Computer Algebra

Spring 2015

Assignment Sheet 5

Note: These are just notes and not necessarily full solutions to each exercise. Please report any mistakes you may find.

Exercise 1

Remember that ω is a primitive *n*-th root of unity in a ring *R* if: a) $\omega^n = 1$; b) if $\mathbb{1}$ is the multiplicative identity element in *R*, then $n\mathbb{1} = \mathbb{1} + \cdots + \mathbb{1}$ (*n* times) is invertible in *R*; and c) $\omega^{n/p} - 1$ is not a zero divisor in *R* for any prime *p* dividing *n*.

- 1. The three properties that define primitive *n*-th roots of unity are easy to verify.
- 2. \mathbb{Z}_8 does not have a primitive square root of unity, because 2 is not invertible in \mathbb{Z}_8 .
- 3. We can actually prove a more general statement: If ω is a primitive *n*-th root of unity, for n = km, then $\sigma = \omega^k$ is a primitive *m*-th root of unity. Proof: $\sigma^m = \omega^{km} = \omega^n = 1$; also σ is invertible, as $\sigma(\omega^{-1})^k = \omega^k(\omega^{-1})^k = 1$; and c) if *p* is a prime dividing *m*, then it also divides *n*, so $\sigma^{m/p} 1 = (\omega^k)^{n/kp} 1 = \omega^{n/p} 1$ is not a zero divisor.

Exercise 2

Throughout this exercise we consider the ring \mathbb{Z}_M , with $M = 2^L + 1$, and a number $K = 2^k$ that divides *L*. Keep in mind that $2^L = -1$ in this ring.

- 1. The number $\omega = 2^{L/K}$ is a primitive 2*K*-th root of unity because: a) $\omega^{2K} = (2^{L/K})^{2K} = (2^{L})^2 = (-1)^2 = 1$; b) 2*k* is invertible, as $(2K)(2^{2L-k-1}) = 2^{k+1}2^{2L-k-1} = 2^{2L} = (-1)^2 = 1$; and c) $\omega^{2K/2} 1 = (2^{L/K})^K 1 = 2^L 1 = -1 1 = -2$ is not a zero divisor.
- 2. We are to multiply two given numbers a and 2^j $(1 \le j \le L)$, which are expressed as bit lists, and we must output $m = a \cdot 2^j$ reduced mod M (so $0 \le m < M$). The challenge is to use neither standard multiplication nor division with remainder, because these operations are not linear. What we *can* use is additions, subtractions, and bit-shifting operations. We do the following:

a) Write *a* as $a_1 \cdot 2^{L-j} + a_0$, where $a_0 < 2^{L-j}$. We quickly find a_0 and a_1 by splitting the bit list of *a* into two sub-lists (as we did in Karatsuba algorithm).

b) Compute $m = a_0 \cdot 2^j - a_1$, and notice that $a \cdot 2^j = a_1 \cdot 2^L + a_0 \cdot 2^j \equiv a_0 \cdot 2^j - a_1 = m$ (because $2^L \equiv -1$), where $a_0 \cdot 2^j$ is quickly computed via bit-shifting, and $a_0 \cdot 2^j < 2^L$. Therefore, $|m| \le \max(a_0 \cdot 2^j, a_1) < M$ (i.e. *m* is already "almost" reduced mod M). c) If m < 0, let m = m + M. Output *m*. 3. Polynomials¹ $f, g \in \mathbb{Z}_M[X]$ are given in coefficient representation, and we want to compute their product $h = f \cdot g$, also in coeff. rep. All polynomials have degree O(K), so they are stored as vector with O(K) coordinates, and each entry is of size O(L). The algorithm to obtain *h* consists of 3 parts:

a) The evaluation part transforms f and g into their point-value representations $Y_f = DFT_{\omega}(f)$ and $Y_g = DFT_{\omega}(g)$. As seen in class, this algorithm takes $O(K \log K)$ basic operations. But these operations are just additions, subtractions and multiplications by powers of 2, all of complexity O(L). Thus the bit-complexity of this step is $O(KL \log K)$. b) In point-value representation, we obtain $Y_h = Y_f \cdot Y_g$ simply by coordinate-wise multiplication. For each of the O(K) coordinates, we perform a multiplication and a division with remainder (to reduce mod M) in time O(M(L)), so the complexity of this step is O(KM(L)).

c) The interpolation part transforms Y_h into h, by computing $h = (DFT_{\omega})^{-1}(Y_h) = (2K)^{-1}DFT_{\omega^{-1}}Y_h$, where $(2K)^{-1} = -2^{L-k-1}$ and $\omega^{-1} = -2^{L-L/K}$ (why?). This part, as part a), also has a complexity of $O(KL\log K)$.

Therefore, the total complexity is $O(KL\log K + KM(L))$. Note: Considering that $L \ge K$, and $M(L) = \Omega(L\log L)$ for all currently known multiplication algorithms, we get $O(KL\log K + KM(L)) = O(KM(L))$.

Exercise 3

We are given polynomials $f(x) = \sum_{i=0}^{n} a_i x^i$ and $g(x) = \sum_{j=0}^{n} b_j x^j$ in $\mathbb{Z}[x]$, with $|a_i|, |b_j| \le B$ for all *i*, *j*, and want to compute h(x) = f(x) * g(x). We simply consider *f*, *g*, *h* as polynomials in $\mathbb{Z}_M[X]$, for conveniently chosen values of *M* and *K*, and perform the process detailed in exercise 2.

Choosing *K*: We know that the degree of *h* is at most 2*n*. We pick $K = 2^k$ as the smallest power of 2 such that 2K > 2n, so $K \le 2n = O(n)$.

Choosing $M = 2^L + 1$: There are two conditions on L. First, L must be a multiple of K. Next, if $h(x) = \sum_{k=0}^{2n} c_k x^k$, we have $c_k = \sum_{i+j=k} a_i b_j$; so for any $k, |c_k| \le |\sum_{i+j=k} a_i b_j| \le (n+1)B^2$. So each coefficient c_k takes one of $2(n+1)B^2 + 1$ possible values. Selecting $M \ge 2(n+1)B^2 + 1$ ensures that h can be mapped from $\mathbb{Z}_M[x]$ back to $\mathbb{Z}[x]$ unambiguously, so $L \ge \log_2(2(n+1)B^2)$. We can pick an L satisifying both conditions, such that $L = O(\max(n, \log n + size(B))) = O(n + size(B))$.

Choosing ω : We know that $\omega = 2^{L/K}$ will be a 2*K*-th root of unity.

Reconstruction: Once we find $h(x) = \sum_{k=0}^{2n} c_k x^k$ in $\mathbb{Z}_M[x]$, we make sure that each coefficient c_k is in the range $\left[-\frac{M-1}{2}, \frac{M-1}{2}\right]$. This is the correct mapping back to $\mathbb{Z}[x]$.

Complexity: From exercise 2, the total complexity is O(KM(L)) = O(nM(n + size(B))).

¹Please have a look at the chart on page 2 of the scanned notes for this explanation. http://disopt.epfl.ch/files/content/sites/disopt/files/shared/cal15/Lecture08.pdf

Exercise 4

For convenience, when we reduce modulo 17, we opt to keep all numbers between -8 and 8. For $f(x) = 5x^3 + 3x^2 - 4x + 3$ and $g(x) = 2x^3 - 5x^2 + 7x - 2$ in $\mathbb{Z}_{17}[x]$, the standard polynomial multiplication (mod 17) gives $h(x) = fx)g(x) = -7x^6 - 2x^5 - 5x^4 + 3x^3 + 2x^2 - 5x - 6$. We are working in the framework of exercise 2, with L = K = 4, so from part 2.2 it follows directly that $\omega = 2^{L/K} = 2$ is a primitive 8-th root of unity. Its inverse is $w^{-1} = -8$. The Vandermonde matrices are:

$$V_{2} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 & -1 & -2 & -4 & -8 \\ 1 & 4 & -1 & -4 & 1 & 4 & -1 & -4 \\ 1 & 8 & -4 & 2 & -1 & -8 & 4 & -2 \\ 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\ 1 & -2 & 4 & -8 & -1 & 2 & -4 & 8 \\ 1 & -4 & -1 & 4 & 1 & -4 & -1 & 4 \\ 1 & -2 & 4 & -8 & -1 & 2 & -4 & 8 \\ 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\ 1 & 8 & -4 & 2 & -1 & -8 & 4 & -2 \\ 1 & 4 & -1 & -4 & 1 & 4 & -1 & -4 \\ 1 & 2 & 4 & 8 & -1 & -2 & -4 & -8 \end{pmatrix},$$

And $V_2V_{-8} = 8I_8$. Seen as vectors, we have f = (3, -4, 3, 5, 0, 0, 0, 0) and g = (-2, 7, -5, 2, 0, 0, 0, 0). In the evaluation part, we get $Y_f = DFT_2(f) = V_2 \cdot f = (7, -4, -2, 3, 5, 0, 2, -4)$ and $Y_g = DFT_{-8}(g) = V_{-8} \cdot g = (2, 8, 6, -7, 1, -1, 0, -8)$; and by coordinate-wise multiplication we obtain the vector $Y_h = (-3, 2, 5, -4, 5, 0, 0, -2)$.

Finally, $DFT_{-8}(Y_h) = V_{-8} \cdot Y_h = (3, -6, -1, 7, -6, 1, -5, 0)$; and multiplying each entry of this last vector by $8^{-1} = -2$ yields h = (-6, -5, 2, 3, -5, -2, -7, 0), which is what we computed at the beginning.

Exercise 5

See the code.