Integer Points in Polyhedra

Spring 2009 Assignment Sheet 9

Exercise 1

Let *C* be a unimodular cone. Prove that the dual cone C^* is also unimodular.

Exercise 2

Let a_1 and a_2 be two relatively prime positive integers and let *S* be the set of all non-negative integral combinations of a_1 and a_2 :

$$S = \{\lambda_1 a_1 + \lambda_2 a_2 : \lambda_1, \lambda_2 \in \mathbb{Z}_+\}.$$

Show that

$$\sum_{m \in S} x^m = \frac{1 - x^{a_1 a_2}}{(1 - x^{a_1})(1 - x^{a_2})}.$$

Exercise 3

Let a_1 , a_2 and a_3 be pairwise relatively prime positive integers and let *S* be the set of all non-negative integral combinations of a_1 , a_2 and a_3 :

$$S = \{\lambda_1 a_1 + \lambda_2 a_2 + \lambda_3 a_3 : \lambda_1, \lambda_2, \lambda_3 \in \mathbb{Z}_+\}.$$

Show that

$$\sum_{m \in S} x^m = \frac{1 - x^{b_1} - x^{b_2} - x^{b_3} + x^{b_4} + x^{b_5}}{(1 - x^{a_1})(1 - x^{a_2})(1 - x^{a_3})}.$$

Exercise 4

Let $a_1, a_2, ..., a_n$ and $r_1, r_2, ..., r_n$ be positive integers and suppose that the sets $r_i + a_i \mathbb{Z}$ form a partition of \mathbb{Z} , i.e.,

$$\mathbb{Z} = (r_1 + a_1 \mathbb{Z}) \cup (r_2 + a_2 \mathbb{Z}) \cup \ldots \cup (r_n + a_n \mathbb{Z})$$

and $(r_i + a_i \mathbb{Z}) \cap (r_j + a_j \mathbb{Z}) = \emptyset$ for $i \neq j$. Prove that there are $i \neq j$ such that $a_i = a_j$.