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Note: The purpose of these notes is to give a sketch of one possible solution. We do not guarantee
correctness, nor completeness. It is your task to find and report mistakes.

Solution to Problem 1:
We use the following Chernoff bound proved in class for 0 < δ < 1:

Pr(X ≤ (1− δ)µ) ≤
(

e−δ

(1− δ)1−δ

)µ
.

We need now to show that (
e−δ

(1− δ)1−δ

)µ
≤ e−µδ2/2 .

This is equivalent with showing that

−δ − (1− δ) ln(1− δ) + δ2/2 ≤ 0 .

Let f(δ) := −δ− (1− δ) ln(1− δ) + δ2/2. We have f ′(δ) = ln(1− δ) + δ and f ′′(δ) = −1/(1− δ) + 1.
Since f ′(0) = 0 and f ′′(δ) < 0 for 0 < δ < 1 we have f ′(δ) ≤ 0. Since f(0) = 0 we therefore know
that f(δ) ≤ 0 for 0 < δ < 1.
It remains to show the statement for δ = 1. Then, we need to show

Pr(X ≤ (1− δ)µ) = Pr(X ≤ 0) = Pr(X = 0) ≤ e
−µ
2

Now, X = 0 only happens when all poisson trials Xi = 0. Thus,

Pr(X = 0) =

n∏
i=1

(1− pi) ≤
n∏
i=1

e−pi = e−
∑n
i=1 pi = e−µ ≤ e−µ/2.

Solution to Problem 2 (due to Anastasios Kyrillidis):
Easy solution: write q = a

b for integers a and b, use the procedure from the last assignment to
generate a random integer r from the interval [0, b− 1] and return 1 if r ≤ a− 1 and otherwise 0.
This solution has the problem that it requires unbiased random bits. The following is a solution
even if the source is biased with some fixed probability.
Again, write q = a

b . Create the following set:

S = {000 . . . 001, 000 . . . 010, 000 . . . 100, . . . , 001 . . . 000, 010 . . . 000, 100 . . . 000},

where each element s ∈ S has b bits thereof exactly one is 1 and the rest 0. Pick a elements of S
(it does not matter which ones) to obtain T ⊆ S. Set T̄ = S \ T .
Now consider the stream of bits from the source. We sample b bits. If this sequence is in T , we
return 1. If the sequence is in T̄ , we return 0. Otherwise, we sample again. Continue until success.
Since all the elements of S have same probability of occurrence in the stream of bits of the source,
this gives the wanted sample probability. Furthermore, even though this process is not very efficient,
the expected number of needed bits is bounded (probability that the sample is neither in T nor T̄
is strictly smaller than 1 by some ε).



Solution to Problem 3 (due to Mingfu Shao):
Let Y denote the random variable that counts the number of people that want the president to
be impeached; Y =

∑N
i=1 Yi where N is the number of people queried. We have E[Yi] = p and

E[Y ] = Np.
Let X = Y/N be the estimator for p. Then,

Pr(|X − p| ≤ εp) = Pr(|Y/N − p| ≤ εp) = Pr((1− ε)Np ≤ Y ≤ (1 + ε)Np)

= 1− Pr(Y ≤ (1− ε)Np)− Pr((1 + ε)Np ≤ Y ) .

Applying Chernoff bounds (the Yi are all independent) we get

Pr(Y ≤ (1− ε)Np) ≤ e
−Npε2

2

Pr(Y ≥ (1 + ε)Np) ≤ e
−Npε2

3

which gives

Pr(|X − p| ≤ εp) ≥ 1− 2e
−Npε2

3 .

Our goal is to lower bound this probability by 1− δ. Hence, we want

2e
−Npε2

3 < δ

which gives

N >
−3 ln δ

2

pε2
.

Thus, by setting N =
⌊
−3 ln(δ/2)

pε2

⌋
+ 1 we obtain the desired property for X.

Solution to Problem 4 (due to Alexandre Duc):

(a) Let Xi be a random variable which is 1 if vote i is misrecorded and 0 else for 1 ≤ i ≤ N =
1 000 000. Then, Pr(Xi = 1) = p for 1 ≤ i ≤ N . Set X =

∑N
i=0Xi. We have µ := E[X] = Np =

20000. Hence,

Pr

(
X ≥ 4

100
N

)
= Pr(X ≥ 40000) = Pr(X ≥ (1 + 1)µ) ≤

(
e1

22

)µ
=
(e

4

)20000
.

(b) Let X be the number of votes for A that are misrecorded. Let Y be the number of votes
for B that are correctly recorded. Candidate B wins the election if Y + X > 500 000. Note that
both X and Y are the sum of Poisson trials with Pr[Xi = 1] = 0.02 for X =

∑510 000
i=1 Xi and

Pr[Yj = 1] = 0.98 for Y =
∑490 000

j=1 Yj . Note also that all these trials are independent. We can,
thus, apply the Chernoff bound on X + Y .

E[X + Y ] = 510 000p+ 490 000(1− p) = 490 400 .

Then,

Pr(X + Y > 500 000) = Pr

(
X + Y > (1 +

9600

490400
)490400

)
= Pr

(
X + Y > (1 +

12

613
)E[X + Y ]

)
.



By the Chernoff bound seen in class, we get

Pr(X + Y > 500 000) ≤ exp

{
−
E[X + Y ]

(
12
613

)2
3

}
= exp

{
−38 400

613

}
.

Solution to Problem 5:
The proof is done as in the lecture. Let Yi = aiXi. The only difference is when finding a bound on
E[etYi ]:

E[etYi ] = pie
tai + (1− pi) = 1 + pi(e

tai − 1) ≤ 1 + aipi(e
t − 1) ≤ eaipi(et−1).

The first inequality follows by considering f(a) = a(et − 1)− eta + 1 and showing that f(a) ≥ 0 for
0 ≤ a ≤ 1. The proof of the other weighted Chernoff inequality is analogous.

Solution to Problem 6 (due to Alexandre Duc):

(a) By definition of d, there is at least one packet which needs to travel a distance of d. This
packet will take at least d steps to reach its destination. Hence, the schedule is Ω(d). Similarly,
there is at least one edge in G which is traversed by c packets. Since only one packet can traverse
this edge at the same time, it takes at least c steps for all the packets to traverse this edge. Hence,
the schedule is Ω(c). Thus, the schedule is Ω(d+ c).

(b) Fix an edge e and a time step t. Consider all the packets that traverse e. The probability that
one specific such packet traverses e at time t is 1

dαc/ log(Nd)e . Denote this by p. The probability that

some fixed log(Nd) packets traverse e at time t is thus plog(Nd). Since at most c packets traverse
through e, the probability that (any) log(Nd) packets traverse e at time t is at most(

c

log(Nd)

)
plog(Nd).

(c) We can now set α sufficiently large. For easier calculations we omit the de. Then,(
c

log(Nd)

)(
log(Nd)

αc

)log(Nd)

≤
(

ec

log(Nd)

)log(Nd)( log(Nd)

αc

)
=
( e
α

)logNd
,

where the inequality follows due to Stirling’s inequality (n! > nne−n).
Now, we would like to apply the union bound over all time steps and all edges. There are at most
Nd edges that are getting traversed by some packet. There are at most d + αc

log(Nd) time steps in
which packets can travel. Hence, the probability, that any edge at any time step is traversed by
more than log(Nd) packets is at most(

d+
αc

log(Nd)

)
Nd

( e
α

)log(Nd)
.

Set α = 8e to obtain (
d+

8ec

log(Nd)

)
Nd

1

(Nd)3
<

2

Nd

since c ≤ N and N sufficiently large.



(d) We convert the unconstrained schedule of the previous question into a constrained schedule by
simply extending each time step into log(Nd) time steps. Since we proved that with high probability
we do not have more than log(Nd) packets traversing one edge, with this “extended time” we can
let each packet take one arbitrary extended slot. The queue sizes are of size O(log(Nd)) since at
most O(log(Nd)) packets cross an edge at the same time in the unconstrained schedule (with high
probability). We showed before that the maximal length of the unconstrained schedule is αc

log(Nd) +d.
Thus, the maximal length of the new schedule is(

αc

log(Nd)
+ d

)
log(Nd) = αc+ d log(Nd) ∈ O(c+ d log(Nd)) .

Solution to Problem 7 (due to Alexandre Duc):
We will use the following Chernoff type bound (Probability and Computing, Exercise 4.15): Let
X1, . . . , Xn be independent random variables such that

Pr(Xi = 1− p) = pi and Pr(Xi = −pi) = 1− pi .

Let X =
∑n

i=1Xi. Then,

Pr(|X| ≥ a) ≤ 2e−2a
2/n .

To show that there exists a q such that ‖A(p−q)‖∞ = O(
√
n log n) we use the probablistic method,

i.e., we devise a randomized method to generate a q and show that the probability Pr(‖ . . . ‖ =
O(. . . )) > 0.
Let pi (resp. qi) denote the ith component of p (resp. q). Set each qi to 1 with probability pi.
Now, consider any row i of A. It is easy to see that E[Ai(p− q)] = 0. We have

Pr
(
|Ai(p− q)| ≥ c

√
n log n

)
= Pr

(
|Ai,1(q1 − p1) + · · ·+Ai,n(qn − pn)| ≥ c

√
n log n

)
.

Let ki be the number of non-zero elements (1s) in Ai. We can consider the terms (qj − pj) for all
non-zero Ai,j as ki independent variables that obey the above conditions. Hence, we can apply the
above bound to obtain

Pr
(
|Ai(q − p)| ≥ c

√
n log n

)
≤ 2e−2c

2n logn/ki ≤ 2e−2c
2n logn/n = 2e−2c

2 logn ≤ 2

n2

for an appropriate choice of c. By the union bound we finally get

Pr
(
‖A(p− q)‖∞ ≥ c

√
n log n

)
≤ 2

n
.

which gives us the wanted result

Pr
(
‖A(p− q)‖∞ < c

√
n log n

)
> 0 .


