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Problem 1

Prove that G has a perfect matching if and only if for any W ⊆ V , the graph G \W obtained by
removing W has at most |W | odd components. To prove the “if” direction, use the fact that the
system of inequalities describing the matching polytope is Totally Dual Integral.

Solution:
(→) Assume G has a perfect matching M and consider the graph G \W for some W ⊆ V . For any
odd component in G \W , there is at least one vertex in the component that is matched to a vertex
in W , hence there cannot be more than W odd components.
(←) We first remark that the hypothesis applied with W = ∅ implies that |V | is even. Recall that
the LP describing the maximum weight matching problem is:

max
∑
e∈E

wexe

x(δ(v)) ≤ 1 ∀ v ∈ V

x(E(U)) ≤
⌊
|U |
2

⌋
∀ U ⊆ V, |U | odd

x ≥ 0

and the corresponding dual is:

min
∑
v∈V

yv +
∑
U

⌊
|U |
2

⌋
yU

yv + yw +
∑

U :e∈E(U)

yU ≥ we ∀ e = vw ∈ E

y ≥ 0

where we have a variable yv for each v ∈ V and a variable yU for each U ⊆ V, |U | odd . In class we
have seen that for any w ∈ ZE , the latter LP has an optimal solution with integer coordinates. We
set we = 1 for each e ∈ E. Now the primal corresponds to the problem of finding the matching of
maximum cardinality in G, and the optimal value (both of the primal and the dual) is |V |2 if and only
if G contains a perfect matching. Let y be the optimal integral solution for the dual corresponding
to w, we will make some observations on y and then show that its value is at least |V |2 . This means

that the value must be exactly |V |2 , which concludes the proof.

• We first notice that y has only 0/1 coordinates. Indeed, y ≥ 0, and if yv ≥ 2 then we could
find a feasible solution of strictly smaller value by setting yv = 1 (any constraint in which yv
appears will be still satisfied). The same clearly holds for any yU .



• We can then define W = {v : yv = 1} and U = {U ⊂ V : |U | odd, yU = 1}. For any
U1, U2 ∈ U , we cannot have that U1 ⊂ U2: indeed, setting yU1 = 0 would again yield a feasible
solution of strictly smaller value.

• More generally, we now show that can assume that for any U1, U2 ∈ U , U1 ∩ U2 = ∅. First
assume that |U1 ∩U2| is odd. Modify y by setting yU1 = yU2 = 0 and yU1∪U2 = 1 (|U1 ∪U2| is
odd). The solution is still feasible, and the objective value did not increase, since:⌊

|U1|
2

⌋
+

⌊
|U2|

2

⌋
=
|U1|+ |U2| − 2

2
≥ |U1|+ |U2| − |U1 ∩ U2| − 1

2
=

⌊
|U1 ∪ U2|

2

⌋
.

Now, if |U1 ∩ U2| ≥ 2 and is even, we can repeat a similar argument: in the case that
U1 ∪ U2 6= V , set yU1∪U2∪{v} = 1, where v is any vertex in V \ U1 ∪ U2; otherwise, choose any
v ∈ V and set yV \{v} = 1 and yv = 1.

• For any U ∈ U , we can assume that U ∩W = ∅. Indeed, if this is not the case, there are two
cases: if |U ∩W | is even, then U \W has odd cardinality and we can set yU = 0, yU\W = 1,
and get a feasible solution of strictly smaller value; if |U ∩W | is odd, then choose a vertex
v ∈ U \W , set yv = 1 and yU\(W∪{v}) = 1.

• Now, since no edge can lie between two sets of U , we have that the sets in U are components (or
unions of components) of G\W : indeed, if U1, U2 ∈ U contain vertices of the same component,
either they intersect, which we have excluded, or they leave at least one edge “uncovered”,
but then this edge must be covered by a third set in U and we repeat the argument. We now
show that each U ∈ U contains exactly one component of G \W with odd cardinality. First
notice that the number of odd components in U must be odd. If there are C1, C2, C3 ⊂ U
with odd cardinality, we can see that similarly as before setting yC1 = yC2 = yU\{C1∪C2} = 1
and yU = 0 gives us a solution of strictly smaller value than before, which is a contradiction:⌊
|C1|

2

⌋
+

⌊
|C2|

2

⌋
+

⌊
|U \ {C1 ∪ C2}|

2

⌋
=
|C1| − 1 + |C2| − 1 + |U \ {C1 ∪ C2}| − 1

2
<

⌊
|U |
2

⌋
.

Finally, without loss of generality, we have U = {U1, . . . , Uk} with each Ui containing exactly one
odd component for i < k, hence by hypothesis k ≤ |W |. But then we have:

∑
v∈V

yv +
∑
U∈U

⌊
|U |
2

⌋
yU = |W |+

k∑
i=1

⌊
|Ui|
2

⌋
=

= |W |+
k∑

i=1

|Ui| − 1

2
= |W |+ |V | − |W | − k

2
≥ |V |

2
,

which concludes the proof.

Problem 2

We saw that the description of the matching polytope of a graph G(V,E) contains an inequality for
each U ⊆ V such that |U | is odd. If |V | = n, how many such inequalities are there? Is there any of
those inequalities that is clearly redundant? (An inequality is redundant if it can be removed from
the description without changing the polytope).

Solution:
We just need to count the number of odd subsets of V , which is equal to: n +

(
n
3

)
+
(
n
5

)
+ · · · =

2n−1−
(
n
2

)
−
(
n
4

)
−. . . . We now use the Netwon Bynomial Theorem to get:

∑n
i=0

(
n
i

)
= (1+1)n = 2n,

and
∑n

i=0(−1)i
(
n
i

)
= (1−1)n = 0, which imply that n+

(
n
3

)
+
(
n
5

)
+ · · · = 1 +

(
n
2

)
+
(
n
4

)
+ · · · = 2n−1.



The n inequalities stemming from U = {v} for some v ∈ V are clearly redundant since they are of
the form 0 ≤ 0.

Problem 3

Prove the following lemma used in class: let G(V,E) be a connected graph and w : E → N≥1, at
least one of the following must hold:

a) There is a vertex v ∈ V such that δ(v) ∩M 6= ∅ for any M ∈M(w).

b) z(w′) = z(w)−
⌊
|V |
2

⌋
, and |V | is odd.

Where: w′ = w − ~1 is the vector w with each entry decreased by 1; M(w) is the set of maximum
weight matchings with respect to w (similarly for w′); z(w) = w(M) for any M ∈M(w) (similarly
for w′).

Solution:
In the lecture, we proved the following lemma:
Lemma 1 Let G(V,E) be a connected graph and w : E → R>0, at least one of the following must
hold:

1. There is a vertex v ∈ V such that δ(v) ∩M 6= ∅ for any M ∈M(w)

2. For any M ∈M(w), |M | =
⌊
|V |
2

⌋
and |V | is odd.

We will mimic the proof of this lemma, and also use the result itself. Suppose that both a), b) do
not hold. We first remark that we might have edges e such that w(e) = 1, hence w′(e) = 0; to
avoid confusion we restrict M(w′) to matchings of maximum cardinality, i.e. we allow matchings
to include edges of weight 0. Now, since a) and the case 1) are the same, by Lemma 1 we have that

2) must hold, in particular |V | is odd. Hence for any M ∈M(w′), w′(M) > z(w)−
⌊
|V |
2

⌋
, but this

implies that |M | <
⌊
|V |
2

⌋
hence M has at least two exposed nodes. We choose M , and two exposed

nodes u, v such that they achieve the minimal distance. u, v cannot be adjacent, otherwise adding
the edge uv to M would increase its weight. Hence the shortest path between u and v has at least
a third vertex, which we denote by t. By minimality of the distance between u and v, t must be
matched by M . However since a) doesn’t hold there exist M ′ ∈M(w) such that t is exposed in M ′.

Moreover, since 2) holds, |M ′| =
⌊
|V |
2

⌋
, hence t is the only exposed node for M ′. Now, in M∆M ′,

t is the starting point of an alternating path P that must end in an exposed node: this node must
be exposed for M , hence P is an even path (it starts with an edge of M and ends with an edge of
M ′). Now we consider M̄ = M \ (P ∩M)∪ (P \M), the matching obtained from M by flipping the
edges of P , and similarly M̄ ′ = M ′ \ (P ∩M ′)∪ (P \M ′) = M ′ \ (P \M)∪ (P ∩M). We claim that
M̄ ∈ M(w′): if this is true, we are done because in M̄ t is exposed, as well as at least one of u, v,
contradicting the minimality of the distance between u, v (similarly as in the proof of Lemma 1).
We have w′(M̄) = w′(M) − w′(M ∩ P ) + w′(P \M), hence we need to show that w′(M ∩ P ) =
w′(P \M). We have that w′(M ∩ P ) ≥ w′(P \M), since M ∈ M(w′). Assume strict inequality
holds. But then

w(M̄ ′) = w(M ′)− w′(P \M) +
|P |
2

+ w′(P ∩M)− |P |
2

> w(M ′)

a contradiction to the fact that M ′ ∈M(w). Hence the claim is proved.


