\}: g<d(x, N)=1\}$ If $a, b \in \mathbb{N}$ and $\operatorname{gcd}(a, b)=1$, then $\phi(a \cdot b)=\phi(a) \cdot \phi(b)$.
$\Leftarrow[x]_{a} \in \mathbb{1}_{a}^{*}$ $[x]_{b} \in \mathbb{Z}_{b}^{*}$
inverse
$\phi(\cdot)$ and factoring

Corollary
Let $N=p_{1}^{e_{1}} \cdots p_{k}^{e_{k}}$ be the factorization of N into distinct prime numbers p_{1}, \ldots, p_{k}, then
pF.

$$
\phi(N)=\prod_{i=1}^{k}\left(p_{i}-1\right) \cdot p_{i}^{e_{i}-1}
$$

$$
\begin{equation*}
\phi(N)=\phi\left(\prod_{i=1}^{k} p_{i}^{e_{i}}\right)=\prod_{i=1}^{k} \phi\left(p_{i}^{e_{i}}\right)=\prod_{i=1}^{k}\left(p_{i}-1\right) p_{i}^{e_{i}-1} \tag{*}
\end{equation*}
$$

What is LEFT: $\phi\left(p^{e}\right)=$?
To SHON?

$$
D\left(p^{e}\right)=\left|\mathbb{I}_{p^{*}}^{e}\right|=\left|\left\{x \in\left\{1, \ldots, p^{e}\right\}: \operatorname{gcd}\left(x, p^{e}\right)=1\right\}\right|
$$

$\operatorname{gad}\left(x, p^{e}\right) \neq 1 \quad$ PF $x=1 . p, 2 \cdot p, 3 p, \ldots,\left(p^{e-1}\right) p$. How MaNY? p^{e-1} $\phi\left(p^{e}\right)=p^{e}-\left(p^{e-1}\right) \Xi p^{e-1}(p-1)(x)$

Recap: Groups
A set G is called a group if it has a binary operation o such that for all $a, b, c \in G$

$$
J(\mathrm{GO}) a \circ b \in G
$$

$\mathcal{J}(\mathrm{G} 1) a \circ(b \circ c)=(a \circ b) \circ c$
\mathcal{J} (G2) There exists an element $1 \in G$ with $1 \circ a=a \circ 1=a$
\&G3) There exists an element $a^{-1} \in G$ with $a \circ a^{-1}=a^{-1} \circ a=1$
$L_{\text {d }}$ multiplicative inverse
ExaMples

 $L_{\Delta} \mathbb{Z}_{N_{N}}$ is NOT A Group

- Q Q $\{0\}$ is an infinite grove. weRT multipziaition

Subgroups
Let G be a group and $H \subseteq G$. H is a subgroup of G if H is a group itself. We write $H G$.
Theorem
Let G be a group and $H \subseteq G$. Then $H \unlhd G$ if and only if for each $a, b \in H$ one has

$$
a \cdot b^{-1} \in H
$$

PF.

$$
\overrightarrow{\gamma a, b \in H \quad a \cdot b^{-1} \in H \Rightarrow H \leqslant G}
$$

$(G I) \nabla$

$$
\text { TAKE } b=2 \quad a \cdot a^{-1}=1 \in H=D(G 2)
$$

To show: $\forall c \in H, c^{-1} \in H . \quad a=t \quad b=c, \Rightarrow 1 \cdot c^{-1}=c^{-1} \in H(G 3)$
To SHow: $\forall c, d \in H, c \cdot d \in H, ~ a=C \quad b=d^{-1} \Rightarrow c\left(d^{-1}\right)^{-1}=c \cdot d \in H\left(G_{0}\right)$ converse: (VERy EASY) EXERCISE a

Lagrange's theorem

Theorem
Let G be a finite group and H be a subgroup of G, then
$|H|$ divides $|G|$.
PF,
$\forall a \in G: \quad a H=\{a b, b \in H\}$,
CL: $|a H|=|H|$ CHECK THIS!
CL2 $\bigcup_{\lambda \in G} a H=G \quad$ cHECK THIs!
CL $\forall a, b$, EITHER $a H=b H$ OR $a H \cap b H$
P\# Suppose $\quad a H_{1} a b H \neq \varnothing \Rightarrow \exists h_{1}, h_{2} \in H: \quad a h_{1}=b h_{2} \cdot h_{1}^{-1}$

$$
\Rightarrow a=b \cdot \underbrace{}_{h_{3}}=b \cdot h_{3} \quad \text { Then } \forall h \in H \quad a \cdot h=b \cdot\left(h_{3} \cdot h=h^{-1}=h^{\prime} \in b H\right.
$$

Lagrange's theorem

Theorem
Let G be a finite group and H be a subgroup of G, then
$|H|$ divides $|G|$.
conipues

$$
a H \leq b H \text {. But }|a H|=|H|=|b H| \Rightarrow a H=b H
$$

$$
\begin{array}{r}
\exists t \in \mathbb{N}: \quad t \cdot|H|=|G| \\
\Leftrightarrow|H|||G|
\end{array}
$$

The order of a group-element
Let G be a group and $g \in G$. The order of g is the smallest number $i \in \mathbb{N}_{0} \cup\{\infty\}$ such that

$$
g^{i}=1
$$

holds.
THR. Let G be a finite group. Then $\forall g \in G, g^{|G|}=1$ $\mathcal{P F}_{F_{1 X}} g \in G . \quad H=\left\{g^{i}: i \in \mathbb{N}_{0}\right\}=\left\{1=g^{0}, g=g^{1}, g^{2}, g^{3}, \ldots,\right\}$
CL. $H \geqq G$ (rather) easy exercise,) us use tie "a.b"-critan,
$1 H \mid=\operatorname{ord}(g)$. in Fact, if $g^{t}=1, g^{t+l}=g^{t} \cdot g^{l}=g^{l}$
For LagrangE $\frac{|H|}{|1| t \mid} t=|G|, t \in \mathbb{N}$

Fermat's little theorem

Corollary
Let $N \in \mathbb{N}$ and $a \notin \mathbb{Z}_{N}^{*}$, then

Corollary (Fermat's little theorem)
Let N be a prime number. For each $a \in\{1, \ldots, N-1\}$ one has

PF.

$$
a^{N-1} \equiv 1 \quad(\bmod N) .
$$

NPRME $\quad \phi(N)=\left|\mathbb{Z}_{N}\right|=N-1$

$$
\vee \text { AlL } x \in\{0, \ldots, N-1\} ; \operatorname{gcd}(x, N)=1
$$

RSA wants

- Generates large (512 bits) primes p and q
$V \rightarrow$ Computes $N=p \cdot q$. $(p-1)(q-1)=\phi(p) \cdot \phi(q)$
Selects encryption exponent e such that $\operatorname{gcd}(e, \widetilde{\phi(N)})=1$
- Public key: (N, e)

Alice:

- Converts message to bit-string m

ExTENDED
EUCLIDEAN
Alcorntrा

- Sends $s=m^{e}(\bmod N)$ to Bob

Bob: \qquad
EVE: KNOWS (N, e) IF SHE COULD FACTORIZE $K=A$ KNOW $p, 9$

RA
Proof
To sites $s^{y}=m \bmod N$
Bob:

- Generates large (512 bits) primes p and ${ }^{\frac{y}{q}} m^{e \cdot y}$. Since $y \cdot e \equiv 1 \bmod \phi(x)$
- Computes $N=p \cdot q$.
- Selects encryption exponent e such that $\operatorname{gcd}(e, \phi(N))=1$
- Public key: (N, e)

Alice:

- Converts message to bit-string m
- Sends $s=m^{e}(\bmod N)$ to Bob

Bob:

- Computes $y=e^{-1}(\bmod \phi(N))$
- Computes $s^{y} \equiv m(\bmod N)$.

$$
s^{y}=m^{\prime+K \phi(N)} \text { integer }_{k}^{K} m^{1+K(p-3)(a-1}
$$

$$
\begin{aligned}
\text { CAse 1: pX } m & \Rightarrow n^{p-1} \equiv 1 \bmod p \\
\Rightarrow \underbrace{1+K(q-1)(p-1)} & \Rightarrow m \cdot \underbrace{m^{1+k(q-1)(p-1)}}_{1^{\prime \prime \prime} \bmod p} \\
& \equiv m \bmod p
\end{aligned}
$$

Let's prove this!

ROOF (CONTINUES)
CASE 2: P1 m

SO WEGET

$$
\begin{gathered}
\Rightarrow m=t_{p}, t \in \mathbb{N}=D m^{1+x(p-1)(q-1)}(\cdots)\left(t_{p}\right) \\
\Rightarrow(0)^{(\cdots)} \equiv 0 \bmod p / / / \sum_{0} \bmod p \\
\end{gathered}
$$

$$
\begin{aligned}
& S^{y}=m^{1+\alpha(p-1)(q-1)}=m \bmod p \Rightarrow S^{y}-m=m^{1+\alpha(p-1)(q-1)}-m \equiv 0 \bmod p \\
& \text { sitilarly } \quad s^{y} \equiv m \bmod q \\
& \equiv 0 \bmod g
\end{aligned}
$$

$$
\begin{aligned}
p, g \mid s^{y}-m \Rightarrow N & =p \cdot q \mid s^{y}-m \\
& \Rightarrow \quad s^{y} \equiv m \bmod N a
\end{aligned}
$$

Implementing RSA: Two guiding questions

A) How to recognize prime numbers? \rightarrow PRITTALITY TEST
B) Are the prime numbers dense enough such that a random n-bit number is a prime with reasonable probability? \rightarrow PRIME NUTBER THEORET AND RELATED RESULTS

Primality tests

DETERTINISTIC PrImALITY TESTS EXIST!

$$
\text { (ARKS TART: TEST, } 2004 \text {) }
$$

The weak Fermat test

- Input: $N \in \mathbb{N}$ odd
- Assert: Composite or probably prime
- Choose $a \in\{1, \ldots, N-1\}$ uniformly at random
- ${ }^{1+} a^{N-1}(\bmod N)=1$ assert probably prime
- else assert composite

Carmichael numbers

An odd composite number $N \in \mathbb{N}$ is called Carmichael number if

$$
\forall a \in \mathbb{Z}_{N}^{*}: a^{N-1}=1 .
$$

CARMICHAEL NUMBERS FOOL FERMAT TEST?
CARMICHAEL NUMBERS EXIST!

If N is not Carmichael

Theorem
Let N be an odd composite number that is not Carmichael, then the weak Fermat test asserts probably prime with probability at most 1/2.
\Rightarrow (FOR N NOT CAKMIMAEL, THE TEST IS WRONG WITH PR, $\leq \frac{1}{2}$) If the weak Fermat test is repeated i times, then the probability that it asserts probably prime in all i rounds is at mos $1 / 2^{i}$. \longrightarrow GoEs to 0 van fast
PF.
Let N ODD, NON-CART, COMPOSITE.

$$
H=\left\{a \in \mathbb{Z}_{N}^{*}: a^{N-1} \equiv 1 \bmod N\right\}
$$

22. $H \unlhd \mathbb{T}_{-x}^{*}$ PF E ExErcise
$H \subset \mathbb{Z}_{N}^{*}\left(N\right.$ NOT $\left.\operatorname{con} n \rightarrow \exists a \in \mathbb{1}_{N}^{*}: a^{x-1} \nexists 1 \bmod N\right) \Rightarrow$

How do Carmichael numbers look like

Theorem
Every Carmichael number N is of the form

$$
N=p_{1} \cdots p_{k}
$$

where the p_{i} are distinct primes and $\left(p_{i}-1\right) \mid(N-1)$ for $i=1, \ldots, k$.

