Combinatorial Optimization

Adrian Bock
Sheet 6
December 1, 2011
General remark:
In order to obtain a bonus for the final grading, you may hand in written solutions to the exercises marked with a star at the beginning of the exercise session on December 13.

Exercise 1

Trace the steps of algorithm from the lecture to compute a minimum weight arborescence rooted at r in the following example.

Prove the optimality of your solution!

Exercise 2

Let $G=(A \cup B, E)$ be a bipartite graph. We define two partition matroids $M_{1}=\left(E, \mathcal{I}_{1}\right)$ and $M_{2}=\left(E, \mathcal{I}_{2}\right)$ with $\mathcal{I}_{1}=\{I \subseteq E:|I \cap \delta(a)| \leq 1 \quad$ for all $a \in A\}$ and $\mathcal{I}_{2}=\{I \subseteq E:|I \cap \delta(b)| \leq 1 \quad$ for all $b \in B\}$. What is a set $I \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$ in terms of graph theory? Can you maximize a weight function $w: E \rightarrow \mathbb{R}$ over the intersection?

Remark: This is a special case of the optimization over the intersection of two matroids. It can be shown that all such matroid intersection problems can be solved efficiently.

Exercise 3 (\star)

Recall that a digraph $D=(V, A)$ is called a branching in D if the underlying undirected graph is a forest and each vertex $v \in V$ has at most one incoming arc.
(i) Let $D=(V, A)$ be a digraph and let \mathcal{B} be a set of all branchings in D (i.e., subsets $B \subseteq A$ such that (V, B) is a branching). Show that (A, \mathcal{B}) is an intersection of two matroids.
(ii) Let $r \in V$. Show how to model the arborescences rooted at r using the intersection of two matroids.

Exercise 4

Describe a linear time algorithm which for any instance of the Satisfiability problem finds a truth assignment that satisfies at least half of the clauses.

Exercise 5 (\star)

Show that deciding if a polyhedron contains an integer point is NP-complete. To do so, consider the following problem:

Integer Linear Inequalities
Given: a matrix $A \in \mathbb{Z}^{m \times n}$ and a vector $b \in \mathbb{Z}^{m}$
Task: Is there a vector $x \in \mathbb{Z}^{n}$ such that $A x \leq b$?
Show that
(i) Integer Linear Inequalities is in NP.
(ii) Integer Linear Inequalities is NP-complete.

Exercise 6

Consider the following problem:
Dominating Set
Given: an undirected graph $G=(V, E)$ and a number $k \in \mathbb{N}$
Task: Is there a set $X \subseteq V$ with $|X| \leq k$ and for every $v \in V \backslash X$, we have $\{x, v\} \in E$?

Show that
(i) Dominating Set is in NP.
(ii) Dominating Set is NP-complete.

Hint: Vertex Cover

