Discrete Optimization 2024 (EPFL): Problem set of week 12

May 22, 2024

1. Verify that $\left\{(x, y) \in \mathbb{R}^{2} \mid 5 x^{2}-2 x y+2 y^{2} \leq 1\right\}$ is an ellipse and find its area.
2. Let B be the unit ball in \mathbb{R}^{3} and let H be the hyperplane $H=\{x+$ $3 y+2 z=0\}$.
Consider the linear transformation

$$
T=\left(\begin{array}{ccc}
1 & 1 & 2 \\
-1 & 0 & 1 \\
2 & 1 & 0
\end{array}\right)
$$

What is the (two dimensional) area of $T(B \cap H)$?
3. Let $E \subset \mathbb{R}^{3}$ be the ellipsoid $E=\left\{(x, y, z) \left\lvert\, \frac{(x+2 y-z)^{2}}{4}+\frac{(y-x-z)^{2}}{9}+\right.\right.$ $\left.\frac{(2 x-y-2 z)^{2}}{25} \leq 2\right\}$. What is the volume of E ?
4. Let $E \subset \mathbb{R}^{3}$ be the ellipsoid $E=\left\{(x, y, z) \left\lvert\, x^{2}+\frac{y^{2}}{4}+\frac{z^{2}}{9} \leq 1\right.\right\}$.

Let H^{+}be the half-space $H^{+}=\{(x, y, z) \mid x+y+z \geq 0\}$.
Find an ellipsoid E^{\prime} such that $E^{\prime} \supset E \cap H^{+}$and $\operatorname{Vol}\left(E^{\prime}\right) \leq \operatorname{Vol}(E) e^{-1 /(2(3+1))}$.

