Are large cuts necessary?

Friedrich Eisenbrand*

January 9, 2025

1 Gomory-Chvátal cutting planes

Let $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ be a polyhedron where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$. For any $c \in \mathbb{Z}^n$ and $\delta \geq \max\{c^Tx : Ax \leq b\}$, the inequality $c^Tx \leq \lfloor \delta \rfloor$ is called a *Gomory-Chvátal cutting plane* [4, 1], or briefly *cutting plane* of P. It is valid for all integer points $x \in P \cap \mathbb{Z}^n$ and therefore also for the integer hull P_I of P.

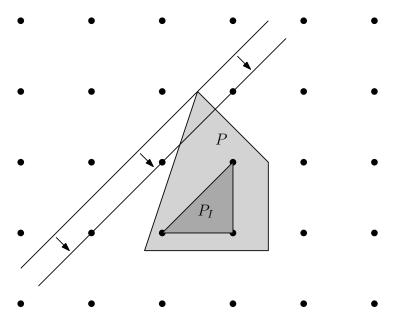


Figure 1: The valid inequality $-x_1 + x_2 \le \delta$ yields the cutting plane $-x_1 + x_2 \le \lfloor \delta \rfloor$.

For the ease of notation we will also write $c^Tx \leq \delta$ for the set of points $\{x \in \mathbb{R}^n : c^Tx \leq \delta\}$. The intersection of all cutting planes of P is denoted by

$$P' = \bigcap_{\substack{(c^T x \le \delta) \supseteq P \\ c \in \mathbb{Z}^n}} (c^T x \le \lfloor \delta \rfloor). \tag{1}$$

By applying the closure operator *i*-times successively, one obtains $P^{(i)}$, the *i*-th elementary closure of $P \subseteq \mathbb{R}^n$.

The *Chvátal rank* [6] of a polyhedron P is the smallest natural number $i \in \mathbb{Z}_{\geq 0}$ such that $P^{(i)} = P_I$. Schrijver [6] has shown that the Chvátal rank of a rational polyhedron is always finite.

^{*}EPFL, Switzerland, friedrich.eisenbrand@epfl.ch

The research problem

In principle, one could generate cutting planes $c^T x \leq \lfloor \delta \rfloor$ such that $\|c\|_{\infty}$ is larger than the corresponding value of the largest facet normal-vector.

In this project, the student has to find out whether this is really necessary and eventually change the cutting-plane procedure such that large cutting planes never appear.

References

- [1] V. Chvátal. Edmonds polytopes and a hierarchy of combinatorial problems. *Discrete Mathematics*, 4:305–337, 1973.
- [2] W. Cook, C. R. Coullard, and G. Turán. On the complexity of cutting plane proofs. *Discrete Applied Mathematics*, 18:25–38, 1987.
- [3] W. Cook, A. M. H. Gerards, A. Schrijver, and É. Tardos. Sensitivity theorems in integer linear programming. *Math. Programming*, 34(3):251–264, 1986.
- [4] R. E. Gomory. Outline of an algorithm for integer solutions to linear programs. *Bulletin of the American Mathematical Society*, 64:275–278, 1958.
- [5] V. Reis and T. Rothvoss. The subspace flatness conjecture and faster integer programming. In 2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS), pages 974–988. IEEE, 2023.
- [6] A. Schrijver. On cutting planes. Annals of Discrete Mathematics, 9:291-296, 1980.
- [7] A. Schrijver. Theory of Linear and Integer Programming. John Wiley, 1986.