Exercises

Approximation Algorithms

Spring 2010

Sheet 3

Exercise 1

Consider the *k*-SET COVERING problem: Given a family of sets $S_1, \ldots, S_m \subseteq U$ of cardinality $|S_i| \leq k$ with cost $c(S_i)$, find a subset of these sets that minimize the cost, while each element has to be covered at least once. Recall the linear programming relaxation

$$\min \sum_{i=1}^{m} c(S_i) \cdot x_i \qquad (ILP)$$
$$\sum_{i:j \in S_i} x_i \geq 1 \quad \forall j \in U$$
$$x_i \geq 0 \quad \forall i$$

where x_i indicates, whether to take set S_i .

- i) Let x^* be an optimum **basic** solution for (LP). Prove that there is an *i* with $x_i^* \ge \frac{1}{k}$.
- ii) Consider the following iterative rounding algorithm:
 - (1) WHILE $U \neq \emptyset$ DO
 - (2) Compute an optimum basic solution x^*
 - (3) Choose *i* with $x_i^* \ge \frac{1}{k}$
 - (4) Buy set S_i , delete elements in S_i from the instance
 - (5) Output bought sets

Prove that this algorithm gives a *k*-approximation.

Hint: How much does the value of the optimum fractional solution decrease in each iteration compared to the bought set?

Exercise 2

For the STEINER TREE problem, we are given an undirected weighted graph G = (V, E) with a cost function $c : E \to \mathbb{Q}_+$ and a set of terminals $R \subseteq V$. It is the goal to find a tree *T* that connects all terminals. A natural linear programming relaxation is

$$\begin{array}{ll} \min\sum_{e \in E} c_e x_e & (LP) \\ \sum_{e \in \delta(S)} x_e & \geq & 1 \quad \forall S \subseteq V : 1 \leq |S \cap R| < |R| \\ & x_e & > & 0 \quad \forall e \in E \end{array}$$

Here $\delta(S) = \{\{u, v\} \in E \mid u \in S, v \notin S\}$ are the edges, crossing *S*. Show that one can compute an optimum fractional solution for (LP) in polynomial time (to be precise: Show that the LP can be solved in time polynomial in n = |V| and the encoding length $\langle c \rangle$ of *c*).

Hint: Use the Ellipsoid method from the lecture. Recall that the *s*-*t* MINCUT problem is polynomial time solvable: Given a graph G = (V, E), nodes $s, t \in V$ and capacities $w : E \to \mathbb{Q}_+$, compute an *s*-*t* cut $S \subseteq V$ with $s \in S, t \notin S$ that minimizes $\sum_{e \in \delta(S)} w(e)$.