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In recent decades, wildfires have increasingly deviated from their natural role in Earth’s
ecosystems due to climate change and the intensification of fire weather. Terrestrial
ecosystems that were once largely unaffected by fires are now under significant threat
from large wildfires, such as the boreal ecosystem that was devastated in 2023. Beyond
the substantial impact on local ecology, this phenomenon poses a more global threat,
as the boreal forest is one of the largest terrestrial carbon sinks [3]. Its destruction
exacerbates climate change by releasing stored carbon. Additionally, wildfires represent
a major natural hazard to human society, causing extensive material damage and loss
of life.

As a result, it is crucial to enhance our understanding of wildfire drivers and improve
our ability to accurately forecast wildfire risks on a global scale in the context of climate
change. Historically, wildfire forecasting has relied on fire weather indices such as the
Canadian Forest Fire Weather Index [18]. However, Machine Learning, particularly Deep
Learning, leveraging the growing availability of open-source Earth Observation data [5],
holds the potential to surpass traditional process-based approaches that depend on
established scientific relationships between fire drivers. Wildfire forecasting can be ap-
proached in various ways, including monthly regression of wildfire frequency and size
based on tabular environmental data [4, 1], dense predictions of wildfire occurrences
at different time horizons incorporating spatial context [11, 15, 20], dense predictions
of wildfire spread [12], and next-frame video prediction for wildfire spread [10]. In this
project we will focus on the framework from [15] presented in Figure 1 by leveraging the
SeasFire dataset [13] containing global wildfire drivers and labels at a spatial resolution
of 0.25 degrees.

Figure 1: Wildfire forecasting as a dense prediction task [15].

The methods mentioned previously aim to improve wildfire risk prediction but lose the link
between environmental drivers and wildfire risk provided by fire weather indices. This
project leverages eXplainable Artificial Intelligence (XAI) to enhance wildfire forecasting,
aiming to discover and confirm scientific insights on global fire seasons through inter-
pretable model structures. The field of XAI aims to mitigate the risks of model opacity by
making aspects of the decision process understandable to humans [8]. XAI methods are
divided into post-hoc and by-design approaches: post-hoc methods explain black-box
models after training, while by-design methods ensure interpretability within the model
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itself.

In this project, we will focus on per-design methods as post-hoc approaches have limita-
tions in terms of faithfulness, detailed information, and completeness [16] despite being
commonly used in wildfire forecasting [20]. In particular, we will investigate case-based
reasoning methods like part-prototypical networks [6] that discretized the final latent rep-
resentation space via learned prototypes. This method that targeted image classifica-
tion was extended to semantic segmentation via parametric [17] and non-parametric
prototypes [21]. Figure 2 shows the model architecture for a part-prototypical network
[17] in the context of semantic segmentation. The objective of this project is to inves-
tigate the interpretable results from existing part-prototypical networks applied to wild-
fire forecasting and provide a potential extension to those approaches for temporal and
geo-reference data. It would be of particular interest to investigate a multi-scale group-
ing extension of [17] developed at the ECEO lab and iteratively validate the prototypes
based on environmental knowledge following [2]. Other classification-based extensions
could be investigated such as enforcing orthogonality among prototypes [19], grouping
prototypes spatially in a non-rigid way [7], and leveraging learned prototypes in tree-like
structure [14]. More generally methods of discrete representation learning [18, 9] that
learn similar discrete representation than prototype learning could be tested.

Figure 2: Part-prototypical learning for semantic segmentation. [17].

Requirements:

• Experience in deep learning, especially in computer vision (knowledge of XAI is a
plus).

• Proficiency in Python and relevant libraries such as Scikit-learn and Pytorch.

• Familiarity with remote sensing and environmental science is a plus.

• Strong willingness to learn and ability to work independently.

Contact: Prof. Devis Tuia, devis.tuia@epfl.ch
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