The matching polytope

We now come to a deeper theorem concerning the convex hull of match-
ings. We mentioned several times in the course that the maximum weight
matching problem can be solved in polynomial time. We are now going to
show a theorem of Edmonds [1] which provides a complete description of
the matching polytope and present the proof by Lovéasz [3].

Before we proceed let us inspect the symmetric difference M;AM> of
two matrchings of a graph G. If a vertex is adjacent to two edges of M;UM5,
then one of the two edges belongs to M; and one belongs to M. Also, a
vertex can never be adjacent to three edges in M; U M. Edges which are
both in M; and M, do not appear in the symmetric difference. We therefore
have the following lemma.

Lemma 16. The symmetric difference My A M, of two matchings decomposes into
node-disjoint paths and cycles, where the edges on these paths and cycles alternate
between My and M.

The Matching polytope P(G) of an undirected graph G = (V, E) is the
convex hull of incidence vectors y of matchings M of G.
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The incidence vectors of matchings are exactly the 0/1-vectors that sat-
isfy the following system of equations.

DoeeswyTle) < 1 VweV
z(e) = 0 VecE.

However the triangle (Figure 2) shows that the corresponding polytope
is not integral. The objective function max 17z has value 1.5. However, one
can show that a maximum weight matching of an undirected graph can be
computed in polynomial time which is a result of Edmonds [2].
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The following (Figure 3) is an illustration of an Edmonds inequality.
Suppose that U is an odd subset of the nodes V' of G and let M be a match-
ing of G. The number of edges of M with both endpoints in U is bounded
from above by ||U|/2].

Thus the following inequality is valid for the integer points of the poly-
hedron defined by (10).

> zle) < U2, foreachUCV, |U/=1 (mod?2). (11)
ecE(U)

Figure 3: Edmonds inequality.
The goal of this lecture is a proof of the following theorem.

Theorem 17 (Edmonds 65). The matching polytope is described by the following
inequalities:

i) x(e) > 0foreache € E,
i) 3 ecsw) 2(e) < 1foreachv eV,
iii) Y cepayx(e) < [|U|/2] foreachU CV

Lemma 18. Let G = (V, E) be connected and let w : E — Ry be a weight-

function. Denote the set of maximum weight matchings of G w.r.t. w by A (w).
One has

i) v € V such that 5(v) N M # 0 for each M € 4 (w)
ii) |M|= [|V|/2] foreach M € .4 (w) and |V| is odd

Proof. Suppose i) and ii) do not hold Then there exists M € .# (w) leaving
two exposed nodes v and v. Choose M such that the minimum distance
between two exposed nodes u, v is minimized.

Now let ¢ be on shortest path from u to v. The vertex ¢ cannot be ex-
posed.
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Figure 4: Shortest path between v and v.

Let M’ € .#(w) leave t exposed. Both u and v are covered by M’ be-
cause the distance to v or v from ¢ is smaller than the distance of u to v.

Consider the symmetric difference M A M’ which decomposes into node
disjoint paths and cycles. The nodes u, v and ¢ have degree one in M AM'.
Let P be a path with endpoint ¢ in M AM’

OO0 00O
If we swap colors on P we obtain matchings M and M’ with w(M) +
w(M') = w(M) + w(M') and thus M € . (w).
The node t is exposed in M and v or v is exposed in M. This is a con-

tradiction to u and v being shortest distance exposed vertices
O

Proof of Theorem 17. Let wl'z < 8 be a facet of P(G), we need to show that
this facet it is of the form

i) z(e) > 0 forsomee € E
i) > ces) z(e) < 1forsomev €V
iil) > .cpw)z(e) < [|U]/2] for some U € Pogq

To do so, we use the following method: One of the inequalities i), ii),
iii) is satisfied with equality by each x™, M € .#(w). This establishes
the claim since the matching polytope is full-dimensional and a facet is a
maximal face.

If w(e) < 0 for some e € E, then each M € .# (w) satisfies e ¢ M and
thus satisfies z(e) > 0 with equality.

Thus we can assume that w > 0.

Let G* = (V*, E*) be the graph induced by edges e with w(e) > 0. Each
M € . (w) contains maximum weight matching M* = M N E* of G* w.r.t.
w*.
If G* is not connected , suppose that V* = V; UV, where Vi NV, = () and
V1, Vo # () and there is no edge connecting V; and V5, then wTz < B can be
written as the sum of w'{:ﬂ < (1 and ng < (2, where (3; is the maximum
weight of a matching in V; w.r.t. w;, ¢ = 1,2. This would also contradict
the fact that w”z < f is a facet, since it would follow from the previous
inequalities and thus would be a redundant inequality.
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Now we can use Lemma 18for G*.

i) Jv such that §(v) N M # 0 for each M € .# (w). This means that each
M in . (w) satisfies

Z z(e) <1 with equality
e€dé(v)

ii) |M N E*| = [|V*|/2] for each M € .# (w) and |V*| is odd. This means
that each M in .# (w) satisfies

> a(e) <||V*)/2)  with equality
ecE(V*)
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