Discrete Optimization (Spring 2018)

Assignment 4

Problem 6 can be **submitted** until March 23 12:00 noon into the box in front of MA C1 563. You are allowed to submit your solutions in groups of at most three students.

Problem 1

Consider the polyhedron:

$P = \langle$	' $x_1 + 2x_2 + x_3$	\leq	5
	$3x_1 + x_2 + x_3$	\leq	3
	x_1	\leq	1
	$x_1 + x_2$	\leq	2
	$x_2 + x_3$	\leq	3
	x_1	\geq	0
	$x_1 + x_2$	\geq	0
	$x_2 + x_3$	\geq	0

State which of the following points are vertices of P: $p_0 = (0, 0, 3), p_1 = (0, 1, 1), p_2 = (1, 4, -4), p_3 = (1/2, 3/2, 0), p_4 = (1, -1, 1).$

Solution:

For each point p, we need to check whether the submatrix of the inequalities that p satisfies with equality has full rank (i.e. equal to 3), and whether p is in P. Proceeding this way, we see that only p_0 and p_4 are vertices.

Problem 2

Let $A \in \mathbb{R}^{n \times n}$ be a non-singular matrix and let $a_1, \ldots, a_n \in \mathbb{R}^n$ be the columns of A.

- i) Show that cone($\{a_1, \ldots, a_n\}$) is the polyhedron $P = \{x \in \mathbb{R}^n : A^{-1}x \ge 0\}$.
- ii) Show that $\operatorname{cone}(\{a_1,\ldots,a_k\})$ for $k \leq n$ is the set

$$P_k = \{ x \in \mathbb{R}^n : a_i^{-1} x \ge 0, i = 1, \dots, k, a_i^{-1} x = 0, i = k + 1, \dots, n \},\$$

where a_i^{-1} denotes the *i*-th row of A^{-1} .

Solution:

i) We obtain the following (where [n] denotes the set $\{1, 2, ..., n\}$):

$$\operatorname{cone}(\{a_1, \dots, a_n\}) = \{x = \sum_{i \in [n]} \lambda_i a_i : \lambda_i \in \mathbb{R}_{\ge 0} \ \forall i \in [n]\} = \{x = A\lambda : \lambda \in \mathbb{R}_{\ge 0}^n\} = \{x \in \mathbb{R}^n : A^{-1}x = \lambda, \ \lambda \ge 0\} = \{x \in \mathbb{R}^n : A^{-1}x \ge 0\}.$$

ii) Analogously one has:

$$\operatorname{cone}(\{a_1, \dots, a_k\}) = \{x = A\lambda : \lambda \in \mathbb{R}^n_{\geq 0}, \lambda_i = 0 \text{ for } i > k\} = \\ = \{x \in \mathbb{R}^n : A^{-1}x = \lambda, \lambda \geq 0, \lambda_i = 0 \text{ for } i > k\} = \\ = \{x \in \mathbb{R}^n : a_i^{-1}x \geq 0, i = 1, \dots, k, a_i^{-1}x = 0, i = k+1, \dots, n\}.$$

Problem 3

Prove the following variant of Farkas' lemma: Let $A \in \mathbb{R}^{m \times n}$ be a matrix and $b \in \mathbb{R}^m$ be a vector. The system $Ax \leq b, x \in \mathbb{R}^n$ has a solution if and only if for all $\lambda \in \mathbb{R}^m_{\geq 0}$ with $\lambda^T A = 0$ one has $\lambda^T b \geq 0$. Hint: Use the version of Farkas' lemma in the lecture notes, Theorem 3.11

Solution:

The system $Ax \leq b, x \in \mathbb{R}^n$ is feasible if and only if the system $A(x^+ - x^-) + s = b$ has a solution $\bar{x} = [x^+ \ x^- \ s]^T \geq 0$, where $x^+, x^- \in \mathbb{R}^n$ and $s \in \mathbb{R}^m$. We could rewrite the latter system as $\bar{A}\bar{x} = b$ with $\bar{x} \geq 0$, where $\bar{A} = [A - A \ I_m]$. By applying the Farkas' lemma seen in class to this new system we obtain that the original system $Ax \leq b$ is feasible if and only if for all $\lambda \in \mathbb{R}^m$ such that $\lambda^T[A - A \ I_m] \geq 0 \iff (\lambda^T A \geq 0, \lambda^T(-A) \geq 0) \iff \lambda^T A = 0$ and $\lambda^T I_m = \lambda^T \geq 0$ one has $\lambda^T b \geq 0$.

Problem 4

Consider the vectors

$$x_1 = \begin{pmatrix} 3\\1\\2 \end{pmatrix}, x_2 = \begin{pmatrix} 1\\2\\5 \end{pmatrix}, x_3 = \begin{pmatrix} 2\\0\\1 \end{pmatrix}, x_4 = \begin{pmatrix} 2\\4\\3 \end{pmatrix}, x_5 = \begin{pmatrix} 1\\-2\\3 \end{pmatrix}.$$

The vector

$$v = x_1 + 3x_2 + 2x_3 + x_4 + 3x_5 = \begin{pmatrix} 15\\5\\31 \end{pmatrix}$$

is a conic combination of the x_i .

Write v as a conic combination using only three vectors of the x_i . Hint: Recall the proof of Carathéodory's theorem

Solution:

We notice that: $4x_1 - 5x_3 - x_4 = 0$, hence we can write

 $v = x_1 + 3x_2 + 2x_3 + x_4 + 3x_5 - \epsilon(4x_1 - 5x_3 - x_4) = (1 - 4\epsilon)x_1 + 3x_2 + (2 + 5\epsilon)x_3 + (1 - \epsilon)x_4 + 3x_5.$

We choose $\epsilon = 1/4$ to obtain:

$$v = 3x_2 + \frac{13}{4}x_3 + \frac{5}{4}x_4 + 3x_5$$

We now repeat the procedure, using $x_2 + x_3 - x_4 - x_5 = 0$, and finally we get:

$$v = \frac{1}{4}x_2 + \frac{17}{4}x_4 + 6x_5$$

Problem 5

Consider the following classification problem: we are given p_1, \ldots, p_N points in \mathbb{R}^d , and each point is colored either blue or red. We want to determine if there is an hyperplane $\alpha = \{ax = b\}$ that strictly separates the blue points from the red ones (i.e. such that $ap_i > b$ for all blue points and $ap_i \leq b$ for all red points) and, in case of a positive answer, find such α . Show how to solve this problem using linear programming.

Solution:

Consider the following linear program (notice that $a \in \mathbb{R}^d$, $b \in \mathbb{R}$ are variables):

If a separating hyperplane exists, then (by changing the sign of the coefficients or by slightly translating it) we can write it as ax = 1 and if $\epsilon = \min\{ap_i : p_i \text{ is blue}\}$, we have that (a, ϵ) is a feasible solution to the linear program with positive objective value. On the other hand, if there is a feasible solution with positive objective value, then the corresponding hyperplane ax = 1 strictly separates the blue points from the red.

Problem 6 (\star)

Prove that for a finite set $X \subseteq \mathbb{R}^n$ the conic hull $\operatorname{cone}(X)$ is closed and convex.

Hint: Use Problem 2 and Carathéodory's theorem: Let $X \subseteq \mathbb{R}^n$, then for each $x \in \text{cone}(X)$ there exists a set $\widetilde{X} \subseteq X$ of cardinality at most n such that $x \in \text{cone}(\widetilde{X})$. The vectors in \widetilde{X} are linearly independent.

Solution:

Denote with A_X the matrix whose columns are vectors in X, and analogously with $A_{\widetilde{X}}$ the one corresponding to a set \widetilde{X} . Points $u, v \in \operatorname{cone}(X)$ can then be written as $u = A_X \lambda_u$ and $v = A_X \lambda_v$ for some vectors $\lambda_u, \lambda_v \geq 0$. Furthermore point $p = \gamma u + (1 - \gamma)v$ for some $\gamma \in [0, 1]$ can be written as $p = \gamma A_X \lambda_u + (1 - \gamma)A_X \lambda_v = A_X(\gamma \lambda_u + (1 - \gamma)\lambda_v)$ so $p \in \operatorname{cone}(X)$ since the vector $\gamma \lambda_u + (1 - \gamma)\lambda_v \geq 0$. This proves that $\operatorname{cone}(X)$ is a convex set.

In order to see that $\operatorname{cone}(X)$ is closed we need to show that for every convergent sequence $(y_k)_{k \in \mathbb{N}}$ where $y_k \in \operatorname{cone}(X)$ we have that $y = \lim_{k \to \infty} y_k$ belongs to $\operatorname{cone}(X)$. By Carathéodory's theorem we know that for every y_k there is a set $\widetilde{X}_k \subseteq X$ of at most n linearly independent vectors such that $y_k \in \operatorname{cone}(\widetilde{X}_k)$. Since there are only finitely many such subsets \widetilde{X} , there is one of them such that $\widetilde{X} = \widetilde{X}_k$ for infinitely many k, hence we can restrict our sequence only to those values of k, which we denote by k_1, k_2, \ldots . The restricted subsequence $(y_{k_i})_{i \in \mathbb{N}}$ satisfies $y_{k_i} \in \operatorname{cone}(\widetilde{X})$ for every i and has the same limit y. We now claim that $y \in \operatorname{cone}(\widetilde{X})$, which concludes the proof as $\operatorname{cone}(\widetilde{X}) \subseteq \operatorname{cone}(X)$. Notice that this is equivalent to showing that $\operatorname{cone}(\widetilde{X})$ is closed. Let $k = |\widetilde{X}| \leq n$, and let A be a non-singular matrix formed by $A_{\widetilde{X}}$ (whose columns are linearly independent) and n - k other columns. Applying Problem 1.ii to A, it follows that $\operatorname{cone}(\widetilde{X}) = P_k$, which is closed as it is intersection of half-spaces (which are closed sets).

Alternative proof that cone(X) is closed: We claim that

$$\operatorname{cone}(X) = \bigcup_{\substack{\widetilde{X} \subseteq X \\ \widetilde{X} \text{ lin.ind.}}} \operatorname{cone}(\widetilde{X}).$$

By the previous exercise we have that if the vectors in \widetilde{X} are linearly independent, $\operatorname{cone}(\widetilde{X})$ is a polyhedron and thus it is closed (any polyhedron is the intersection of finitely many half spaces, which are closed sets). Since X is a finite set the number of subsets of X is also finite and thus $\bigcup_{\widetilde{X}\subseteq X} \operatorname{cone}(\widetilde{X})$ is a finite union of closed sets, hence it is closed. \widetilde{X} lin.ind.

We now prove the claim. The " \supseteq " direction trivially follows from $\widetilde{X} \subseteq X$ and the conic hull definition. In order to prove " \supseteq ", let $x \in \operatorname{cone}(X)$. Then, by Caratheodory's theorem there exists a linearly independent set $\widetilde{X} \subseteq X$ such that $x \in \operatorname{cone}(\widetilde{X})$, which concludes the proof.