Prof. Friedrich Eisenbrand Discussions from: April 21, 2015
Alfonso Cevallos

Computer Algebra
Spring 2015
Assignment Sheet 5

Note: These are just notes and not necessarily full solutions to each exercise. Please report
any mistakes you may find.

Exercise 1

Remember that w is a primitive n-th root of unity in a ring R if: a) 0" = 1; b) if 1 is the
multiplicative identity element in R, then nl1=1+---+ 1 (n times) is invertible in R; and c)
"'P — 1 is not a zero divisor in R for any prime p dividing 7.

1. The three properties that define primitive n-th roots of unity are easy to verify.
2. Zg does not have a primitive square root of unity, because 2 is not invertible in Zg.

3. We can actually prove a more general statement: If w is a primitive n-th root of unity,
for n = km, then o = w* is a primitive m-th root of unity. Proof: ¢ = wkm =" =1;
also ¢ is invertible, as o (0)* = w* (™ 1H)* = 1; and ¢) if p is a prime dividing m, then
it also divides n, so 6™/P — 1 = (w*)"'kP — 1 = w™P — 1 is not a zero divisor.

Exercise 2
Throughout this exercise we consider the ring Z,;, with M = 2L 41, and a number K = 2F
that divides L. Keep in mind that 2 = —1 in this ring.

2L/K 2L/K)2K —

1. The number w = is a primitive 2K-th root of unity because: a) w?X = (
212 = (-1)%2 = 1; b) 2k is invertible, as (2K) (22L7k~1) = pk+192L—-k=1 _ 2L — (_1)2 = 1;
and ¢) w?K’2 -1 = QLKYK _1=2L_1=-1-1=-2isnot a zero divisor.

2. We are to multiply two given numbers a and 2/ (1 < j < L), which are expressed as bit
lists, and we must output m = a- 2J reduced mod M (so 0 < m < M). The challenge
is to use neither standard multiplication nor division with remainder, because these
operations are not linear. What we can use is additions, subtractions, and bit-shifting
operations. We do the following:

a) Write a as a; - 277 + ay, where ag < 2177, We quickly find gy and a, by splitting the
bit list of a into two sub-lists (as we did in Karatsuba algorithm).

b) Compute m = ay-2/ — ay, and notice that a-2/ = a, -2 +ap-2/ = ay-2/ —a; =m
(because 2 = —1), where aq -2/ is quickly computed via bit-shifting, and ay -2/ < 2L
Therefore, |m| < max(ag -2/, a;) < M (i.e. m s already "almost" reduced mod M).

c) If m<0,let m=m+ M. Output m.

3. Polynomials1 f,8 € ZyI[X] are given in coefficient representation, and we want to
compute their product h = f - g, also in coeff. rep. All polynomials have degree O(K),
so they are stored as vector with O(K) coordinates, and each entry is of size O(L). The
algorithm to obtain / consists of 3 parts:

a) The evaluation part transforms f and g into their point-value representations Yy =
DFT,(f)and Yg = DFT,(g). As seen in class, this algorithm takes O(K'log K) basic op-
erations. But these operations are just additions, subtractions and multiplications by
powers of 2, all of complexity O(L). Thus the bit-complexity of this step is O(KLlog K).
b) In point-value representation, we obtain Y, = Y- Y, simply by coordinate-wise
multiplication. For each of the O(K) coordinates, we perform a multiplication and a
division with remainder (to reduce mod M) in time O(M (L)), so the complexity of this
step is O(KM(L)).

c) The interpolation part transforms Y}, into h, by computing h = (DFT,)~}(Y3) =
(K)"'DFT,-1Yy, where 2K)™! = —2L7%1 and w~! = —2L~L/K (why?). This part, as
part a), also has a complexity of O(KLlogK).

Therefore, the total complexity is O(KLlogK + KM(L)). Note: Considering that L =
K, and M(L) = Q(LlogL) for all currently known multiplication algorithms, we get
O(KLlogK + KM(L)) = O(KM(L)).

Exercise 3

We are given polynomials f(x) = Z?:o aixi and g(x) = Z?:o bjxj in Z[x], with |a;l,|bj| < B
for all 7, j, and want to compute h(x) = f(x) * g(x). We simply consider f, g, h as polynomi-
als in Z;[X], for conveniently chosen values of M and K, and perform the process detailed
in exercise 2.

Choosing K: We know that the degree of h is at most 2n. We pick K = 2¥ as the smallest
power of 2 such that 2K > 2n, so K <2n = 0O(n).

Choosing M = 2% +1: There are two conditions on L. First, L must be a multiple of K. Next, if
h(x) = Zi’io cixk, we have ¢; = Yirj=kaibj;soforany k, |ckl < 1X ;4 j=r aibjl < (n+ 1)B2. So
each coefficient c; takes one of 2(n+1) B?+1 possible values. Selecting M = 2(n+1)B?+1 en-
sures that i can be mapped from Z,[x] back to Z[x] unambiguously, so L = log, (2(n+ 1)B?).
We can pick an L satisifying both conditions, such that L = O(max(n,logn + size(B))) =
O(n+ size(B)).

Choosing w: We know that w = 2!/K will be a 2K-th root of unity.

Reconstruction: Once we find h(x) = Zi’i 0 cxx* in Zs[x], we make sure that each coefficient
cr is in the range [—%, %]. This is the correct mapping back to Z[x].

Complexity: From exercise 2, the total complexity is O(KM (L)) = O(nM (n + size(B))).

IPlease have a look at the chart on page 2 of the scanned notes for this explanation.
http://disopt.epfl.ch/files/content/sites/disopt/files/shared/cal15/Lecture08.pdf

Exercise 4

For convenience, when we reduce modulo 17, we opt to keep all numbers between -8 and 8.
For f(x) =5x°+3x%?—4x+3 and g(x) = 2x> —5x% + 7x -2 in Z17[x], the standard polynomial
multiplication (mod 17) gives h(x) = fx)g(x) = —=7x% - 2x> —5x* + 3x> + 2x*> — 5x — 6. We are
working in the framework of exercise 2, with L = K = 4, so from part 2.2 it follows directly
that w = 21X = 2 is a primitive 8-th root of unity. Its inverse is w~' = —8. The Vandermonde
matrices are:

4 -1 -4 1 4 -1 -4
2 4 8 -1 -2 -4 -8

P et et el et pd

1
1
1
, Vg = i
1
1
1

8
-4 -1 4 1 -4 -1 4
2

And V,V_g = 813. Seen as vectors, we have f = (3,-4,3,5,0,0,0,0) and g = (-2,7,-5,2,0,0,0,0).
In the evaluation part, we get Yy = DFT,(f) = Vo-f = (7,-4,-2,3,5,0,2,—4) and Yg = DFT_g(g) =
V_g-g=1(2,8,6,-7,1,—-1,0,—-8); and by coordinate-wise multiplication we obtain the vector
Y, =(-3,2,5,-4,5,0,0,-2).

Finally, DFT_g(Yy) = V_g- Y, =(3,-6,-1,7,-6,1,-5,0); and multiplying each entry of this
last vector by 8! = -2 yields h = (-6,-5,2,3,—5,—2,—7,0), which is what we computed at
the beginning.

Exercise 5
See the code.

