Discrete Optimization 2024 (EPFL): Problem set of week 12

June 10, 2024

1. Verify that $\left\{(x, y) \in \mathbb{R}^{2} \mid 5 x^{2}-2 x y+2 y^{2} \leq 1\right\}$ is an ellipse and find its area.
Solution: We can write $5 x^{2}-2 x y+2 y^{2}=(x+y)^{2}+(2 x-y)^{2}$. Therefore, $T(x, y)=(x+y, 2 x-y)$ takes the ellipse to the unit disc (of area π). We see from here that T^{-1} takes the unit disc to the ellipse. Therefore, we have an ellipse of area $\pi\left|\operatorname{det}\left(T^{-1}\right)\right|=\pi \frac{1}{3}$.
2. Let B be the unit ball in \mathbb{R}^{3} and let H be the hyperplane $H=\{x+$ $3 y+2 z=0\}$.
Consider the linear transformation

$$
T=\left(\begin{array}{ccc}
1 & 1 & 2 \\
-1 & 0 & 1 \\
2 & 1 & 0
\end{array}\right)
$$

What is the (two dimensional) area of $T(B \cap H)$?
Solution: We find two linearly independent vectors in $H: u=(2,0,-1)$ and $v=(3,-1,0)$. We calculate the area of the parallelogram they generate (equal to $\sqrt{|u|^{2}|v|^{2}-<u, v>^{2}}$) and we get $\sqrt{14}$. Then we consider $T(u)=(0,-3,4)$ and $T(v)=(2,-3,5)$ and compute the area of the parallelogram they generate: $\sqrt{109}$. Therefore, the area of $T(B \cap H)=\frac{\sqrt{109}}{\sqrt{14}} \pi$.
3. Let $E \subset \mathbb{R}^{3}$ be the ellipsoid $E=\left\{(x, y, z) \left\lvert\, \frac{(x+2 y-z)^{2}}{4}+\frac{(y-x-z)^{2}}{9}+\right.\right.$ $\left.\frac{(2 x-y-2 z)^{2}}{25} \leq 2\right\}$. What is the volume of E ?
Solution: We observe that if we consider any point (x, y, z) in E and then apply the linear transformation $T(x, y, z)=((x+2 y-z) / 2,(y-$
$x-z) / 3,(2 x-y-2 z) / 5$, then (x, y, z) goes to a point in the unit ball of radius $\sqrt{2}$ whose volume is $(4 / 3) \pi(s q r t 2)^{3}$. The matrix representing T is the matrix $\left(\begin{array}{ccc}1 / 2 & 2 / 2 & -1 / 2 \\ -1 / 3 & 1 / 3 & -1 / 3 \\ 2 / 5 & -1 / 5 & -2 / 5\end{array}\right)$. We calculate its determinant and find it is equal to $-1 / 3$. It follows now that $1 / 3$ times the volume of E is equal to $(4 / 3) \pi(\sqrt{2})^{3}$. Therefore, the volume of E is euqal to $8 \sqrt{2} \pi$.
4. Let $E \subset \mathbb{R}^{3}$ be the ellipsoid $E=\left\{(x, y, z) \left\lvert\, x^{2}+\frac{y^{2}}{4}+\frac{z^{2}}{9} \leq 1\right.\right\}$.

Let H^{+}be the half-space $H^{+}=\{(x, y, z) \mid x+y+z \geq 0\}$.
Find an ellipsoid E^{\prime} such that $E^{\prime} \supset E \cap H^{+}$and $\operatorname{Vol}\left(E^{\prime}\right) \leq \operatorname{Vol}(E) e^{-1 /(2(3+1))}$.
Solution: The linear transformation $T(x, y, z)=\left(x, \frac{y}{2}, \frac{z}{3}\right)$ takes the ellipsoid E to the unit ball B. Notice that T takes H^{+}to the half-space $G^{+}=\{x+2 y+3 z \geq 0\}$. Now we find a linear transformation R that will rotate the space about the origin such that B will remain fixed but G^{+} will go to the half space $\{x \geq 0\}$. This part is technical. One elegant way to do this is to take the vector $u=\frac{1}{\sqrt{14}}(1,2,3)$ and complete it to an orthonormal basis: take also the vector $v=\frac{1}{\sqrt{5}}(-2,1,0)$ and the vector w perpendicular to both u and v (you need to find it). Then consider the linear transformation R that takes u, v, w to $(1,0,0),(0,1,0)$, and $(0,0,1)$. This is the inverse of the matrix whose columns are u, v, w.
The linear transformation $R(T(\cdot))$ takes $E \cap H^{+}$to the half ball $B \cap\{x \geq$ $0\}$. By the half-ball theorem that we proved in class, the ellipsoid $F=\left\{\frac{16}{9}\left(x-\frac{1}{4}\right)^{2}+\frac{8}{9} y^{2}+\frac{8}{9} z^{2} \leq 1\right\}$ contains the half ball $B \cap\{x \geq 0\}$ and we also have $\operatorname{Vol}(F) \leq e^{\frac{-1}{2(3+1)}} \operatorname{Vol}(B)$.
If we now apply $T^{-1}\left(R^{-1}(\cdot)\right)$ on F we get the desired ellipsoid E^{\prime}. One can get from here the algebraic description of E^{\prime}. Technically, we need to replace x, y, and z in the algebraic description of F by $R(T(x, y, z))$.

