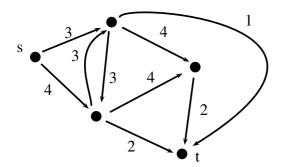
Combinatorial Optimization

Fall 2015

Assignment Sheet 1

Exercises marked with a \star can be handed in for bonus points. Due date is September 25.


Recall the max-flow algorithm seen in class.

Given: a digraph G(V, A) with capacities $u : A \to Q_{\geq 0}$, and a pair of distinct vertices $s, t \in V$.

- Set f = 0 and construct the auxiliary graph D_f .
- While there is an oriented path between *s* and *t* in D_f :
 - Augment f to f' (*augmenting step*).
 - Set f = f'.
 - Construct the auxiliary graph D_f .
- Output *f*.

Exercise 1

Using the algorithm above, compute a max s-t flow in the directed capacitated graph below.

Exercise 2

Prove that, if the capacities are integral, then there exists a maximum s - t flow that is an integral vector.

Exercise 3

In this exercise we will show that the max-flow algorithm seen in class has running time $O(|V||A|^2)$, if each time in the augmenting step, we augment along a shortest path (i.e. a path with a minimum number of edges) between *s* and *t*.

- a) [*] In a digraph D(V, A), let $\mu(D)$ be the length of a shortest path between *s* and *t* and $\alpha(D)$ the set of edges that are in at least a shortest path between *s* and *t*. Prove that $\mu(D') = \mu(D)$ and $\alpha(D') = \alpha(D)$, where $D' = (V, A \cup \alpha(D)^{-1})$.
- b) Using the previous part, show that the number of augmenting steps of the max-flow algorithm is bounded by |*A*||*V*|.
 (Hint: consider the residual graph *D_{f'}*, where *f'* is the flow after the augmentation. How does μ(*D_{f'}*) and α(*D_{f'}*) change with respect to μ(*D_f*), α(*D_f*)?)
- c) Assuming that a shortest path in D_f can be found in time O(|A|), conclude that the running time of the max flow algorithm is $O(|V||A|^2)$.

Exercise 4

Provide a family of instances showing that a wrong strategy in choosing an s - t path in D_f may lead to a non-polynomial (in |V|) algorithm for max-flow.