
Prof. Friedrich Eisenbrand

Dr. Yuri Faenza

Discussions from: September 24, 2013

Combinatorial Optimization

Fall 2013

Assignment Sheet 1

Exercise 1

Take the complete graph with three vertices and all edges of cost −1.

Exercise 2

1
2
4

3

3

2

Exercise 3

This is a special case of next exercise.

Exercise 4

There are several ways to show this. The proof we give does not rely on the knowledge of the

algorithm for computing a minimum spanning tree. Assume that w ∈Z (a similar argument

works for generic w). Let e1, . . . ,em be any ordering of the edges of the graph, and let w ′(ei) =

w(ei)+2−i . Since

2i
> 21

+·· ·+2i−1 for each i ∈N, (1)

we have that w(T) < w ′(T) < w(T)+ 1 for each subgraph T of G . In particular, if w(T ′) <

w ′(T ′) for each pair of trees T,T ′, then w ′(T) < w(T)+1≤ w(T) < w ′(T ′) (recall that w is in-

tegral). Even more in particular, a minimum spanning tree in (G , w ′) is one of the minimum

spanning trees in (G , w).

Now we show that no two spanning tree of G (actually, the argument works for any two

subgraphs) have the same cost wrt w ′. In fact, let T and T ′ be two subgraphs of G and

consider the fractional part of their cost, which we denote respectively by µ(T) and µ(T ′).

Note that µ(T) =
∑

i :ei∈E(T) 2−i and similarly for T ′. Let ei be the first edge where they differ,

and γ the fractional contribution given to T (and T ′) by the edges among e1, . . .ei−1 that they

1

have. Wlog let ei ∈ E (T) \ E (T ′). Then µ(T) ≥ γ+2−i and, from (1), µ(T ′) < γ+2−i , proving

the claim. In particular, there is a unique spanning tree of minimum cost.

Exercise 5

We show the contrapositive. Let G = (V ,E) be a connected graph with a cycle. From the

greedy algorithm for the minimum spanning tree problem, we now that there exists a tree

T = (V ,E ′) with E ′ ⊆ E . Note that |E ′| < |E |, else T has a cycle, a contradiction. Using the

“only if” part, we know that |E | > |E ′| = |V |−1, and the thesis follows.

Exercise 6

Let u and v be the two nodes of odd degree. Construct a walk (i.e. we take a sequence of

adjacent nodes, and we are allowed to pass multiple times of the same node) starting from u,

and picking each time an edge that has not been taken before in the walk. Since the number

of edges is finite, we eventually arrive at some node w where no edge available to extend

the walk. Suppose first w = u. Since we started from u, this implies that the walk used an

even number of edges incident on u, but this contradicts the fact that the degree of u is

odd and the path cannot be extended. If w 6= u, v , then the walk used an an odd number of

edges incident on w , again a contradiction. It must then be w = v . It is intuitive and routine

to prove (but you may want to check it explicitly) that, given a walk connecting two nodes,

there also exists a path connecting them.

Exercise 7

In a simple graph all nodes have degree between 0 and n − 1. Note that the events “there

is a node of degree 0” and “there is a node of degree n −1” are mutually exclusive. Hence,

suppose there is no node of degree 0 (the other case goes similarly). Then by the pigeon-hole

principle (where the nodes are the pigeons and the values of degrees from 1 to n −1 are the

holes), there exist two nodes with the same degree.

If the edges can appear multiple times, then the following is a counterexample.

Exercise 8

FYI, the algorithm ALGO is known as Prim’s algorithm, while the GREEDY one seen in

class is usually called Kruskal’s algorithm.

(b). A general comment on the algorithm: at each repetition of the WHILE, the connected

component U of v1 is increased by exactly one.

We first show that the graph T = (V , Ẽ) obtained at the end of the algorithm is a tree. Let

u ∈ V . We show that there is a path between u and v in T . In fact, let U be the connected

2

component of v1 in T . If U = V the claim follows, so suppose not. Since G is connected,

there exists a path between u ∈U and z ∈ V \U . Then each edge of this path connecting U

to V \U is candidate for being taken by the algorithm in the last step, a contradiction. Hence

T is connected. We now argue that T has no cycle. Suppose it had, and let e1, . . . ,ek be the

edges of the cycle, taken in this order. When the edge ek = w z was added, w, z were already

in the same connected component of (V , Ẽ), hence the algorithm could not have taken it, a

contradiction.

We now argue that it is a tree of minimum cost. Sort the edges of T as e1,e2, . . . ,en−1,

so that ei is inserted in Ẽ at the i-th iteration of the algorithm, and let T ′ be a minimum

spanning tree of G such that the minimum i such that ei ∉ E (T ′) is maximized. Let ei = uz

be the first edge of E (T)\E (T ′) – one must exists, else we are done. Call Ui the set U at at the

beginning of the i-th iteration, and assume wlog that u ∈ Ui and z ∉Ui . Since T ′ is a tree,

there exists a path between z and each node of Ui . Take such a path, and let e = w x be an

edge of this path with w ∉ Ui and x ∈ Ui . Note that e 6= e1, . . . ,ei , hence w(e) ≥ w(ei), else

ALGO would choose e at the i-th iteration. We claim that T ′′ = T ′ \ {e}∪ {ei } is a minimum

spanning tree. Clearly w(T ′′) = w(T ′)− w(e)+ w(ei) ≤ w(T ′), and E (T ′′) = E (T ′) = |V | − 1.

Moreover, pick any two nodes p, q ∈V , and consider the path connecting them in T ′. If this

path does not cross e , then it is still a path in T ′′. If conversely it does, then we can obtain a

walk between p and q by replacing the edge e with the path between w and z in T ′′ (which

exists by construction and is the same we have in T ′), the edge zu, and the path between u

and x. Hence T ′′ is a minimum spanning tree that contains e1, . . . ,ei , a contradiction.

(c). We present an O(|V |2) implementation using the adjacency matrix A, with edge costs

in each entry (and +∞ if no edge appears). At each repetition of the WHILE we keep an array

L of length O(|V |) that contains, for each v ∈ V \U , the cheapest edge (or any of them in

case of ties) between U and v , or +∞ if none. We can select the next edge to insert in Ẽ

(hence, the next node to join U) in O(|V |) by search through L. We can also update L in time

O(|V |). In fact, let u be the node inserted in U : for each v ∈ V \U we just compare the cost

of L[v] with the cost A[v][u], and keep the minimum. Since O(|V |) repetitions are needed,

the thesis follows.

(d). We now show an implementation in time O(|E | log |V |) using the adjacency list. This

requires some basic knowledge on binary heap that can be obtained e.g. by looking at the

Wikipedia page on this topic. We recall here some definitions and facts, specializing them

to our context:

• A binary heap is a data structure organized as a binary tree where each node has an

associated number, called key, and the value of each son is greater or equal than the

value of the parent;

• Given a set of n entries with keys, they can be organized in a binary heap in time

O(n logn).

• One can remove the minimum element of the heap (the root) and restore the heap

structure in time O(logn).

• One can update the key of a node and restore the heap structure in time O(logn).

3

The implementation is as follows: we keep the nodes of V \ U stored as a heap, where

the key is the edge of minimum cost connecting V \U to U . Consider a generic step of the

algorithm, where an edge vu is added to Ẽ and consequently a node u is added to U . We

eliminate the root, restore the heap structure, and then for each node adjacent to u check

if the newly introduced edge decreases the value of the heap and, in this case, update the

key and restore the heap structure. Let us analyze the complexity. Sorting the heap requires

O(|V | log |V |). Each elimination of the root plus restoring of the heap structure requires time

O(log |V |), and it is performed at most |V | times. Each update of the key plus restoring of the

heap structure requires log |V |, and in total it is performed at most once per edge, giving the

total complexity of O(|E | log |V |).

4

