Fall 2011

Combinatorial Optimization

Adrian Bock

Sheet 1

September 22, 2011

General remark:

In order to obtain a bonus for the final grading, you may hand in written solutions to the exercise marked with a star at the beginning of the exercise session on October 4.

Exercise 1

Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ and $c \in \mathbb{R}^n$. Show that the dual of the linear program

$$\max\{c^T x \colon x \in \mathbb{R}^n, \, Ax \le b, \, x \ge 0\}$$

can be interpreted as the linear program

$$\min\{b^Ty\colon y\in\mathbb{R}^m,\,A^Ty\geq c,\,y\geq 0\}.$$

In addition, mark (and argue!) the entries of the following table corresponding to possible outcomes in this primal/dual pair of linear programs:

		Dual		
		Finite optimum	Unbounded	Infeasible
Primal	Finite optimum			
	Unbounded			
	Infeasible			

Exercise 2

Determine a maximum weight matching of the graph below. Provide of proof of optimality by determining a feasible dual solution to the linear program

$$\begin{array}{rcl} \max & \displaystyle \sum_{e \in E} w(e) x(e) \\ v \in V : & \displaystyle \sum_{e \in \delta(v)} x(e) & \leq & 1 \\ & \displaystyle \bigcup_{|U| \ \mathrm{odd}} : & \displaystyle \sum_{e \in E(U)} x(e) & \leq & \lfloor |U|/2 \rfloor \\ e \in E : & \displaystyle x(e) & \geq & 0 \end{array}$$

whose objective value coincides with the weight of your matching.

Exercise 3 (\star)

In the following, we consider undirected graphs without edge weights.

Suppose that we have an efficient algorithm to decide whether a graph contains a perfect matching (i.e. each node is incident with exactly one edge). Use that algorithm to determine efficiently the size of a maximum matching in a given graph G = (V, E).

Exercise 4

Show the following: A face F of $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ is inclusion-wise minimal if and only if it is of the form $F = \{x \in \mathbb{R}^n \mid A'x = b'\}$ for some subsystem $A'x \leq b'$ of $Ax \leq b$.