Computer Algebra

Spring 2015

Assignment Sheet 5

Note: These are just notes and not necessarily full solutions to each exercise. Please report any mistakes you may find.

Exercise 1

Remember that ω is a primitive n-th root of unity in a ring R if: a) $\omega^{n}=1$; b) if 1 is the multiplicative identity element in R, then $n \mathbb{1}=\mathbb{1}+\cdots+\mathbb{1}$ (n times) is invertible in R; and c) $\omega^{n / p}-1$ is not a zero divisor in R for any prime p dividing n.

1. The three properties that define primitive n-th roots of unity are easy to verify.
2. \mathbb{Z}_{8} does not have a primitive square root of unity, because 2 is not invertible in \mathbb{Z}_{8}.
3. We can actually prove a more general statement: If ω is a primitive n-th root of unity, for $n=k m$, then $\sigma=\omega^{k}$ is a primitive m-th root of unity. Proof: $\sigma^{m}=\omega^{k m}=\omega^{n}=1$; also σ is invertible, as $\sigma\left(\omega^{-1}\right)^{k}=\omega^{k}\left(\omega^{-1}\right)^{k}=1$; and c) if p is a prime dividing m, then it also divides n, so $\sigma^{m / p}-1=\left(\omega^{k}\right)^{n / k p}-1=\omega^{n / p}-1$ is not a zero divisor.

Exercise 2

Throughout this exercise we consider the ring \mathbb{Z}_{M}, with $M=2^{L}+1$, and a number $K=2^{k}$ that divides L. Keep in mind that $2^{L}=-1$ in this ring.

1. The number $\omega=2^{L / K}$ is a primitive $2 K$-th root of unity because: a) $\omega^{2 K}=\left(2^{L / K}\right)^{2 K}=$ $\left(2^{L}\right)^{2}=(-1)^{2}=1$; b) $2 k$ is invertible, as $(2 K)\left(2^{2 L-k-1}\right)=2^{k+1} 2^{2 L-k-1}=2^{2 L}=(-1)^{2}=1$; and c) $\omega^{2 K / 2}-1=\left(2^{L / K}\right)^{K}-1=2^{L}-1=-1-1=-2$ is not a zero divisor.
2. We are to multiply two given numbers a and $2^{j}(1 \leq j \leq L)$, which are expressed as bit lists, and we must output $m=a \cdot 2^{j}$ reduced $\bmod M$ (so $\left.0 \leq m<M\right)$. The challenge is to use neither standard multiplication nor division with remainder, because these operations are not linear. What we can use is additions, subtractions, and bit-shifting operations. We do the following:
a) Write a as $a_{1} \cdot 2^{L-j}+a_{0}$, where $a_{0}<2^{L-j}$. We quickly find a_{0} and a_{1} by splitting the bit list of a into two sub-lists (as we did in Karatsuba algorithm).
b) Compute $m=a_{0} \cdot 2^{j}-a_{1}$, and notice that $a \cdot 2^{j}=a_{1} \cdot 2^{L}+a_{0} \cdot 2^{j} \equiv a_{0} \cdot 2^{j}-a_{1}=m$ (because $2^{L} \equiv-1$), where $a_{0} \cdot 2^{j}$ is quickly computed via bit-shifting, and $a_{0} \cdot 2^{j}<2^{L}$. Therefore, $|m| \leq \max \left(a_{0} \cdot 2^{j}, a_{1}\right)<M$ (i.e. m is already "almost" reduced mod M).
c) If $m<0$, let $m=m+M$. Output m.
3. Polynomials ${ }^{1} f, g \in \mathbb{Z}_{M}[X]$ are given in coefficient representation, and we want to compute their product $h=f \cdot g$, also in coeff. rep. All polynomials have degree $O(K)$, so they are stored as vector with $O(K)$ coordinates, and each entry is of size $O(L)$. The algorithm to obtain h consists of 3 parts:
a) The evaluation part transforms f and g into their point-value representations $Y_{f}=$ $D F T_{\omega}(f)$ and $Y_{g}=D F T_{\omega}(g)$. As seen in class, this algorithm takes $O(K \log K)$ basic operations. But these operations are just additions, subtractions and multiplications by powers of 2 , all of complexity $O(L)$. Thus the bit-complexity of this step is $O(K L \log K)$. b) In point-value representation, we obtain $Y_{h}=Y_{f} \cdot Y_{g}$ simply by coordinate-wise multiplication. For each of the $O(K)$ coordinates, we perform a multiplication and a division with remainder (to reduce $\bmod M$) in time $O(M(L)$), so the complexity of this step is $O(K M(L))$.
c) The interpolation part transforms Y_{h} into h, by computing $h=\left(D F T_{\omega}\right)^{-1}\left(Y_{h}\right)=$ $(2 K)^{-1} D F T_{\omega^{-1}} Y_{h}$, where $(2 K)^{-1}=-2^{L-k-1}$ and $\omega^{-1}=-2^{L-L / K}$ (why?). This part, as part a), also has a complexity of $O(K L \log K)$.
Therefore, the total complexity is $O(K L \log K+K M(L))$. Note: Considering that $L \geq$ K, and $M(L)=\Omega(L \log L)$ for all currently known multiplication algorithms, we get $O(K L \log K+K M(L))=O(K M(L))$.

Exercise 3

We are given polynomials $f(x)=\sum_{i=0}^{n} a_{i} x^{i}$ and $g(x)=\sum_{j=0}^{n} b_{j} x^{j}$ in $\mathbb{Z}[x]$, with $\left|a_{i}\right|,\left|b_{j}\right| \leq B$ for all i, j, and want to compute $h(x)=f(x) * g(x)$. We simply consider f, g, h as polynomials in $\mathbb{Z}_{M}[X]$, for conveniently chosen values of M and K, and perform the process detailed in exercise 2.
Choosing K : We know that the degree of h is at most $2 n$. We pick $K=2^{k}$ as the smallest power of 2 such that $2 K>2 n$, so $K \leq 2 n=O(n)$.
Choosing $M=2^{L}+1$: There are two conditions on L. First, L must be a multiple of K. Next, if $h(x)=\sum_{k=0}^{2 n} c_{k} x^{k}$, we have $c_{k}=\sum_{i+j=k} a_{i} b_{j}$; so for any k, $\left|c_{k}\right| \leq\left|\sum_{i+j=k} a_{i} b_{j}\right| \leq(n+1) B^{2}$. So each coefficient c_{k} takes one of $2(n+1) B^{2}+1$ possible values. Selecting $M \geq 2(n+1) B^{2}+1$ ensures that h can be mapped from $\mathbb{Z}_{M}[x]$ back to $\mathbb{Z}[x]$ unambiguously, so $L \geq \log _{2}\left(2(n+1) B^{2}\right)$. We can pick an L satisifying both conditions, such that $L=O(\max (n, \log n+\operatorname{size}(B)))=$ $O(n+\operatorname{size}(B))$.
Choosing ω : We know that $\omega=2^{L / K}$ will be a $2 K$-th root of unity.
Reconstruction: Once we find $h(x)=\sum_{k=0}^{2 n} c_{k} x^{k}$ in $\mathbb{Z}_{M}[x]$, we make sure that each coefficient c_{k} is in the range $\left[-\frac{M-1}{2}, \frac{M-1}{2}\right]$. This is the correct mapping back to $\mathbb{Z}[x]$.
Complexity: From exercise 2, the total complexity is $O(K M(L))=O(n M(n+\operatorname{size}(B)))$.

[^0]
Exercise 4

For convenience, when we reduce modulo 17, we opt to keep all numbers between -8 and 8 . For $f(x)=5 x^{3}+3 x^{2}-4 x+3$ and $g(x)=2 x^{3}-5 x^{2}+7 x-2$ in $\mathbb{Z}_{17}[x]$, the standard polynomial multiplication (mod 17) gives $h(x)=f x) g(x)=-7 x^{6}-2 x^{5}-5 x^{4}+3 x^{3}+2 x^{2}-5 x-6$. We are working in the framework of exercise 2 , with $L=K=4$, so from part 2.2 it follows directly that $\omega=2^{L / K}=2$ is a primitive 8 -th root of unity. Its inverse is $w^{-1}=-8$. The Vandermonde matrices are:
$V_{2}=\left(\begin{array}{rrrrrrrr}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 & -1 & -2 & -4 & -8 \\ 1 & 4 & -1 & -4 & 1 & 4 & -1 & -4 \\ 1 & 8 & -4 & 2 & -1 & -8 & 4 & -2 \\ 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\ 1 & -2 & 4 & -8 & -1 & 2 & -4 & 8 \\ 1 & -4 & -1 & 4 & 1 & -4 & -1 & 4 \\ 1 & -8 & -4 & -2 & -1 & 8 & 4 & 2\end{array}\right), V_{-8}=\left(\begin{array}{rrrrrrrr}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & -8 & -4 & -2 & -1 & 8 & 4 & 2 \\ 1 & -4 & -1 & 4 & 1 & -4 & -1 & 4 \\ 1 & -2 & 4 & -8 & -1 & 2 & -4 & 8 \\ 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\ 1 & 8 & -4 & 2 & -1 & -8 & 4 & -2 \\ 1 & 4 & -1 & -4 & 1 & 4 & -1 & -4 \\ 1 & 2 & 4 & 8 & -1 & -2 & -4 & -8\end{array}\right)$
And $V_{2} V_{-8}=8 I_{8}$. Seen as vectors, we have $f=(3,-4,3,5,0,0,0,0)$ and $g=(-2,7,-5,2,0,0,0,0)$. In the evaluation part, we get $Y_{f}=D F T_{2}(f)=V_{2} \cdot f=(7,-4,-2,3,5,0,2,-4)$ and $Y_{g}=D F T_{-8}(g)=$ $V_{-8} \cdot g=(2,8,6,-7,1,-1,0,-8)$; and by coordinate-wise multiplication we obtain the vector $Y_{h}=(-3,2,5,-4,5,0,0,-2)$.

Finally, $D F T_{-8}\left(Y_{h}\right)=V_{-8} \cdot Y_{h}=(3,-6,-1,7,-6,1,-5,0)$; and multiplying each entry of this last vector by $8^{-1}=-2$ yields $h=(-6,-5,2,3,-5,-2,-7,0)$, which is what we computed at the beginning.

Exercise 5

See the code.

[^0]: ${ }^{1}$ Please have a look at the chart on page 2 of the scanned notes for this explanation. http://disopt.epfl.ch/files/content/sites/disopt/files/shared/cal15/Lecture08.pdf

