Algèbre linéaire avancée II

printemps 2019

Série 13

Exercice 1.

- i) Montrer que $\mathbb{Z}/6\mathbb{Z} \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$.
- ii) Montrer que $\mathbb{Z}/4\mathbb{Z} \not\simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.
- iii) Soient $m, n \in \mathbb{N}_{>0}$ tel que $m \mid n$. Montrer qu'il existe un surjective homomorphisme des groupes

$$\mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$$
.

Exercice 2. Si H est un sous-groupe normale de G, $H \triangleleft G$, et |H| = 2, montrer que $H \subseteq Z(G)$, où

$$Z(G) = \{ z \in G \mid zg = gz \ \forall g \in G \}.$$

Exercice 3. Soient $A \in \mathbb{Z}^{m \times n}$ et $A' \in \mathbb{Z}^{m \times n'}$ deux matrices de rang ligne plein. Montrer que si $\Lambda = \Lambda(A) \subseteq \Lambda(A') = \Lambda'$, alors $\det(\Lambda') \mid \det(\Lambda)$.

Exercice 4. Soient $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$, $\mathbb{R}_+ = \{r \in \mathbb{C} \mid \Re(r) > 0, \Im(r) = 0\}$ et $S = \{c \in \mathbb{C} \mid |c| = 1\}$.

- i) Montrer que (\mathbb{R}_+,\cdot) est un sous-groupe de $(\mathbb{C}^\star,\cdot).$
- ii) Montrer que (S,\cdot) est un sous-groupe de $(\mathbb{C}^{\star},\cdot)$.
- *iii*) Montrer que $\mathbb{C}^*/\mathbb{R}_+ \simeq S$.

Exercice 5. Soit $\Lambda(B) \subseteq \mathbb{Z}^n$ un réseau entier pour une matrice inversible $B \in \mathbb{Z}^{n \times n}$, $d = |\det(B)|$, et $\langle \cdot, \cdot \rangle$ le produit scalaire standard. Soit $D = d(B^{-1})^{\intercal}$.

- i) Soient $x \in \Lambda(B)$, $y \in \Lambda(D)$. Montrer que $\langle x, y \rangle \in d\mathbb{Z}$.
- ii) Soit $z \in \mathbb{R}^n$, et $\langle x, z \rangle \in d\mathbb{Z}$ pour tout $x \in \Lambda(B)$. Montrer que $z \in \Lambda(D)$.

Exercice 6. Soit $\Lambda(B) \subseteq \mathbb{Z}^n$ un réseau entier pour une matrice inversible $B \in \mathbb{Z}^{n \times n}$ et $\langle \cdot, \cdot \rangle$ le produit scalaire standard de \mathbb{R}^n . Soit $a \in \mathbb{R}^n$ un vecteur tel que $\langle a, x \rangle \in \mathbb{Z}$ pour tout $x \in \Lambda(B)$. Soit

$$\Lambda' := \{ x \in \Lambda \mid \langle a, x \rangle = 0 \} .$$

Montrer que Λ' est un sous-groupe de $\Lambda(B)$.

Exercice 7. Soit G un groupe abelien généré a g_1, g_2, g_3 , tel que

$$-25g_1 + 7g_2 + 11g_3 = 0,$$

$$18g_1 - 4g_2 - 8g_3 = 0,$$

$$-10g_1 + 2g_2 + 4g_3 = 0.$$

Utilizer la forme normale de Smith pour trouver générateurs h_1, \ldots, h_m tel que G est le groupe avec conditionnes $k_i h_i = 0$.

Indication:

$$\begin{pmatrix} -5 & 4 & -2 \\ 3 & -1 & 1 \\ 3 & -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 6 \end{pmatrix} \begin{pmatrix} -3 & 2 & -2 \\ -2 & 2 & -1 \\ 2 & -1 & 1 \end{pmatrix}.$$

Exercice 8. Soit $A \in \mathbb{Z}^{m \times n}$ et $d \in \mathbb{Z}$ un nombre entier qui divise chaque composante de A. Si $U \in \mathbb{Z}^{m \times m}$ et $V \in \mathbb{Z}^{n \times n}$ sont des matrices unimodulaires, alors d divise chaque composante de $U \cdot A \cdot V$.