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Discrete Optimization (Spring 2018)

March 16, 2018

Assignment 4

Problem 6 can be submitted until March 23 12:00 noon into the box in front of MA C1 563.
You are allowed to submit your solutions in groups of at most three students.

Problem 1

Consider the polyhedron:
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Solution:

For each point p, we need to check whether the submatrix of the inequalities that p satisfies with
equality has full rank (i.e. equal to 3), and whether p is in P. Proceeding this way, we see that only
po and py are vertices.

Problem 2

Let A € R™" be a non-singular matrix and let aq,...,a, € R™ be the columns of A.
i) Show that cone({as,...,a,}) is the polyhedron P = {x € R": A~'z > 0}.
ii) Show that cone({ay,...,ar}) for k <n is the set
P, ={x eR": ai_la:zo,i:l,...,k, ai_lcc:(),i:k—i-l,...,n},

where a;l denotes the i-th row of A~L.

Solution:

i) We obtain the following (where [n] denotes the set {1,2,...,n}):

cone({ay,...,an}) ={z = Z Aiai: N €ERxo Vi€ [n]} ={z=AN: NeRLy} =
i€[n]

={zeR": Az =X A>0}={zcR": A2 >0}.
ii) Analogously one has:
cone({ai,...,ax}) ={v=AN: XeRY;,, \j=0fori>k} =

={2ze€R": Alz =X\ A>0, \;=0fori>k}=
={reR" a'v>0,i=1,....,ka;'a=0,i=k+1,...,n}.



Problem 3

Prove the following variant of Farkas’ lemma: Let A € R™*" be a matrix and b € R™ be a vector.
The system Az < b, x € R" has a solution if and only if for all A € RY, with ATA = 0 one has

M'b > 0. Hint: Use the version of Farkas’ lemma in the lecture notes, Theorem 3.11

Solution:
The system Az < b,x € R" is feasible if and only if the system A(z™ — 27) + s = b has a solution
T = [zt 2= s]T > 0, where 27,2~ € R” and s € R™. We could rewrite the latter system as

Az = b with £ > 0, where A = [A —A I,,]. By applying the Farkas’ lemma seen in class to this
new system we obtain that the original system Ax < b is feasible if and only if for all A € R™ such
that \T[A —AI,] >0 <= (ATA>0,AT(-4) >0) < MA=0and \TI,, = AT > 0 one has
AT > 0.

Problem 4
Consider the vectors
3 1 2 2 1
z1=\|1 J,z2=| 2 J,z3=| 0 |, zy=| 4 | ,25=| —2
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The vector
15
v=2=x1 4+ 3x9 + 223 + x4 + 35 = 5
31

is a conic combination of the x;.
Write v as a conic combination using only three vectors of the x;.
Hint: Recall the proof of Carathéodory’s theorem

Solution:
We notice that: 4x; — bxs — x4 = 0, hence we can write

v =1x1+ 32+ 2x3 + x4+ 325 — €(dw1 — bry —x4) = (1 —4€)xy + 3w2+ (24 5e)xg + (1 — €)xy + 3x5.
We choose € = 1/4 to obtain:
13 5
v =312+ —x3+ —x4 + 375

4 4
We now repeat the procedure, using xs + x3 — x4 — x5 = 0, and finally we get:
1 n 17 46
v=- —
1 %2t %+ 6xs
Problem 5
Consider the following classification problem: we are given p,...,px points in R%, and each point

is colored either blue or red. We want to determine if there is an hyperplane o = {ax = b} that
strictly separates the blue points from the red ones (i.e. such that ap; > b for all blue points and
ap; < b for all red points) and, in case of a positive answer, find such a. Show how to solve this
problem using linear programming.

Solution:
Consider the following linear program (notice that a € R%, b € R are variables):

max €
ap; > 1l4€ Vp; blue
ap; < 1 Vp; red

€ > 0



If a separating hyperplane exists, then (by changing the sign of the coefficients or by slightly
translating it) we can write it as az = 1 and if € = min{ap; : p; is blue}, we have that (a,€) is a
feasible solution to the linear program with positive objective value. On the other hand, if there is
a feasible solution with positive objective value, then the corresponding hyperplane ax = 1 strictly
separates the blue points from the red.

Problem 6 (x)

Prove that for a finite set X C R"™ the conic hull cone(X) is closed and convex.

Hint: Use Problem 2 and Carathéodory’s theorem: Let X C R™, then for each x € cone(X) there
exists a set X C X of cardinality at most n such that x € cone()?). The vectors in X are linearly
independent.

Solution:
Denote with Ax the matrix whose columns are vectors in X, and analogously with Ag the one

corresponding to a set X. Points u,v € cone(X) can then be written as u = Ax A\, and v = Ax\,
for some vectors Ay, A, > 0. Furthermore point p = yu + (1 — y)v for some v € [0,1] can be
written as p = yAxA Ay, + (1 — v)Ax Ay, = Ax(YAu + (1 —7)Ay) so p € cone(X) since the vector
YAy + (1 —y)A, > 0. This proves that cone(X) is a convex set.

In order to see that cone(X) is closed we need to show that for every convergent sequence (yx)xeN
where yi, € cone(X) we have that y = limy_, yx belongs to cone(X). By Carathéodory’s theorem
we know that for every yj there is a set )N(k C X of at most n linearly independent vectors such
that yy, € co~ne(X k). Since there are only finitely many such subsets X, there is one of them such
that X = X} for infinitely many &, hence we can restrict our sequence only to those values of
k, which we denote by ki, ka,.... The restricted subsequence (y,)ien satisfies yg, € cone(X) for
every i and has the same limit y. We now claim that y € cone()} ), which concludes the proof
as cone(X) C cone(X). Notice that this is equivalent to showing that cone(X) is closed. Let

k = |X| < n, and let A be a non-singular matrix formed by Ag (whose columns are linearly

independent) and n — k other columns. Applying Problem 1.ii to A, it follows that cone(X) = Py,
which is closed as it is intersection of half-spaces (which are closed sets).

Alternative proof that cone(X) is closed: We claim that

cone(X) = U cone(X).
XCX
X lin.ind.
By the previous exercise we have that if the vectors in X are linearly independent, cone()z ) is a
polyhedron and thus it is closed (any polyhedron is the intersection of finitely many half spaces,
which are closed sets). Since X is a finite set the number of subsets of X is also finite and thus

U gcyx cone(X) is a finite union of closed sets, hence it is closed.

X lin.ind. B
We now prove the claim. The ”D” direction trivially follows from X C X and the conic hull
definition. In order to prove "2", let x € cone(X). Then, by Caratheodory’s theorem there exists

a linearly independent set X C X such that z € cone(X), which concludes the proof.



