Graph theory - solutions to problem set 1

1. Given a graph G with vertex set V = {v1,...,v,} we define the degree sequence of G to be the list
d(v1),...,d(vy) of degrees in decreasing order. For each of the following lists, give an example of a
graph with such a degree sequence or prove that no such graph exists:

(a) 3,3,2,2,2,1
(b) 6,6,6,4,4,3,3
(c) 6,6,6,4,4,2,2

Solution:

(a) There is no such graph; since by problem 5, the number of odd-degree vertices in a graph is always
even.

(b) Cousider the following graph:

(¢) No, since otherwise we have 3 vertices of degree 6 which are adjacent to all other vertices of the
graph; so each vertex in the graph must be of degree at least 3.

2. Construct two graphs that have the same degree sequence but are not isomorphic.

Solution: Let G; be of a cycle on 6 vertices, and let G2 be the union of two disjoint cycles on 3
vertices each. In both graphs each vertex has degree 2, but the graphs are not isomorphic, since one is
connected and the other is not.

3. A graph is k-regular if every vertex has degree k. How do 1-regular graphs look like? And 2-regular
graphs?

Solution: A 1l-regular graph is just a disjoint union of edges (soon to be called a matching). A
2-regular graph is a disjoint union of cycles.

4. How many (labelled) graphs exist on a given set of n vertices? How many of them contain exactly m
edges?

n
2

these edges, we get that there are 2(3) possible graphs on n vertices. For the second problem, out of

Solution: Since there are ( ) possible edges on n vertices, and a graph may or may not have each of

the (Z) possible edges, we want to choose m ones. So there are ((ﬁ?) possible graphs on n vertices and
with m edges.

5. Prove that the number of odd-degree vertices in a graph is always even.
Solution: Let G = (V, E) be an arbitrary graph. In the lecture we have proved that ) . d(v) = 2|E].

Let Vi C V be the set of vertices of G which have odd degree and V5 = V\V; be the set of vertices of
G which have even degree. We have that

D dw) =Y d)+ > dv) =2|E]|.
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Since all the vertices in V5 have even degree, and 2|E| is even, we obtain that ) .y, d(v) is even. But
since V; is the set of vertices of odd degree, we obtain that the cardinality of V] is even (that is, there
are an even number of vertices of odd degree), which completes the proof.

. Let G be a graph with minimum degree § > 1. Prove that G contains a cycle of length at least § + 1.
Solution: First, let’s recall how we proceeded in the lecture to find a path of length at least d:

Let vy - - - v be a maximal path in G, i.e., a path that cannot be extended. Then any neighbor of vy
must be on the path, since otherwise we could extend it. Since v; has at least §(G) neighbors, the set
{va, ..., v} must contain at least §(G) elements. Hence k > §(G) + 1, so the path has length at least
0(G).

Now in order to find a cycle of length at least § + 1, we continue the proof above. The neighbor of v
that is furthest along the path must be v; with ¢ > §(G) + 1. Then vy ---v;01 is a cycle of length at
least 6(G) + 1.

. Show that every graph on at least two vertices contains two vertices of equal degree.

Solution: Suppose that the n vertices all have different degrees, and look at the set of degrees. Since
the degree of a vertex is at most n — 1, the set of degrees must be

{0,1,2,...,n—2,n—1}.

But that’s not possible, because the vertex with degree n — 1 would have to be adjacent to all other
vertices, whereas the one with degree 0 is not adjacent to any vertex.

. Prove that at a meeting of at least 6 people, there are always 3 that mutually know each other, or 3
that mutually do not know each other.

Hint: start by proving the following statement. If G is a graph on at least 6 vertices, then either G or
its complement has a vertex of degree at least 3.

The complement of a graph G = (V, E), denoted G, is the graph with set of vertices V and set of
edges B¢ = {uv | uv ¢ E}.

Solution: Let G = (V, E) be a graph on at least 6 vertices and v a vertex of G of maximum degree
A. If A > 3, then v is the vertex we are looking for. On the other hand, if A < 3 then v has degree
at least 3 in GC.

Now consider any edge uv of G to represent person u knows person v. Without loss of generality,
consider the case where G has a vertex v of degree 3. Look at the neighbors vy, vo, v3 of v: if any two
of them are connected, we get a triangle vv;vy and thus 3 people know each other. If not, we get the
triangle v;v9vs in G¢ and thus 3 people do not know each other.

. What is the maximum number of edges in a bipartite graph on n vertices? (Prove your answer.)

Solution: Let G = (AU B, E) be a bipartite graph, with A, B disjoint and |A| 4+ |B| = n. Since
all the edges of G have one endpoint in A and the other in B, the number of edges |E| of G cannot
exceed the number of pairs (a,b) € A x B, so |E| < |A|-|B| =|A|(n—|A|). Intuitively, such a product
is maximized when the two factors are equal, so when |A| = |n/2]. More formally, we can use the
inequality 4zy < (z + )2 to get
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Therefore, the number of edges of a bipartite graph on n edges is at most n?/4.

Note that n?/4 is exactly the maximum when n is even, because then it is attained by the complete
n2—1

bipartite graph K, 2 /2. When n is odd, the maximum is actually | §]-[5] = "=, which is attained
by Kiny2),fn/21-




