École Polytechnique Fédérale de Lausanne Prof. Eisenbrand
Discrete Optimization (Spring 2018)

Assignment 4

Problem 6 can be submitted until March 23 12:00 noon into the box in front of MA C1 563. You are allowed to submit your solutions in groups of at most three students.

Problem 1

Consider the polyhedron:

$$
P=\left\{\begin{aligned}
x_{1}+2 x_{2}+x_{3} & \leq 5 \\
3 x_{1}+x_{2}+x_{3} & \leq 3 \\
x_{1} & \leq 1 \\
x_{1}+x_{2} & \leq 2 \\
x_{2}+x_{3} & \leq 3 \\
x_{1} & \geq 0 \\
x_{1}+x_{2} & \geq 0 \\
x_{2}+x_{3} & \geq 0
\end{aligned}\right.
$$

State which of the following points are vertices of $P: p_{0}=(0,0,3), p_{1}=(0,1,1), p_{2}=(1,4,-4)$, $p_{3}=(1 / 2,3 / 2,0), p_{4}=(1,-1,1)$.

Solution:

For each point p, we need to check whether the submatrix of the inequalities that p satisfies with equality has full rank (i.e. equal to 3), and whether p is in P. Proceeding this way, we see that only p_{0} and p_{4} are vertices.

Problem 2

Let $A \in \mathbb{R}^{n \times n}$ be a non-singular matrix and let $a_{1}, \ldots, a_{n} \in \mathbb{R}^{n}$ be the columns of A.
i) Show that cone $\left(\left\{a_{1}, \ldots, a_{n}\right\}\right)$ is the polyhedron $P=\left\{x \in \mathbb{R}^{n}: A^{-1} x \geq 0\right\}$.
ii) Show that cone $\left(\left\{a_{1}, \ldots, a_{k}\right\}\right)$ for $k \leq n$ is the set

$$
P_{k}=\left\{x \in \mathbb{R}^{n}: a_{i}^{-1} x \geq 0, i=1, \ldots, k, a_{i}^{-1} x=0, i=k+1, \ldots, n\right\},
$$

where a_{i}^{-1} denotes the i-th row of A^{-1}.

Solution:

i) We obtain the following (where $[n]$ denotes the set $\{1,2, \ldots, n\}$):

$$
\begin{aligned}
\operatorname{cone}\left(\left\{a_{1}, \ldots, a_{n}\right\}\right) & =\left\{x=\sum_{i \in[n]} \lambda_{i} a_{i}: \lambda_{i} \in \mathbb{R}_{\geq 0} \forall i \in[n]\right\}=\left\{x=A \lambda: \lambda \in \mathbb{R}_{\geq 0}^{n}\right\}= \\
& =\left\{x \in \mathbb{R}^{n}: A^{-1} x=\lambda, \lambda \geq 0\right\}=\left\{x \in \mathbb{R}^{n}: A^{-1} x \geq 0\right\}
\end{aligned}
$$

ii) Analogously one has:

$$
\begin{aligned}
\operatorname{cone}\left(\left\{a_{1}, \ldots, a_{k}\right\}\right) & =\left\{x=A \lambda: \lambda \in \mathbb{R}_{\geq 0}^{n}, \lambda_{i}=0 \text { for } i>k\right\}= \\
& =\left\{x \in \mathbb{R}^{n}: A^{-1} x=\lambda, \lambda \geq 0, \lambda_{i}=0 \text { for } i>k\right\}= \\
& =\left\{x \in \mathbb{R}^{n}: a_{i}^{-1} x \geq 0, i=1, \ldots, k, a_{i}^{-1} x=0, i=k+1, \ldots, n\right\} .
\end{aligned}
$$

Problem 3

Prove the following variant of Farkas' lemma: Let $A \in \mathbb{R}^{m \times n}$ be a matrix and $b \in \mathbb{R}^{m}$ be a vector. The system $A x \leq b, x \in \mathbb{R}^{n}$ has a solution if and only if for all $\lambda \in \mathbb{R}_{\geq 0}^{m}$ with $\lambda^{T} A=0$ one has $\lambda^{T} b \geq 0$. Hint: Use the version of Farkas' lemma in the lecture notes, Theorem 3.11

Solution:

The system $A x \leq b, x \in \mathbb{R}^{n}$ is feasible if and only if the system $A\left(x^{+}-x^{-}\right)+s=b$ has a solution $\bar{x}=\left[x^{+} x^{-} s\right]^{T} \geq 0$, where $x^{+}, x^{-} \in \mathbb{R}^{n}$ and $s \in \mathbb{R}^{m}$. We could rewrite the latter system as $\bar{A} \bar{x}=b$ with $\bar{x} \geq 0$, where $\bar{A}=\left[A-A I_{m}\right]$. By applying the Farkas' lemma seen in class to this new system we obtain that the original system $A x \leq b$ is feasible if and only if for all $\lambda \in \mathbb{R}^{m}$ such that $\lambda^{T}\left[A-A I_{m}\right] \geq 0 \Longleftrightarrow\left(\lambda^{T} A \geq 0, \lambda^{T}(-A) \geq 0\right) \Longleftrightarrow \lambda^{T} A=0$ and $\lambda^{T} I_{m}=\lambda^{T} \geq 0$ one has $\lambda^{T} b \geq 0$.

Problem 4

Consider the vectors

$$
x_{1}=\left(\begin{array}{l}
3 \\
1 \\
2
\end{array}\right), x_{2}=\left(\begin{array}{l}
1 \\
2 \\
5
\end{array}\right), x_{3}=\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right), x_{4}=\left(\begin{array}{l}
2 \\
4 \\
3
\end{array}\right), x_{5}=\left(\begin{array}{c}
1 \\
-2 \\
3
\end{array}\right) .
$$

The vector

$$
v=x_{1}+3 x_{2}+2 x_{3}+x_{4}+3 x_{5}=\left(\begin{array}{c}
15 \\
5 \\
31
\end{array}\right)
$$

is a conic combination of the x_{i}.
Write v as a conic combination using only three vectors of the x_{i}.
Hint: Recall the proof of Carathéodory's theorem

Solution:

We notice that: $4 x_{1}-5 x_{3}-x_{4}=0$, hence we can write
$v=x_{1}+3 x_{2}+2 x_{3}+x_{4}+3 x_{5}-\epsilon\left(4 x_{1}-5 x_{3}-x_{4}\right)=(1-4 \epsilon) x_{1}+3 x_{2}+(2+5 \epsilon) x_{3}+(1-\epsilon) x_{4}+3 x_{5}$.
We choose $\epsilon=1 / 4$ to obtain:

$$
v=3 x_{2}+\frac{13}{4} x_{3}+\frac{5}{4} x_{4}+3 x_{5}
$$

We now repeat the procedure, using $x_{2}+x_{3}-x_{4}-x_{5}=0$, and finally we get:

$$
v=\frac{1}{4} x_{2}+\frac{17}{4} x_{4}+6 x_{5}
$$

Problem 5

Consider the following classification problem: we are given p_{1}, \ldots, p_{N} points in \mathbb{R}^{d}, and each point is colored either blue or red. We want to determine if there is an hyperplane $\alpha=\{a x=b\}$ that strictly separates the blue points from the red ones (i.e. such that $a p_{i}>b$ for all blue points and $a p_{i} \leq b$ for all red points) and, in case of a positive answer, find such α. Show how to solve this problem using linear programming.

Solution:

Consider the following linear program (notice that $a \in \mathbb{R}^{d}, b \in \mathbb{R}$ are variables):

\max| ϵ | | | |
| ---: | :--- | ---: | ---: |
| $a p_{i}$ | \geq | $1+\epsilon$ | $\forall p_{i}$ blue |
| $a p_{i}$ | \leq | 1 | $\forall p_{i}$ red |
| ϵ | \geq | 0 | |

If a separating hyperplane exists, then (by changing the sign of the coefficients or by slightly translating it) we can write it as $a x=1$ and if $\epsilon=\min \left\{a p_{i}: p_{i}\right.$ is blue $\}$, we have that (a, ϵ) is a feasible solution to the linear program with positive objective value. On the other hand, if there is a feasible solution with positive objective value, then the corresponding hyperplane $a x=1$ strictly separates the blue points from the red.

Problem 6 (\star)

Prove that for a finite set $X \subseteq \mathbb{R}^{n}$ the conic hull cone (X) is closed and convex.
Hint: Use Problem 2 and Carathéodory's theorem: Let $X \subseteq \mathbb{R}^{n}$, then for each $x \in \operatorname{cone}(X)$ there exists a set $\widetilde{X} \subseteq X$ of cardinality at most n such that $x \in \operatorname{cone}(\widetilde{X})$. The vectors in \widetilde{X} are linearly independent.

Solution:

Denote with A_{X} the matrix whose columns are vectors in X, and analogously with $A_{\tilde{X}}$ the one corresponding to a set \widetilde{X}. Points $u, v \in \operatorname{cone}(X)$ can then be written as $u=A_{X} \lambda_{u}$ and $v=A_{X} \lambda_{v}$ for some vectors $\lambda_{u}, \lambda_{v} \geq 0$. Furthermore point $p=\gamma u+(1-\gamma) v$ for some $\gamma \in[0,1]$ can be written as $p=\gamma A_{X} \lambda_{u}+(1-\gamma) A_{X} \lambda_{v}=A_{X}\left(\gamma \lambda_{u}+(1-\gamma) \lambda_{v}\right)$ so $p \in \operatorname{cone}(X)$ since the vector $\gamma \lambda_{u}+(1-\gamma) \lambda_{v} \geq 0$. This proves that cone (X) is a convex set.
In order to see that cone (X) is closed we need to show that for every convergent sequence $\left(y_{k}\right)_{k \in \mathbb{N}}$ where $y_{k} \in \operatorname{cone}(X)$ we have that $y=\lim _{k \rightarrow \infty} y_{k}$ belongs to cone (X). By Carathéodory's theorem we know that for every y_{k} there is a set $\widetilde{X}_{k} \subseteq X$ of at most n linearly independent vectors such that $y_{k} \in \operatorname{cone}\left(\widetilde{X}_{k}\right)$. Since there are only finitely many such subsets \widetilde{X}, there is one of them such that $\tilde{X}=\widetilde{X}_{k}$ for infinitely many k, hence we can restrict our sequence only to those values of k, which we denote by k_{1}, k_{2}, \ldots. The restricted subsequence $\left(y_{k_{i}}\right)_{i \in \mathbb{N}}$ satisfies $y_{k_{i}} \in \operatorname{cone}(\widetilde{X})$ for every i and has the same limit y. We now claim that $y \in \operatorname{cone}(\widetilde{X})$, which concludes the proof as $\operatorname{cone}(\widetilde{X}) \subseteq \operatorname{cone}(X)$. Notice that this is equivalent to showing that cone (\widetilde{X}) is closed. Let $k=|\widetilde{X}| \leq n$, and let A be a non-singular matrix formed by $A_{\tilde{X}}$ (whose columns are linearly independent) and $n-k$ other columns. Applying Problem 1.ii to A, it follows that cone $(\widetilde{X})=P_{k}$, which is closed as it is intersection of half-spaces (which are closed sets).

Alternative proof that cone (X) is closed: We claim that

$$
\operatorname{cone}(X)=\bigcup_{\widetilde{X} \subseteq X} \operatorname{cone}(\widetilde{X}) .
$$

\tilde{X} lin.ind.
By the previous exercise we have that if the vectors in \widetilde{X} are linearly independent, cone (\widetilde{X}) is a polyhedron and thus it is closed (any polyhedron is the intersection of finitely many half spaces, which are closed sets). Since X is a finite set the number of subsets of X is also finite and thus $\cup \tilde{X} \subseteq X \quad \operatorname{cone}(\widetilde{X})$ is a finite union of closed sets, hence it is closed.
\tilde{X} lin.ind.
We now prove the claim. The " \supseteq " direction trivially follows from $\widetilde{X} \subseteq X$ and the conic hull definition. In order to prove " \supseteq ", let $x \in \operatorname{cone}(X)$. Then, by Caratheodory's theorem there exists a linearly independent set $\widetilde{X} \subseteq X$ such that $x \in \operatorname{cone}(\widetilde{X})$, which concludes the proof.

