The problem can be submitted until April 5, 12 :00 noon, either at the exercise session or into the box in front of MA C1 563.

$Student(s)^{1}$:

Question 1 : The question is worth 5 points.

		1	$\square 2$		3		$4 \lfloor$		5	Reserved for the corrector
--	--	---	-------------	--	---	--	-------------	--	---	----------------------------

Given a graph G = (V, E) with a weight function $w : V \to \mathbb{R}$ on its vertices. Consider the following linear program and its dual.

Primal				Dual			
$\min\sum_{v\in V} w(v)x_v$				$\max \sum_{e \in E} y_e$			
$x_u + x_v$	\geq	1	$\forall \{u, v\} \in E$	$\sum_{e \in E, e \ni v} y_e$	\leq	w(v)	$\forall v \in V$
x_v	\geq	0	$\forall v \in V$	y_e	\geq	0	$\forall e \in E$

Define $C_y \subseteq V$ to be the set of vertices for which the corresponding dual constraints are tight in y, i.e. $C_y = \{v \in V : \sum_{e \in E, e \ni v} y_e = w(v)\}.$

We apply the following algorithm for the dual linear program :

- Initialize the dual solution y to be $y_e = 0$ for every $e \in E$
- While there exists $\{u, v\} \in E$ such that $C \cap \{u, v\} = \emptyset$: Increase $y_{u,v}$ until one of the dual constraints (corresponding to u or v) becomes tight.
- Return y

Let y be the solution given by the algorithm and C_y its corresponding set of vertices. Show that for an optimal solution x^* of the primal linear program :

$$\sum_{v \in C_y} w(v) \le 2 \sum_{v \in V} w(v) x_v$$

^{1.} You are allowed to submit your solutions in groups of at most three students.