
Prof. Friedrich Eisenbrand
Alfonso Cevallos

Discussions from: April 21, 2015

Computer Algebra
Spring 2015

Assignment Sheet 5

Note: These are just notes and not necessarily full solutions to each exercise. Please report
any mistakes you may find.

Exercise 1
Remember that ω is a primitive n-th root of unity in a ring R if: a) ωn = 1; b) if 1 is the
multiplicative identity element in R, then n1 = 1+ ·· ·+ 1 (n times) is invertible in R; and c)
ωn/p −1 is not a zero divisor in R for any prime p dividing n.

1. The three properties that define primitive n-th roots of unity are easy to verify.

2. Z8 does not have a primitive square root of unity, because 2 is not invertible in Z8.

3. We can actually prove a more general statement: If ω is a primitive n-th root of unity,
for n = km, then σ = ωk is a primitive m-th root of unity. Proof: σm = ωkm = ωn = 1;
also σ is invertible, as σ(ω−1)k =ωk (ω−1)k = 1; and c) if p is a prime dividing m, then
it also divides n, so σm/p −1 = (ωk)n/kp −1 =ωn/p −1 is not a zero divisor.

Exercise 2
Throughout this exercise we consider the ring ZM , with M = 2L + 1, and a number K = 2k

that divides L. Keep in mind that 2L =−1 in this ring.

1. The number ω = 2L/K is a primitive 2K -th root of unity because: a) ω2K = (2L/K)2K =
(2L)2 = (−1)2 = 1; b) 2k is invertible, as (2K)(22L−k−1) = 2k+122L−k−1 = 22L = (−1)2 = 1;
and c) ω2K /2 −1 = (2L/K)K −1 = 2L −1 =−1−1 =−2 is not a zero divisor.

2. We are to multiply two given numbers a and 2 j (1 ≤ j ≤ L), which are expressed as bit
lists, and we must output m = a ·2 j reduced mod M (so 0 ≤ m < M). The challenge
is to use neither standard multiplication nor division with remainder, because these
operations are not linear. What we can use is additions, subtractions, and bit-shifting
operations. We do the following:
a) Write a as a1 ·2L− j +a0, where a0 < 2L− j . We quickly find a0 and a1 by splitting the
bit list of a into two sub-lists (as we did in Karatsuba algorithm).
b) Compute m = a0 ·2 j − a1, and notice that a ·2 j = a1 ·2L + a0 ·2 j ≡ a0 ·2 j − a1 = m
(because 2L ≡ −1), where a0 ·2 j is quickly computed via bit-shifting, and a0 ·2 j < 2L .
Therefore, |m| ≤ max(a0 ·2 j , a1) < M (i.e. m is already "almost" reduced mod M).
c) If m < 0, let m = m +M . Output m.

1

3. Polynomials1 f , g ∈ ZM [X] are given in coefficient representation, and we want to
compute their product h = f · g , also in coeff. rep. All polynomials have degree O(K),
so they are stored as vector with O(K) coordinates, and each entry is of size O(L). The
algorithm to obtain h consists of 3 parts:
a) The evaluation part transforms f and g into their point-value representations Y f =
DF Tω(f) and Yg = DF Tω(g). As seen in class, this algorithm takes O(K logK) basic op-
erations. But these operations are just additions, subtractions and multiplications by
powers of 2, all of complexity O(L). Thus the bit-complexity of this step is O(K L logK).
b) In point-value representation, we obtain Yh = Y f · Yg simply by coordinate-wise
multiplication. For each of the O(K) coordinates, we perform a multiplication and a
division with remainder (to reduce mod M) in time O(M(L)), so the complexity of this
step is O(K M(L)).
c) The interpolation part transforms Yh into h, by computing h = (DF Tω)−1(Yh) =
(2K)−1DF Tω−1 Yh , where (2K)−1 = −2L−k−1 and ω−1 = −2L−L/K (why?). This part, as
part a), also has a complexity of O(K L logK).
Therefore, the total complexity is O(K L logK +K M(L)). Note: Considering that L ≥
K , and M(L) = Ω(L logL) for all currently known multiplication algorithms, we get
O(K L logK +K M(L)) =O(K M(L)).

Exercise 3
We are given polynomials f (x) = ∑n

i=0 ai xi and g (x) = ∑n
j=0 b j x j in Z[x], with |ai |, |b j | ≤ B

for all i , j , and want to compute h(x) = f (x)∗ g (x). We simply consider f , g ,h as polynomi-
als in ZM [X], for conveniently chosen values of M and K , and perform the process detailed
in exercise 2.
Choosing K : We know that the degree of h is at most 2n. We pick K = 2k as the smallest
power of 2 such that 2K > 2n, so K ≤ 2n =O(n).
Choosing M = 2L+1: There are two conditions on L. First, L must be a multiple of K . Next, if
h(x) =∑2n

k=0 ck xk , we have ck =∑
i+ j=k ai b j ; so for any k, |ck | ≤ |∑i+ j=k ai b j | ≤ (n +1)B 2. So

each coefficient ck takes one of 2(n+1)B 2+1 possible values. Selecting M ≥ 2(n+1)B 2+1 en-
sures that h can be mapped fromZM [x] back toZ[x] unambiguously, so L ≥ log2(2(n+1)B 2).
We can pick an L satisifying both conditions, such that L = O(max(n, logn + si ze(B))) =
O(n + si ze(B)).
Choosing ω: We know that ω= 2L/K will be a 2K -th root of unity.
Reconstruction: Once we find h(x) =∑2n

k=0 ck xk inZM [x], we make sure that each coefficient

ck is in the range [−M−1
2 , M−1

2]. This is the correct mapping back to Z[x].
Complexity: From exercise 2, the total complexity is O(K M(L)) =O(nM(n + si ze(B))).

1Please have a look at the chart on page 2 of the scanned notes for this explanation.
http://disopt.epfl.ch/files/content/sites/disopt/files/shared/cal15/Lecture08.pdf

2

Exercise 4
For convenience, when we reduce modulo 17, we opt to keep all numbers between -8 and 8.
For f (x) = 5x3+3x2−4x+3 and g (x) = 2x3−5x2+7x−2 in Z17[x], the standard polynomial
multiplication (mod 17) gives h(x) = f x)g (x) =−7x6 −2x5 −5x4 +3x3 +2x2 −5x −6. We are
working in the framework of exercise 2, with L = K = 4, so from part 2.2 it follows directly
that ω= 2L/K = 2 is a primitive 8-th root of unity. Its inverse is w−1 =−8. The Vandermonde
matrices are:

V2 =



1 1 1 1 1 1 1 1
1 2 4 8 −1 −2 −4 −8
1 4 −1 −4 1 4 −1 −4
1 8 −4 2 −1 −8 4 −2
1 −1 1 −1 1 −1 1 −1
1 −2 4 −8 −1 2 −4 8
1 −4 −1 4 1 −4 −1 4
1 −8 −4 −2 −1 8 4 2


, V−8 =



1 1 1 1 1 1 1 1
1 −8 −4 −2 −1 8 4 2
1 −4 −1 4 1 −4 −1 4
1 −2 4 −8 −1 2 −4 8
1 −1 1 −1 1 −1 1 −1
1 8 −4 2 −1 −8 4 −2
1 4 −1 −4 1 4 −1 −4
1 2 4 8 −1 −2 −4 −8


And V2V−8 = 8I8. Seen as vectors, we have f = (3,−4,3,5,0,0,0,0) and g = (−2,7,−5,2,0,0,0,0).

In the evaluation part, we get Y f = DF T2(f) =V2· f = (7,−4,−2,3,5,0,2,−4) and Yg = DF T−8(g) =
V−8 · g = (2,8,6,−7,1,−1,0,−8); and by coordinate-wise multiplication we obtain the vector
Yh = (−3,2,5,−4,5,0,0,−2).

Finally, DF T−8(Yh) =V−8 ·Yh = (3,−6,−1,7,−6,1,−5,0); and multiplying each entry of this
last vector by 8−1 = −2 yields h = (−6,−5,2,3,−5,−2,−7,0), which is what we computed at
the beginning.

Exercise 5
See the code.

3

