École Polytechnique Fédérale de Lausanne Prof. Eisenbrand
Discrete Optimization (Spring 2018)

Assignment 4

Problem 6 can be submitted until March 23 12:00 noon into the box in front of MA C1 563. You are allowed to submit your solutions in groups of at most three students.

Problem 1

Consider the polyhedron:

$$
P=\left\{\begin{aligned}
x_{1}+2 x_{2}+x_{3} & \leq 5 \\
3 x_{1}+x_{2}+x_{3} & \leq 3 \\
x_{1} & \leq 1 \\
x_{1}+x_{2} & \leq 2 \\
x_{2}+x_{3} & \leq 3 \\
x_{1} & \geq 0 \\
x_{1}+x_{2} & \geq 0 \\
x_{2}+x_{3} & \geq 0
\end{aligned}\right.
$$

State which of the following points are vertices of $P: p_{0}=(0,0,3), p_{1}=(0,1,1), p_{2}=(1,4,-4)$, $p_{3}=(1 / 2,3 / 2,0), p_{4}=(1,-1,1)$.

Problem 2

Let $A \in \mathbb{R}^{n \times n}$ be a non-singular matrix and let $a_{1}, \ldots, a_{n} \in \mathbb{R}^{n}$ be the columns of A.
i) Show that cone $\left(\left\{a_{1}, \ldots, a_{n}\right\}\right)$ is the polyhedron $P=\left\{x \in \mathbb{R}^{n}: A^{-1} x \geq 0\right\}$.
ii) Show that cone $\left(\left\{a_{1}, \ldots, a_{k}\right\}\right)$ for $k \leq n$ is the set

$$
P_{k}=\left\{x \in \mathbb{R}^{n}: a_{i}^{-1} x \geq 0, i=1, \ldots, k, a_{i}^{-1} x=0, i=k+1, \ldots, n\right\},
$$

where a_{i}^{-1} denotes the i-th row of A^{-1}.

Problem 3

Prove the following variant of Farkas' lemma: Let $A \in \mathbb{R}^{m \times n}$ be a matrix and $b \in \mathbb{R}^{m}$ be a vector. The system $A x \leq b, x \in \mathbb{R}^{n}$ has a solution if and only if for all $\lambda \in \mathbb{R}_{\geq 0}^{m}$ with $\lambda^{T} A=0$ one has $\lambda^{T} b \geq 0$. Hint: Use the version of Farkas' lemma in the lecture notes, Theorem 3.11

Problem 4

Consider the vectors

$$
x_{1}=\left(\begin{array}{l}
3 \\
1 \\
2
\end{array}\right), x_{2}=\left(\begin{array}{l}
1 \\
2 \\
5
\end{array}\right), x_{3}=\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right), x_{4}=\left(\begin{array}{l}
2 \\
4 \\
3
\end{array}\right), x_{5}=\left(\begin{array}{c}
1 \\
-2 \\
3
\end{array}\right) .
$$

The vector

$$
v=x_{1}+3 x_{2}+2 x_{3}+x_{4}+3 x_{5}=\left(\begin{array}{c}
15 \\
5 \\
31
\end{array}\right)
$$

is a conic combination of the x_{i}.

Write v as a conic combination using only three vectors of the x_{i}.
Hint: Recall the proof of Carathéodory's theorem

Problem 5

Consider the following classification problem: we are given p_{1}, \ldots, p_{N} points in \mathbb{R}^{d}, and each point is colored either blue or red. We want to determine if there is an hyperplane $\alpha=\{a x=b\}$ that strictly separates the blue points from the red ones (i.e. such that $a p_{i}>b$ for all blue points and $a p_{i} \leq b$ for all red points) and, in case of a positive answer, find such α. Show how to solve this problem using linear programming.

Problem 6 (\star)

Prove that for a finite set $X \subseteq \mathbb{R}^{n}$ the conic hull cone (X) is closed and convex.
Hint: Use Problem 2 and Carathéodory's theorem: Let $X \subseteq \mathbb{R}^{n}$, then for each $x \in \operatorname{cone}(X)$ there exists a set $\widetilde{X} \subseteq X$ of cardinality at most n such that $x \in \operatorname{cone}(\widetilde{X})$. The vectors in \widetilde{X} are linearly independent.

