
Prof. Friedrich Eisenbrand
Alfonso Cevallos

Discussions from: March 31, 2015

Computer Algebra
Spring 2015

Assignment Sheet 4

Note: These are just notes and not necessarily full solutions to each exercise. Please report
any mistakes you may find.

Exercise 1
Recall the Gram-Schmidt orthogonalization process. It decomposes A = BU , where B is
a matrix with pairwise orthogonal columns b1, · · · ,bn , and U is a lower-triangular matrix
with ones on the diagonal. In particular, b1 = a1, and for every successor we have ai =
bi +∑

j<i ui , j b j . If we set ui ,i = 1, then U = (ui , j)i , j is the desired matrix above. As a conse-
quence, we have that detU = 1, so det A = detB detU = detB .

Furthermore, we can compute (detB)2 = detB T B = det(bT
i ·b j)i , j = det[|b1|2e1, · · · , |bn |2en] =∏

i |bi |2; and therefore |det A| = |detB | =∏
i |bi |. And since ai = bi +∑

j<i ui , j b j , and vectors
bi are orthogonal, from Pythagoras theorem we have |bi | ≤ |ai |. Finally, we get the result
|det A| ≤∏

i |ai |. Deriving from here the bound |det A| ≤ nn/2B 2 is trivial.

Recall now Leibniz’s formula for the determinant: det A =∑
σ∈Sn si g n(σ)

∏n
i=1 ai ,σ(i), where

the sum ranges over all permutations σ of the set {1, · · · ,n}. As there are n! such permuta-
tions, and every term in the sum is the product of n coefficients, the formula leads to the
bound |det A| ≤ n!·B n . Now, using Stirling’s approximation for the factorial: n! ≈p

2πn(n/e)n ;
for large values of n we clearly see that n! is much bigger than nn/2. Hence Hadamard bound
is asymptotically better than Leibniz bound.

Exercise 2
From Hadamard bound it immediately follows that si ze(det A) = O(n logn +n logB). The
important thing here is that this bound is polynomial in the input size. We will use this fact
later on. Recall that Gaussian elimination iteratively performs the following three opera-
tions: swapping two rows; swapping two columns; and adding to one row a scalar multiple
of another row. And at the end we obtain a matrix in row echelon form, where for each i , the
first non-zero element of row i (pivot element) is strictly after the first non-zero element of
row i −1, and where all zero rows come last.

We will not recall the exact algorithm here. But it can be easily checked that the number
of basic operations is polynomial in the input size (i.e. in n and logB). Hence, the only non-
polynomiality problem may come from the coefficients involved becoming exponentially
large (as occurs in the fast exponentiation algorith).

1

We can assume wlog that no swapping of rows or columns is ever performed, as these op-
erations do not change the size of the coefficients. Then, throughout the algorithm, to each
row i we only add a linear combination of the rows above: 1, · · · , i −1. This implies that the
determinant of each submatrix of A containing all the first i rows stays the same throughout
the algorithm. Now, for i = 1, · · · ,r ank(A), let (i , g (i)) be the pivot of row i . Consider any
element ai , j after we reduced in row echelon form the first k rows of the matrix (k-th step).
We want to establish that, for each i , j ,k, the coefficient ai , j is of size polynomial in the input
size. The only interesting case is when k ≤ i and, if k = i , when j ≥ g (i) (during steps k > i ,
row i is not modified; and for k = i and j < g (i), ai , j = 0).

Let A′ be the matrix A after the k-th step, and let B ,C be its two submatrices defined as
follows: B has rows 1, · · · ,min{k, i −1}, and columns g (1), · · · , g (min{k, i −1}). C is obtained
from B by adding row i and column j . Clearly, both matrices are upper triangular, so their
determinant is the product of the diagonal entries. Hence we obtain ai , j = detC

detB . We deduce
that the size of ai , j is at most the size of detC , for which we can use the same bound we got
for det A, which is polynomially bounded. This completes the proof.

Exercise 3

Modulo 3: A =
 1 0 1

2 2 1
0 2 2

=
 1 0 1

0 2 2
0 0 0

, so det A = 1∗2∗0 = 0.

Modulo 5: A =
 1 0 3

2 4 1
0 2 2

=
 1 0 3

0 4 0
0 0 2

, so det A = 1∗4∗2 = 3.

Modulo 7: A =
 1 0 5

2 6 1
0 2 2

=
 1 0 5

0 6 5
0 0 5

, so det A = 1∗6∗5 = 2.

Therefore, by use of the Chinese remainder theorem, we are able to say that det A ≡ 93
mod 105 (while only working with single-digit numbers!). So det A = 93+ 105k, for some
integer k; but what is the precise value? In matrix A, all the coefficients are bounded in
absolute value by B = 2. Therefore, Leibniz bound gives us |det A| ≤ B nn! = 233! = 48; which
implies that −48 ≤ det A ≤ 48 (a range of 2∗48+1 = 97 possible values). Since 105 > 97, there
is only one possible value of det A = 93+105k within this range, and this is det A =−12. .

Exercise 4
An algorith for solving the problem is the following: a) Transform all entries of A and b into
integers. b) Apply Gaussian elimination in order to reduce the augmented matrix (A|b) into
a matrix (A′|b′) in row echelon form, and recall that the set of feasible solutions to Ax = b
coincide with the set of feasible solutions to A′x = b′. c) Apply the Gauss-Jordan elimination
in order to reduce (A′|b′) into a matrix (A"|b") in reduced row echelon form. Again, the set
of feasible solutions to Ax = b coincides with the set of feasible solutions to A"x = b", and a
solution of the latter can be immediately found.

2

One easily checks that all these steps require a number of basic operations that is polyno-
mial in n and m, so the only non-polynomiality problem could come from an exponential
increase in the size of the numbers. From exercise 2, we know this cannot happen in the
second step, and the third step is also safe, by a similar proof.1 Here, we show that the size
of the numbers stays polynomial after the first step.

Note that it suffices to multiply all numbers by the least common multiple N of all denom-
inators of the entries of A and b. We have si ze(N) ≤ si ze(

∏
i , j ai , j

∏
i bi) =O(

∑
i , j si ze(ai , j)+∑

i si ze(bi)) = O(si ze(A)+ si ze(B)). Hence we can assume withouth loss of generality that
all the inputs are integral.

Exercise 5
Part 1. Let G be an n-vertex graph, and T (G) its Tutte matrix. Let M be a matching of G of
maximum cardinality (so ν(G) = |M |), and let H be the subgraph of G induced by its end-
points. So clearly M is a perfect matching in H , and 2ν(G) = 2|M | = 2ν(H) = r ank(T (H)), by
Tutte’s theorem. We also have r ank(T (H)) ≤ r ank(T (G)), because the Tutte matrix of H is a
submatrix of the Tutte matrix of G (obtained by keeping only the rows and columns indexed
by V (H)). The following claim completes the proof: r ank(T (G)) ≤ 2ν(G).

Suppose it is not the case, so r ank(T (G)) = r , for some r > 2ν(G). The row-space of T (G)
has a basis of r rows, indexed by a set of vertices X ⊂ V (G). Let T ′ be the r ×n submatrix
of T (G) obtained by keeping only these rows. As it has full row-rank, its column-rank must
be r . Now, consider a vertex v ∈V (G) \ X : the corresponding row is a linear combination of
the rows of X , and since T (G) is skew-symmetric, the corresponding column in T (G) is also
a linear combination of the columns of X . The removal of some coordinates won’t change
this vector dependence, so also in T ′ we will have that the column of v is a linear combi-
nation of the columns of X . Therefore, the columns of X generate the column-space of T ′,
and their number matches the column-rank, so they must also be a basis of the column-
space. Finally, if T ′′ is the r × r submatrix of T ′ obtained by keeping only these columns, it
is a full-rank square matrix. And it clearly corresponds to the Tutte matrix of the subgraph
of G induced by X . By Tutte’s theorem, this subgraph must have a perfect matching, of size
r /2 > ν(G), which is also a matching of G , and this leads to a contradiction.

Part 2. Fix a 2n-element set S (for instance S = {1, · · · ,2n}) and let an evaluation of the
Tutte matrix T (G) be the matrix T̄ obtained by substituting to the indeterminates of T (G)
numbers chosen uniformly at random from S. The algorithm is the following: generate k
evaluations of T (G); compute their ranks; and output the maximum of the ranks, divided by
2.

1We refer the reader to Geometric Algorithms and Combinatorial Optimization by Grötschel,
Lovasz and Schrijver, Springer-Verlag, New York, 1988. Pages 36-39. Book available here:
http://www.zib.de/groetschel/pubnew/paper/groetschellovaszschrijver1988.pdf

3

We claim that the algorithm outputs the correct value of ν(G) with probability at least 1−
2−k ; and to prove this it is enough to prove that one iteration will find the right answer with
probability at least 1/2. Let H be a subgraph of G such that 2ν(G) = 2ν(H) = r ank(T (H)) =
r ank(T (G)) (as in part 1.), and keep in mind that T (H) is a submatrix of T (G), of full rank. Let
T̄ be an evaluation of T (G). It is clear that r ank(T̄) ≤ r ank(T (G)), and we just need to bound
the probability of an inequality. If T̄H is the submatrix of T̄ corresponding to T (H), then:
P [r ank(T̄) ≤ r ank(T (G))] ≤ P [r ank(T̄H) ≤ r ank(T (H))] = P [det(T̄H) = 0 | det(T (H)) 6= 0] ≤
1− n

|S| = 1
2 . The last inequality follows from the Schwartz-Zippel lemma.

Exercise 6
See the code.

4

