Plan for today

- ightharpoonup Recap: rings, groups, Lagrange's Theorem, Euler ϕ -function, Chinese remainder theorem
- Euler's and Fermat's little theorem
- RSA cryptography
- Primality tests

Recap: Rings

A set R is a *ring* if it has two binary operations, written as addition and multiplication, such that for all $a, b, c \in R$

WHAT IS NOT REQUIRED!

```
· MULTIPLICATION MAY NOT COMMUTE
· SOME ELEMENTS MAY NOT HAVE A MULTIPLICATIVE INVERSE
```

Recap: Rings

Examples:

- ullet \mathbb{Z}_N $\Big\}$ NOTIBERS HERE THAY NOT HAVE A MULTIPLICATIVE INVERSE
- $ightharpoonup R_1 \times \cdots \times R_k$, where R_1, \ldots, R_k are rings.
- The set of $n \times n$ matrices over \mathbb{Z} with the standard matrix addition and multiplication.
- -D HEEF HULTIPLICATION DOES NOT COMMUTE

Example of an easy ring-theorem

Theorem

Let R be a ring, then for each $r \in R$ one has

$$0 \cdot r = 0 = r \cdot 0.$$

Ring homomorphism

If R and R_1 are rings, a mapping $\partial: R \to R_1$ is called a *ring homomorphism* if for all $r, s \in R$:

- (1) $\partial(r+s) = \partial(r) + \partial(s)$
- (2) $\partial(rs) = \partial(r) \cdot \partial(s)$
- (3) $\partial(1_R) = 1_{R_1}$

Examples:

$$\underbrace{f: \mathbb{Z} \to \mathbb{Z}_N, f(x) = [x]_N}_{g: \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}_N, f(x) = (x, [x]_N)}.$$

Chinese remainder theorem

Theorem

Suppose a and b are relatively prime integers. Then the map

$$f: \quad \mathbb{Z}_{a \cdot b} \quad \to \quad \mathbb{Z}_a \times \mathbb{Z}_b$$
$$[x]_{a \cdot b} \quad \mapsto \quad ([x]_a, [x]_b)$$

is a ring isomorphism, that is, a ring homomorphism that is also a bijection.

EQUITALENT STATEMENT:

$$\frac{1}{1} \times \frac{1}{1} \times$$

$$\varphi(\cdot) \text{ is multiplicative}$$

$$For N \in \mathbb{N}, \quad \varphi(N) = | \mathcal{I}_{\mathcal{H}} (= | \{x \in \{0, ..., N\}\}, g \in \mathcal{I}_{(x,N)=1}\}$$

$$Corollary$$

$$If a, b \in \mathbb{N} \text{ and } \gcd(a,b) = 1, \text{ then } \varphi(a \cdot b) = \varphi(a) \cdot \varphi(b).$$

$$\frac{\varphi_{\mathcal{E}}}{\mathsf{Inv}} \in \mathcal{I}_{25}. \qquad X \text{ MAS A MULTIPLICATIVE}$$

$$\mathsf{Inv} \in \mathcal{I}_{25}. \qquad \mathsf{Inv} \in \mathcal{I}_{25}.$$

Lx]be Zh

$\phi(\cdot)$ and factoring

Corollary

Let $N = p_1^{e_1} \cdots p_k^{e_k}$ be the factorization of N into distinct prime numbers p_1, \ldots, p_k , then

$$\phi(N) = \prod_{i=1}^{k} (p_i - 1) \cdot p_i^{e_i - 1}$$

$$\phi(N) = \phi\left(\frac{1}{1 + 1} p_i^{e_i} \right) = \frac{1}{1 + 1} \phi\left(\frac{e_i}{p_i} \right) = \frac{1}{1 + 1} \left(\frac{e_i}{p_i} - 1 \right) p_i^{e_i - 1}$$

$$d(H) = \phi(\pi_{p_i}^{e_i}) = \pi_{p_i}^{e_i} + \phi(p_i^{e_i}) = \pi_{p_i}^{e_i} + \pi_{$$

Recap: Groups

A set G is called a group if it has a binary operation \circ such that for all $a, b, c \in G$

$$\int (\mathsf{G0}) \ a \circ b \in G$$

$$\mathcal{J}(\mathsf{G1}) \ a \circ (b \circ c) = (a \circ b) \circ c$$

$$\sqrt{(G2)}$$
 There exists an element $1 \in G$ with $1 \circ a = a \circ 1 = a$

G3) There exists an element
$$a^{-1} \in G$$
 with $a \circ a^{-1} = a^{-1} \circ a = 1$

LA MULTIPLICATIVE INVERSE

, Q\{0\ is AN INFINITE GROUP.

Subgroups

Let G be a group and $H \subseteq G$. H is a subgroup of G if H is a group itself. We write $H \stackrel{\triangle}{=} G$.

Theorem

Let G be a group and $H \subseteq G$. Then $H \triangleleft G$ if and only if for each $a, b \in H$ one has

$$a \cdot b^{-1} \in H.$$

42.beH 2.6-6H = D H & G (Ga) 1 TAXE b= a a. a = 1 eH = D (G2) V TO SHOW: Y C eH, c'eH, a=1 b=c.=D 1. c'= c'eH (G3) V TO SHOW: Y c,deH, c.deH, a=6 b=d'=D c(d')== e.deH (G0) V COMPRSE: (VERY EASY) EXTERISE D

Lagrange's theorem

Theorem

Let G be a finite group and H be a subgroup of G, then |H| divides |G|. 4066: 2H= ab, bet}

P# SUPPRES 2HOBH ZD.=D] hz, hz=H: 2h, = bhz - hz 30 2 = b.hz. hi = b.h3

Then they 2.h = b.(h3.h) = h

Lagrange's theorem

Theorem

Let G be a finite group and H be a subgroup of G, then

|H| divides |G|.

The order of a group-element

Let G be a group and $g \in G$. The *order* of g is the smallest number $i \notin \mathbb{N}_0 \cup \{\infty\}$ such that

$$g^{i} = 1$$
holds.

The 1+ Chapter of the control of the control

THE Let G be a linite group. Then + ge G, g = 1

holds.

The Let G be a finite group. Then
$$\forall g \in G$$
, $g^{(G)} = 1$

Fix $g \in G$. $H = \{g^i : i \in \mathbb{N}_0\} = \{1 + g^0, g = g^{\frac{1}{2}}, g$

CL. H & G # (RATHER) EASY EXERCISE,) UST USE THE "Q. 6 - CRITTERN

 $|H| = \operatorname{cord}(g). \text{ in fact, } |f| g^{\dagger} = 1, g^{\dagger} = g^{\dagger}. g^{\ell} = g^{\ell}$ FROM LAGRANGE |H| $\cdot t = |G|$, $t \in N$ $g' = g^{\dagger}. |H| t = |G|$ $g' = g^{\dagger}. |H| t = |G|$ $g' = g^{\dagger}. |H| t = |G|$

Fermat's little theorem

Corollary

Let
$$N \in \mathbb{N}$$
 and $a \notin \mathbb{Z}_N^*$, then
$$a^{\phi(N)} = 1.$$
Corollary (Fermat's little theorem)

Corollary (Fermat's little theorem)

Let N be a prime number. For each $a \in \{1, ..., N-1\}$ one has

$$a^{N-1} \equiv 1 \pmod{N}.$$

$$\frac{\text{PF.}}{\text{N PRIME}} \quad \phi(N) = |Z_N| = N-1$$

RECEIVE WE'LL SEE LATER THE MUSSAGE Bob: Generates large (512 bits) primes p and q Computes $N = p \cdot q$. Selects encryption exponent e such that $gcd(e, \phi(N)) = 1$ ► Public key: (N, e) Alice: L SENDS THE MESSARC EXTENDED EUCLIDEAN Converts message to bit-string m ALGORITHI Sends $s = m^e \pmod{N}$ to Bob FAST MODULAR Bob: EXPONENTIATION ► Computes $y = e^{-1} \pmod{\phi(N)}$ ▶ Computes $s^y \equiv m \pmod{N}$. EVE! KNOWS (H, e). IF SHE COULD FACTORIZE NON B9 BUT WE SON'T KNOW FAST ALGORITHITIS FOR FACTORPING N

RSA To SHOW SI = m modk Bob: • Computes $N = p \cdot q$. ▶ Selects *encryption exponent e* such that $gcd(e, \phi(N)) = 1$ ▶ Public key: (*N*. *e*) 5 = m (+K+(N) = m + K (P-5) (q-1 Alice: Converts message to bit-string m CASE 1: PXM => M =1 mod P = Imad P • Sends $s = m^e \pmod{N}$ to Bob Bob: ▶ Computes $y = e^{-1} \pmod{\phi(N)}$ ▶ Computes $s^y \sqsubseteq m \pmod{N}$.

•

Implementing RSA: Two guiding questions

- A) How to recognize prime numbers? -> PRIMALITY TEST
- B) Are the prime numbers dense enough such that a random *n*-bit number is a prime with reasonable probability? PRIME NUMBER THEOREM AND PELATED RESULTS

Primality tests

- ► Weak Fermat test ← RANDONIZED PRIMACITY TESTS
- ► Charmichael numbers

 THE IL OUTPUT MAY BE INCORRECT,

 BUT THIS HAPPENS WITH BOUNDED

 PLOBABILITY 7

```
DETERTINISTIC PRIMALITY TESTS EXIST
 (AXS TEST, 2004)
```

The weak Fermat test

REPTATIS LITTLE THE.

N PRITTE. THEN 2N-1 | mod N Y2 < 1/2 | 103

▶ Input: $N \in \mathbb{N}$ odd

Assert: Composite or probably prime

► Choose $a \in \{1, ..., N-1\}$ uniformly at random

• If $a^{N-1} \pmod{N} = 1$ assert probably prime

else assert composite

IF'N NOT PRIME?

N IS PRIME: and N + a = [/o]

=D ALGORITHM ALWAYS ANSWERS "PRIME,

Carmichael numbers

An odd composite number $N \in \mathbb{N}$ is called *Carmichael number* if

$$\forall a \in \mathbb{Z}_N^* \colon a^{N-1} = 1.$$

If N is not Carmichael

Theorem

Let N be an odd composite number that is not Carmichael, then the weak Fermat test asserts probably prime with probability at most 1/2.

If the weak Fermat test is repeated i times, then the probability that it asserts probably prime in all i rounds is at mos 1/21.

How do Carmichael numbers look like

Theorem

Every Carmichael number N is of the form

$$N=p_1\cdots p_k$$
,

where the p_i are distinct primes and $(p_i - 1) | (N - 1)$ for i = 1, ..., k.