Integer Points in Polyhedra

Spring 2009
Assignment Sheet 9

Exercise 1

Let C be a unimodular cone. Prove that the dual cone C^{*} is also unimodular.

Exercise 2

Let a_{1} and a_{2} be two relatively prime positive integers and let S be the set of all non-negative integral combinations of a_{1} and a_{2} :

$$
S=\left\{\lambda_{1} a_{1}+\lambda_{2} a_{2}: \lambda_{1}, \lambda_{2} \in \mathbb{Z}_{+}\right\} .
$$

Show that

$$
\sum_{m \in S} x^{m}=\frac{1-x^{a_{1} a_{2}}}{\left(1-x^{a_{1}}\right)\left(1-x^{a_{2}}\right)} .
$$

Exercise 3

Let a_{1}, a_{2} and a_{3} be pairwise relatively prime positive integers and let S be the set of all nonnegative integral combinations of a_{1}, a_{2} and a_{3} :

$$
S=\left\{\lambda_{1} a_{1}+\lambda_{2} a_{2}+\lambda_{3} a_{3}: \lambda_{1}, \lambda_{2}, \lambda_{3} \in \mathbb{Z}_{+}\right\} .
$$

Show that

$$
\sum_{m \in S} x^{m}=\frac{1-x^{b_{1}}-x^{b_{2}}-x^{b_{3}}+x^{b_{4}}+x^{b_{5}}}{\left(1-x^{a_{1}}\right)\left(1-x^{a_{2}}\right)\left(1-x^{a_{3}}\right)}
$$

Exercise 4

Let $a_{1}, a_{2}, \ldots, a_{n}$ and $r_{1}, r_{2}, \ldots, r_{n}$ be positive integers and suppose that the sets $r_{i}+a_{i} \mathbb{Z}$ form a partition of \mathbb{Z}, i.e.,

$$
\mathbb{Z}=\left(r_{1}+a_{1} \mathbb{Z}\right) \cup\left(r_{2}+a_{2} \mathbb{Z}\right) \cup \ldots \cup\left(r_{n}+a_{n} \mathbb{Z}\right)
$$

and $\left(r_{i}+a_{i} \mathbb{Z}\right) \cap\left(r_{j}+a_{j} \mathbb{Z}\right)=\varnothing$ for $i \neq j$. Prove that there are $i \neq j$ such that $a_{i}=a_{j}$.

