The problem can be submitted until March 15, 12 :00 noon, either at the exercise session or into the box in front of MA C1 563.

Student(s) 円:
Question 1: The question is worth 5 points.
$\square 0 \square 1 \square 2 \square 3 \square 4 \square 5 \quad$ Reserved for the corrector

Consider a linear program $\max \left\{c^{T} x: x \in \mathbb{R}^{n}, A x \leq b\right\}$ with $A \in \mathbb{R}^{m \times n}$ full column rank and a feasible basis $B \subseteq\{1, \ldots, m\}$. (Recall that a basis is feasible if $x_{B}^{*}=A_{B}^{-1} b_{B}$ is a feasible solution, in fact a vertex.) The aim is to show that, if B is not an optimal basis, x_{B}^{*} is not an optimal solution under a certain condition.
(i) Show that there exists a unique $\lambda \in \mathbb{R}^{m}$ such that

$$
\lambda^{T} A=c^{T} \text { and } \lambda_{j}=0 \text { for each } j \notin B .
$$

(ii) Let $i \in B$. Show that there exists a unique $d_{i} \in \mathbb{R}^{n}, d_{i} \neq 0$ such that

$$
a_{j}^{T} d_{i}= \begin{cases}0 & \text { for } j \in B \backslash\{i\} \\ -1 & \text { if } j=i\end{cases}
$$

Show that $\lambda_{i}<0$ implies $c^{T} d_{i}>0$.
(iii) Conclude that, if the inequalities that are tight at x_{B}^{*} are those indexed by B only, then x_{B}^{*} is not optimal.

[^0]
Sol.:

(i) Consider the matrix A_{B} given by the basis B. Since B is feasible, it is of full rank and we can write $\lambda_{B}=c^{T} A_{B}^{-1}$. Note that λ_{B} is in \mathbb{R}^{n} and it is the unique vector with this property. To get λ we complete λ_{B} to a vector in \mathbb{R}^{m} by adding zeros for all elements not in B :

$$
\lambda_{j}= \begin{cases}\left(\lambda_{B}\right)_{j} & \text { for } j \in B \\ 0 & \text { if } j \notin B\end{cases}
$$

The uniqueness of λ is given by the fact that λ_{B} is unique.
(ii) Fix $i \in B$. The vector d_{i} is a solution to the linear program $A_{B} x=-e_{i}$. Since A_{B} is a basis, it is invertible and we get $d_{i}=-A_{B}^{-1} e_{i}$, which is the i-th column of $-A_{B}^{-1}$. This gives the existence and uniqueness of d_{i}.
For the second part, let i be a coefficient with $\lambda_{i}<0$. Then :

$$
c^{T} d_{i}=\left(\lambda_{B}^{T} A_{B}\right)\left(-A_{B}^{-1} e_{i}\right)=-\lambda_{B}^{T} e_{i}=-\lambda_{i}>0
$$

(iii) Suppose that the only tight inequalities at x_{B}^{*} are those indexed by B. Since B is not an optimal basis, $\lambda \nsupseteq 0$ which implies that there exists an index i with $\lambda_{i}<0$.
Consider d_{i} as described in (ii). Note that non of the inequalities $a_{j}^{T} x \leq b_{j}$ are tight at x_{B}^{*} for all $j \notin B$. So for every vector $v \in \mathbb{R}^{n}$, there exists $\varepsilon>0$ such that $a_{j}^{T}\left(x_{B}^{*}+\varepsilon v\right) \leq b_{j}$ for all $j \notin B$. This is true in particular for the vector d_{i}. By the way d_{i} was chosen, for all $i \neq j \in B$ we get $a_{j}^{T}\left(x_{B}^{*}+\varepsilon d_{i}\right)=a_{j}^{T} x_{B}^{*}+\varepsilon a_{j}^{T} d_{i}=b_{j}+0 \leq b_{j}$ and $a_{i}^{T}\left(x_{B}^{*}+\varepsilon d_{i}\right)=a_{i}^{T} x_{B}^{*}+\varepsilon a_{i}^{T} d_{i}=b_{i}-\varepsilon \leq b_{i}$. Thus the point $\left(x_{B}^{*}+\varepsilon d_{i}\right)$ is a feasible point of our polytope $A x \leq b$.
It remains to show that the objective improves at $x_{B}^{*}+\varepsilon d_{i}$. This is easy to calculate since $c^{T} d_{i}>0$ and so we get $c^{T}\left(x_{B}^{*}+\varepsilon d_{i}\right)=c^{T} x_{B}^{*}+\varepsilon c^{T} d_{i}>c^{T} x_{B}^{*}$

[^0]: 1. You are allowed to submit your solutions in groups of at most three students.
