École Polytechnique Fédérale de Lausanne
Prof. Eisenbrand
Discrete Optimization (Spring 2017)

Assignment 8

Problem 4 can be submitted until May 5 12:00 noon into the right box in front of MA C1 563.

You are allowed to submit your solutions in groups of at most three students.

Problem 1

Consider the following polytope:

$$
\begin{align*}
P=\{(x, y, z): & x \geq 0 \tag{1}\\
& y \geq 0 \tag{2}\\
& z \geq 0 \tag{3}\\
& x \leq 1 \tag{4}\\
& y \leq 1 \tag{5}\\
& z \leq 1\} \tag{6}
\end{align*}
$$

and its vertex $v=(0,0,0)$. Construct the connected layer family of P with starting point v and compute the diameter of P.

Problem 2

Let \mathcal{L} be a connected layer family and $s \in[n]$ a symbol. Consider the following operation on \mathcal{L}, which we call induction on s :

1. remove all vertices from the connected layer family that do not contain s.
2. Remove s from all the remaining vertices.
3. Remove empty layers (and relabel nonempty layers starting from 0).

Prove that the result of the induction operation is again a connected layer family.

Problem 3

The Hirsch Conjecture stated that a polyhedron in d dimensions with n facets $(d<n)$ has diameter at most $n-d$. This conjecture was disproved in 2010 by Francisco Santos.
In this exercise, we will construct Hirsch-sharp polyhedra. A polyhedron in d dimensions with n facets $(d<n)$ is called Hirsch-sharp if it has diameter exactly $n-d$.
(a) Show that for every d and n there is a Hirsch-sharp unbounded polyhedron in d dimensions with n facets.
(b) Show that for every $d<n \leq 2 d$ there is a Hirsch-sharp polytope.

Problem 4 (\star)

Consider the following problem. We are given $B \in \mathbb{N}$, and a set of integer points $S=\left\{p \in \mathbb{Z}^{n}\right.$: $\left.0 \leq p_{i} \leq B \forall i=1, \ldots, n\right\}$, whose points are all colored blue but one, which is red. We have an oracle that, given vectors $l, r \in \mathbb{R}^{n}$, tells us whether the red point in S is contained in the box
$S \cap\left\{x \in \mathbb{R}^{n}: l_{i} \leq x_{i} \leq r_{i} \forall i=1, \ldots, n\right\}$ or not. Give an algorithm to find the red point using $O(n \log (B))$ many oracle calls.

Problem 5

Let $P:=\left\{x \in \mathbb{R}^{n}: A x=b, x \geq 0\right\}$ be a polyhedron and $\min \{c x: x \in P\}$ be the corresponding primal linear program. Assume that all the coefficients of A, b and c are integral and bounded in absolute value by given $B \in N$, and furthermore let $L:=B^{n} n^{n / 2}$.
(a) Show the following: If x_{1}, x_{2} are vertices of P and $c x_{1} \neq c x_{2}$, then $\left|c x_{1}-c x_{2}\right| \geq 1 / L^{2}$.
(b) Let x^{*} and y^{*} be feasible solutions of the primal and dual linear program respectively. Conclude the following from the above: If $\left|c x^{*}-b y^{*}\right|<1 / L^{2}$, then each vertex x of P with $c x \leq c x^{*}$ is an optimal solution of the primal.

