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Abstract

We show that the problem of testing whether a given set of n+k rational vectors in Rn

forms a Hilbert basis can be solved in polynomial time if k is fixed.

1 Introduction

Given rational vectors a1, . . . , am ∈Rn , the cone generated by a1, . . . , am is the set of all non-
negative linear combinations of these vectors:

cone(a1, . . . , am) :=
{ m∑

i=1
λi ai :λi Ê 0, i = 1, . . . ,m

}
.

It is the Farkas–Minkowski–Weyl theorem (see, e.g., Schrijver [9]) that each cone generated
by finitely many vectors is polyhedral, i.e., can be represented in the form

cone(a1, . . . , am) = {
x : B x É 0

}
(1)

for some rational matrix B ; and conversely, each cone of the form (1) is generated by
finitely many rational vectors. The cone is called pointed if it does not contain any linear
subspace besides the 0-space, or equivalently, if there exists a half-space whose intersec-
tion with the cone is {0}.

The set of all non-negative integral linear combinations of a1, . . . , am ,

int.cone(a1, . . . , am) :=
{ m∑

i=1
λi ai :λi Ê 0, λi ∈Z, i = 1, . . . ,m

}
,

is called the integer cone generated by a1, . . . , am . The lattice generated by a1, . . . , am is the
set of all integral linear combinations of a1, . . . , am :

lat(a1, . . . , am) :=
{ m∑

i=1
λi ai :λi ∈Z, i = 1, . . . ,m

}
.
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A basis of the lattice lat(a1, . . . , am) is the set of linearly independent vectors that generates
lat(a1, . . . , am). Since a1, . . . , am are rational vectors, lat(a1, . . . , am) has a basis; see, e.g.,
Schrijver [9].

Let a1, . . . , am ∈Qn be linearly independent vectors, hence they form a basis of the lat-
tice lat(a1, . . . , am). The set

par(a1, . . . , am) :=
{ m∑

i=1
λi ai : 0 Éλi < 1, i = 1, . . . ,m

}
is called the fundamental parallelepiped of vectors a1, . . . , am . It is well-known that the vol-
ume of the fundamental parallelepiped is an invariant of the lattice, i.e., does not depend
on the choice of a basis. This volume is called the determinant of the lattice.

A finite set of vectors a1, . . . , am forms a Hilbert basis if

int.cone(a1, . . . , am) = cone(a1, . . . , am)∩ lat(a1, . . . , am),

i.e., each vector of the lattice lat(a1, . . . , am) in the cone cone(a1, . . . , am) can be expressed
as a non-negative integral combination of a1, . . . , am .

The concept of Hilbert bases was introduced by Giles and Pulleyblank [5] in the context
of totally dual integral systems. They proved that each cone has a finite Hilbert basis.
Schrijver [8] showed that each pointed cone has a unique minimal Hilbert basis.

Cook et al. [2] proved the following analogue of Carathéodory’s theorem for Hilbert
bases: if H = {

a1, . . . , am
}

is a Hilbert basis and the cone cone(H) is pointed, then each
vector b ∈ int.cone(a1, . . . , am) can be expressed as a non-negative integral linear combi-
nation of at most 2n − 1 vectors vectors from H . Later, Sebő [10] improved this bound
to 2n −2. On the other hand, Bruns et al. [1] showed that the bound n (as for traditional
Carathéodory’s theorem) is not valid in general.

In this note we consider the problem of recognizing Hilbert bases: Given rational vec-
tors a1, . . . , am ∈ Qn , do they form a Hilbert basis? The problem belongs to coNP, but it is
open whether or not it belongs to NP.1 If the rank of a1, . . . , am is fixed, the problem can be
solved in polynomial time; see Cook et al. [3].

We consider the case when the difference m −n is fixed. The approach is based on
studying so-called “Hilbert kernels”, briefly introduced by Sebő [10]. This is mostly based
on the observation that for any property of a Hilbert basis, only the linear dependencies
between its elements are important.

2 Hilbert kernels

A linear subspace L ⊆Rm is called a Hilbert kernel if there is a matrix

H = [
h1, . . . ,hm

] ∈Qn×m

1Recently, J. Pap showed that the problem is coNP-complete.

2



such that
L = {

x : H x = 0
}

(2)

and the columns of H , i.e., vectors h1, . . . ,hm form a Hilbert basis. We remark that we do
not specify the dimension n of vectors h1, . . . ,hm here—it can be chosen arbitrarily. It is
easy to see that if

H ′ = [
h′

1, . . . ,h′
m

] ∈Qn′×m

is any other matrix satisfying (2), then the columns of H ′ also form a Hilbert basis.

Theorem 2.1. A linear subspace L ⊆ Rm is a Hilbert kernel if and only if for each vector
x ∈ L, there is an integral vector y ∈ L such that y É dxe.

Proof. Suppose that L is a Hilbert kernel and let H ∈Qn×m be a matrix satisfying (2). Then
the columns of H form a Hilbert basis and H x = 0, which is equivalent to

Hdxe = H(dxe−x). (3)

The vector
b := H(dxe−x)

clearly belongs to the cone generated by the columns of H . By (3), it is also in the lattice
lat(H), and therefore, since H is a Hilbert basis, b must belong to the integer cone gener-
ated by H ; that is,

b = H(dxe−x) = H z

for some non-negative integral vector z ∈ Zm . It follows that y = dxe− z belongs to L and
satisfies y É dxe.

For the converse, let b ∈ cone(H)∩ lat(H), where H is a matrix satisfying (2). Equiva-
lently, we have

b = H x = H y

for some non-negative vector x ∈Rm and some integral vector y ∈Zm . Then y −x ∈ L, and
therefore, there is an integral z ∈ L such that

z É dy −xe = y −dxe.

Therefore,
b = H y = H(y − z), y − z Ê dxe Ê 0,

that is, b belongs to the integer cone generated by H .

Thus, in order to check whether the columns of a matrix H form a Hilbert bases, we
can consider the linear subspace L = {

x : H x = 0
}

and check the following statement:

∀x ∈ L ∃y ∈ L∩Zm : y É dxe,

or equivalently,
∀x ∈ L ∃y ∈ L∩Zm : y < x +1, (4)

where 1 denotes the all-one vector.
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3 Testing Hilbert bases

The question (4) is closely related to parametric integer programming. A typical paramet-
ric integer programming problem can be stated as follows: Given a polyhedron Q ⊆ Rm

and a rational matrix A ∈Qm×n , find a vector b such that the system Ax É b has no integral
solution.

Kannan [6] established an algorithm that solves parametric integer programming in
case when n and m are fixed. The main techniques used in the proof were actually de-
veloped by Kannan [7]. Eisenbrand and Shmonin [4] improved that algorithm to run in
polynomial time for variable m (while n is still to be fixed).

Let us consider the question (4) in more detail, under the assumption that the dimen-
sion of L, k = m − rank(H), is fixed. We can efficiently find a basis a1, . . . , ak of the lattice
L∩Zm ; see [11] and [12]. Now, (4) is equivalent to

∀λ ∈Rk ∃µ ∈Zn :
k∑

i=1
µi ai <

k∑
i=1

λi ai +1.

The number of integer variables here is fixed, and therefore, the problem can be solved by
exploiting an algorithm for parametric integer programming. Thus, we have proved the
following theorem.

Theorem 3.1. Let k be a constant. There is a polynomial algorithm that, provided n + k
rational vectors of dimension n, checks if they form a Hilbert basis.
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