# **Combinatorial Optimization**

Adrian Bock

Fall 2011

# Sheet 6

December 1, 2011

General remark:

In order to obtain a bonus for the final grading, you may hand in written solutions to the exercises marked with a star at the beginning of the exercise session on December 13.

# Exercise 1

Trace the steps of algorithm from the lecture to compute a minimum weight arborescence rooted at r in the following example.



Prove the optimality of your solution!

## Exercise 2

Let  $G = (A \cup B, E)$  be a bipartite graph. We define two partition matroids  $M_1 = (E, \mathcal{I}_1)$  and  $M_2 = (E, \mathcal{I}_2)$  with  $\mathcal{I}_1 = \{I \subseteq E : |I \cap \delta(a)| \leq 1 \text{ for all } a \in A\}$  and  $\mathcal{I}_2 = \{I \subseteq E : |I \cap \delta(b)| \leq 1 \text{ for all } b \in B\}$ . What is a set  $I \in \mathcal{I}_1 \cap \mathcal{I}_2$  in terms of graph theory? Can you maximize a weight function  $w : E \to \mathbb{R}$  over the intersection?

*Remark:* This is a special case of the optimization over the intersection of two matroids. It can be shown that all such matroid intersection problems can be solved efficiently.

#### Exercise 3 $(\star)$

Recall that a digraph D = (V, A) is called a branching in D if the underlying undirected graph is a forest and each vertex  $v \in V$  has at most one incoming arc.

- (i) Let D = (V, A) be a digraph and let  $\mathcal{B}$  be a set of all branchings in D (i.e., subsets  $B \subseteq A$  such that (V, B) is a branching). Show that  $(A, \mathcal{B})$  is an intersection of two matroids.
- (ii) Let  $r \in V$ . Show how to model the arborescences rooted at r using the intersection of two matroids.

## Exercise 4

Describe a linear time algorithm which for any instance of the Satisfiability problem finds a truth assignment that satisfies at least half of the clauses.

### Exercise 5 $(\star)$

Show that deciding if a polyhedron contains an integer point is NP-complete. To do so, consider the following problem:

INTEGER LINEAR INEQUALITIES Given: a matrix  $A \in \mathbb{Z}^{m \times n}$  and a vector  $b \in \mathbb{Z}^m$ Task: Is there a vector  $x \in \mathbb{Z}^n$  such that  $Ax \leq b$ ?

Show that

- (i) Integer Linear Inequalities is in NP.
- (ii) Integer Linear Inequalities is NP-complete.

## Exercise 6

Consider the following problem:

DOMINATING SET Given: an undirected graph G = (V, E) and a number  $k \in \mathbb{N}$ Task: Is there a set  $X \subseteq V$  with  $|X| \leq k$  and for every  $v \in V \setminus X$ , we have  $\{x, v\} \in E$ ?

Show that

- (i) Dominating Set is in NP.
- (ii) Dominating Set is NP-complete.

*Hint:* Vertex Cover