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Problem 6 can be submitted until March 23 12:00 noon into the box in front of MA C1 563.
You are allowed to submit your solutions in groups of at most three students.

Problem 1

Consider the polyhedron:

P =



x1 + 2x2 + x3 ≤ 5
3x1 + x2 + x3 ≤ 3

x1 ≤ 1
x1 + x2 ≤ 2
x2 + x3 ≤ 3

x1 ≥ 0
x1 + x2 ≥ 0
x2 + x3 ≥ 0

State which of the following points are vertices of P : p0 = (0, 0, 3), p1 = (0, 1, 1), p2 = (1, 4,−4),
p3 = (1/2, 3/2, 0), p4 = (1,−1, 1).

Solution:
For each point p, we need to check whether the submatrix of the inequalities that p satisfies with
equality has full rank (i.e. equal to 3), and whether p is in P . Proceeding this way, we see that only
p0 and p4 are vertices.

Problem 2

Let A ∈ Rn×n be a non-singular matrix and let a1, . . . , an ∈ Rn be the columns of A.

i) Show that cone({a1, . . . , an}) is the polyhedron P = {x ∈ Rn : A−1x ≥ 0}.

ii) Show that cone({a1, . . . , ak}) for k ≤ n is the set

Pk = {x ∈ Rn : a−1i x ≥ 0, i = 1, . . . , k, a−1i x = 0, i = k + 1, . . . , n},

where a−1i denotes the i-th row of A−1.

Solution:

i) We obtain the following (where [n] denotes the set {1, 2, . . . , n}):

cone({a1, . . . , an}) = {x =
∑
i∈[n]

λiai : λi ∈ R≥0 ∀i ∈ [n]} = {x = Aλ : λ ∈ Rn
≥0} =

= {x ∈ Rn : A−1x = λ, λ ≥ 0} = {x ∈ Rn : A−1x ≥ 0}.

ii) Analogously one has:

cone({a1, . . . , ak}) = {x = Aλ : λ ∈ Rn
≥0, λi = 0 for i > k} =

= {x ∈ Rn : A−1x = λ, λ ≥ 0, λi = 0 for i > k} =

= {x ∈ Rn : a−1i x ≥ 0, i = 1, . . . , k, a−1i x = 0, i = k + 1, . . . , n}.



Problem 3

Prove the following variant of Farkas’ lemma: Let A ∈ Rm×n be a matrix and b ∈ Rm be a vector.
The system Ax ≤ b, x ∈ Rn has a solution if and only if for all λ ∈ Rm

≥0 with λTA = 0 one has

λT b ≥ 0. Hint: Use the version of Farkas’ lemma in the lecture notes, Theorem 3.11

Solution:
The system Ax ≤ b, x ∈ Rn is feasible if and only if the system A(x+ − x−) + s = b has a solution
x̄ = [x+ x− s]T ≥ 0, where x+, x− ∈ Rn and s ∈ Rm. We could rewrite the latter system as
Āx̄ = b with x̄ ≥ 0, where Ā = [A −A Im]. By applying the Farkas’ lemma seen in class to this
new system we obtain that the original system Ax ≤ b is feasible if and only if for all λ ∈ Rm such
that λT [A −A Im] ≥ 0 ⇐⇒ (λTA ≥ 0, λT (−A) ≥ 0) ⇐⇒ λTA = 0 and λT Im = λT ≥ 0 one has
λT b ≥ 0.

Problem 4

Consider the vectors

x1 =

 3
1
2

 , x2 =

 1
2
5

 , x3 =

 2
0
1

 , x4 =

 2
4
3

 , x5 =

 1
−2
3

 .

The vector

v = x1 + 3x2 + 2x3 + x4 + 3x5 =

 15
5
31


is a conic combination of the xi.
Write v as a conic combination using only three vectors of the xi.
Hint: Recall the proof of Carathéodory’s theorem

Solution:
We notice that: 4x1 − 5x3 − x4 = 0, hence we can write

v = x1 + 3x2 + 2x3 + x4 + 3x5− ε(4x1− 5x3− x4) = (1− 4ε)x1 + 3x2 + (2 + 5ε)x3 + (1− ε)x4 + 3x5.

We choose ε = 1/4 to obtain:

v = 3x2 +
13

4
x3 +

5

4
x4 + 3x5

We now repeat the procedure, using x2 + x3 − x4 − x5 = 0, and finally we get:

v =
1

4
x2 +

17

4
x4 + 6x5

Problem 5

Consider the following classification problem: we are given p1, . . . , pN points in Rd, and each point
is colored either blue or red. We want to determine if there is an hyperplane α = {ax = b} that
strictly separates the blue points from the red ones (i.e. such that api > b for all blue points and
api ≤ b for all red points) and, in case of a positive answer, find such α. Show how to solve this
problem using linear programming.

Solution:
Consider the following linear program (notice that a ∈ Rd, b ∈ R are variables):

max ε
api ≥ 1 + ε ∀ pi blue
api ≤ 1 ∀ pi red
ε ≥ 0



If a separating hyperplane exists, then (by changing the sign of the coefficients or by slightly
translating it) we can write it as ax = 1 and if ε = min{api : pi is blue}, we have that (a, ε) is a
feasible solution to the linear program with positive objective value. On the other hand, if there is
a feasible solution with positive objective value, then the corresponding hyperplane ax = 1 strictly
separates the blue points from the red.

Problem 6 (?)

Prove that for a finite set X ⊆ Rn the conic hull cone(X) is closed and convex.
Hint: Use Problem 2 and Carathéodory’s theorem: Let X ⊆ Rn, then for each x ∈ cone(X) there
exists a set X̃ ⊆ X of cardinality at most n such that x ∈ cone(X̃). The vectors in X̃ are linearly
independent.

Solution:
Denote with AX the matrix whose columns are vectors in X, and analogously with A

X̃
the one

corresponding to a set X̃. Points u, v ∈ cone(X) can then be written as u = AXλu and v = AXλv
for some vectors λu, λv ≥ 0. Furthermore point p = γu + (1 − γ)v for some γ ∈ [0, 1] can be
written as p = γAXλu + (1 − γ)AXλv = AX(γλu + (1 − γ)λv) so p ∈ cone(X) since the vector
γλu + (1− γ)λv ≥ 0. This proves that cone(X) is a convex set.
In order to see that cone(X) is closed we need to show that for every convergent sequence (yk)k∈N
where yk ∈ cone(X) we have that y = limk→∞ yk belongs to cone(X). By Carathéodory’s theorem
we know that for every yk there is a set X̃k ⊆ X of at most n linearly independent vectors such
that yk ∈ cone(X̃k). Since there are only finitely many such subsets X̃, there is one of them such
that X̃ = X̃k for infinitely many k, hence we can restrict our sequence only to those values of
k, which we denote by k1, k2, . . . . The restricted subsequence (yki)i∈N satisfies yki ∈ cone(X̃) for

every i and has the same limit y. We now claim that y ∈ cone(X̃), which concludes the proof
as cone(X̃) ⊆ cone(X). Notice that this is equivalent to showing that cone(X̃) is closed. Let
k = |X̃| ≤ n, and let A be a non-singular matrix formed by A

X̃
(whose columns are linearly

independent) and n− k other columns. Applying Problem 1.ii to A, it follows that cone(X̃) = Pk,
which is closed as it is intersection of half-spaces (which are closed sets).

Alternative proof that cone(X) is closed: We claim that

cone(X) =
⋃

X̃⊆X
X̃ lin.ind.

cone(X̃).

By the previous exercise we have that if the vectors in X̃ are linearly independent, cone(X̃) is a
polyhedron and thus it is closed (any polyhedron is the intersection of finitely many half spaces,
which are closed sets). Since X is a finite set the number of subsets of X is also finite and thus⋃

X̃⊆X
X̃ lin.ind.

cone(X̃) is a finite union of closed sets, hence it is closed.

We now prove the claim. The ”⊇” direction trivially follows from X̃ ⊆ X and the conic hull
definition. In order to prove ”⊇”, let x ∈ cone(X). Then, by Caratheodory’s theorem there exists
a linearly independent set X̃ ⊆ X such that x ∈ cone(X̃), which concludes the proof.


