Discrete Optimization (Spring 2018)

Assignment 4

Problem 6 can be **submitted** until March 23 12:00 noon into the box in front of MA C1 563. You are allowed to submit your solutions in groups of at most three students.

Problem 1

Consider the polyhedron:

$$P = \begin{cases} x_1 + 2x_2 + x_3 &\leq 5\\ 3x_1 + x_2 + x_3 &\leq 3\\ & x_1 &\leq 1\\ x_1 + x_2 &\leq 2\\ x_2 + x_3 &\leq 3\\ & x_1 &\geq 0\\ x_1 + x_2 &\geq 0\\ & x_2 + x_3 &\geq 0 \end{cases}$$

State which of the following points are vertices of P: $p_0 = (0,0,3)$, $p_1 = (0,1,1)$, $p_2 = (1,4,-4)$, $p_3 = (1/2,3/2,0)$, $p_4 = (1,-1,1)$.

Problem 2

Let $A \in \mathbb{R}^{n \times n}$ be a non-singular matrix and let $a_1, \ldots, a_n \in \mathbb{R}^n$ be the columns of A.

- i) Show that cone($\{a_1, \ldots, a_n\}$) is the polyhedron $P = \{x \in \mathbb{R}^n : A^{-1}x \ge 0\}$.
- ii) Show that $\operatorname{cone}(\{a_1, \ldots, a_k\})$ for $k \leq n$ is the set

$$P_k = \{ x \in \mathbb{R}^n \colon a_i^{-1} x \ge 0, i = 1, \dots, k, a_i^{-1} x = 0, i = k+1, \dots, n \},\$$

where a_i^{-1} denotes the *i*-th row of A^{-1} .

Problem 3

Prove the following variant of Farkas' lemma: Let $A \in \mathbb{R}^{m \times n}$ be a matrix and $b \in \mathbb{R}^m$ be a vector. The system $Ax \leq b, x \in \mathbb{R}^n$ has a solution if and only if for all $\lambda \in \mathbb{R}^m_{\geq 0}$ with $\lambda^T A = 0$ one has $\lambda^T b \geq 0$. Hint: Use the version of Farkas' lemma in the lecture notes, Theorem 3.11

Problem 4

Consider the vectors

$$x_1 = \begin{pmatrix} 3\\1\\2 \end{pmatrix}, x_2 = \begin{pmatrix} 1\\2\\5 \end{pmatrix}, x_3 = \begin{pmatrix} 2\\0\\1 \end{pmatrix}, x_4 = \begin{pmatrix} 2\\4\\3 \end{pmatrix}, x_5 = \begin{pmatrix} 1\\-2\\3 \end{pmatrix}.$$

The vector

$$v = x_1 + 3x_2 + 2x_3 + x_4 + 3x_5 = \begin{pmatrix} 15 \\ 5 \\ 31 \end{pmatrix}$$

is a conic combination of the x_i .

Write v as a conic combination using only three vectors of the x_i . Hint: Recall the proof of Carathéodory's theorem

Problem 5

Consider the following classification problem: we are given p_1, \ldots, p_N points in \mathbb{R}^d , and each point is colored either blue or red. We want to determine if there is an hyperplane $\alpha = \{ax = b\}$ that strictly separates the blue points from the red ones (i.e. such that $ap_i > b$ for all blue points and $ap_i \leq b$ for all red points) and, in case of a positive answer, find such α . Show how to solve this problem using linear programming.

Problem 6 (\star)

Prove that for a finite set $X \subseteq \mathbb{R}^n$ the conic hull $\operatorname{cone}(X)$ is closed and convex.

Hint: Use Problem 2 and Carathéodory's theorem: Let $X \subseteq \mathbb{R}^n$, then for each $x \in \operatorname{cone}(X)$ there exists a set $\widetilde{X} \subseteq X$ of cardinality at most n such that $x \in \operatorname{cone}(\widetilde{X})$. The vectors in \widetilde{X} are linearly independent.