
The matching polytope

We now come to a deeper theorem concerning the convex hull of match-
ings. We mentioned several times in the course that the maximum weight
matching problem can be solved in polynomial time. We are now going to
show a theorem of Edmonds [1] which provides a complete description of
the matching polytope and present the proof by Lovász [3].

Before we proceed let us inspect the symmetric difference M1∆M2 of
two matrchings of a graph G. If a vertex is adjacent to two edges of M1∪M2,
then one of the two edges belongs to M1 and one belongs to M2. Also, a
vertex can never be adjacent to three edges in M1 ∪ M2. Edges which are
both in M1 and M2 do not appear in the symmetric difference. We therefore
have the following lemma.

Lemma 16. The symmetric difference M1∆M2 of two matchings decomposes into
node-disjoint paths and cycles, where the edges on these paths and cycles alternate
between M1 and M2.

The Matching polytope P (G) of an undirected graph G = (V,E) is the
convex hull of incidence vectors χM of matchings M of G.
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Figure 2: Triangle

The incidence vectors of matchings are exactly the 0/1-vectors that sat-
isfy the following system of equations.

∑
e∈δ(v) x(e) 6 1 ∀v ∈ V

x(e) > 0 ∀e ∈ E.
(10)

However the triangle (Figure 2) shows that the corresponding polytope
is not integral. The objective function max 1T x has value 1.5. However, one
can show that a maximum weight matching of an undirected graph can be
computed in polynomial time which is a result of Edmonds [2].
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The following (Figure 3) is an illustration of an Edmonds inequality.
Suppose that U is an odd subset of the nodes V of G and let M be a match-
ing of G. The number of edges of M with both endpoints in U is bounded
from above by ⌊|U |/2⌋.

Thus the following inequality is valid for the integer points of the poly-
hedron defined by (10).

∑

e∈E(U)

x(e) 6 ⌊|U |/2⌋, for each U ⊆ V, |U | ≡ 1 (mod 2). (11)

Figure 3: Edmonds inequality.

The goal of this lecture is a proof of the following theorem.

Theorem 17 (Edmonds 65). The matching polytope is described by the following
inequalities:

i) x(e) > 0 for each e ∈ E,

ii)
∑

e∈δ(v) x(e) 6 1 for each v ∈ V ,

iii)
∑

e∈E(U) x(e) 6 ⌊|U |/2⌋ for each U ⊆ V

Lemma 18. Let G = (V,E) be connected and let w : E −→ R>0 be a weight-
function. Denote the set of maximum weight matchings of G w.r.t. w by M (w).
One has

i) ∃ v ∈ V such that δ(v) ∩ M 6= ∅ for each M ∈ M (w)

ii) |M | = ⌊|V |/2⌋ for each M ∈ M (w) and |V | is odd

Proof. Suppose i) and ii) do not hold Then there exists M ∈ M (w) leaving
two exposed nodes u and v. Choose M such that the minimum distance
between two exposed nodes u, v is minimized.

Now let t be on shortest path from u to v. The vertex t cannot be ex-
posed.
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Figure 4: Shortest path between u and v.

Let M ′ ∈ M (w) leave t exposed. Both u and v are covered by M ′ be-
cause the distance to u or v from t is smaller than the distance of u to v.

Consider the symmetric difference M△M ′ which decomposes into node
disjoint paths and cycles. The nodes u, v and t have degree one in M△M ′.
Let P be a path with endpoint t in M△M ′

t

If we swap colors on P we obtain matchings M̃ and M̃ ′ with w(M) +

w(M ′) = w(M̃ ) + w(M̃ ′) and thus M̃ ∈ M (w).

The node t is exposed in M̃ and u or v is exposed in M̃ . This is a con-
tradiction to u and v being shortest distance exposed vertices

Proof of Theorem 17. Let wT x 6 β be a facet of P (G), we need to show that
this facet it is of the form

i) x(e) > 0 for some e ∈ E

ii)
∑

e∈δ(v) x(e) 6 1 for some v ∈ V

iii)
∑

e∈E(U) x(e) 6 ⌊|U |/2⌋ for some U ∈ Podd

To do so, we use the following method: One of the inequalities i), ii),
iii) is satisfied with equality by each χM , M ∈ M (w). This establishes
the claim since the matching polytope is full-dimensional and a facet is a
maximal face.

If w(e) < 0 for some e ∈ E, then each M ∈ M (w) satisfies e /∈ M and
thus satisfies x(e) > 0 with equality.

Thus we can assume that w > 0.
Let G∗ = (V ∗, E∗) be the graph induced by edges e with w(e) > 0. Each

M ∈ M (w) contains maximum weight matching M∗ = M ∩E∗ of G∗ w.r.t.
w∗.

If G∗ is not connected , suppose that V ∗ = V1 ∪V2, where V1 ∩V2 = ∅ and
V1, V2 6= ∅ and there is no edge connecting V1 and V2, then wT x 6 β can be
written as the sum of wT

1 x 6 β1 and wT
2 x 6 β2, where βi is the maximum

weight of a matching in Vi w.r.t. wi, i = 1, 2. This would also contradict
the fact that wT x 6 β is a facet, since it would follow from the previous
inequalities and thus would be a redundant inequality.
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wT
1 x 6 β1 wT

2 6 β2

Now we can use Lemma 18for G∗.

i) ∃v such that δ(v) ∩ M 6= ∅ for each M ∈ M (w). This means that each
M in M (w) satisfies

∑

e∈δ(v)

x(e) 6 1 with equality

ii) |M ∩ E∗| = ⌊|V ∗|/2⌋ for each M ∈ M (w) and |V ∗| is odd. This means
that each M in M (w) satisfies

∑

e∈E(V ∗)

x(e) 6 ⌊|V ∗|/2⌋ with equality
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