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1. Introduction

This lecture is an invitation to explore bounded cohomology. It is not an attempt to
collect all recent advances in that topic, much less an ex cathedra exposition of the
theory. I will try to illustrate how problems from diverse origins can be translated
into the framework of bounded cohomology, and how in return this theory prompts a
few concrete problems. A number of questions are suggested, ranging from teasers
to the ill-defined.

The terminology bounded cohomology proposed by M. Gromov [67] refers to
the following concrete definition. Recall that the ordinary (singular) cohomology
H∗(M, R) of a manifold M can be defined by the complex of all singular cochains
on M , which are just all real-valued functions on the set of singular simplices. The
subspace of bounded functions yields a subcomplex and hence cohomology groups
H∗

b(M, R). Moreover, the inclusion map of this subcomplex determines a natural
transformation H∗

b(M, R) → H∗(M, R) called the comparison map.
This definition can be imitated for groups. One of the definitions of Eilenberg–

MacLane cohomology H∗(G, V ) of a group G with coefficients in some module V is
given by the complex of all G-equivariant V -valued functions on Gn+1. Considering
only those functions that are bounded one obtains a complex

0 −→ Cb(G, V )G −→ Cb(G
2, V )G −→ Cb(G

3, V )G −→ · · ·
whose cohomology is the bounded cohomology H∗

b(G, V ) and comes again with a
comparison map H∗

b(G, V ) → H∗(G, V ). One needs here to make sense of bound-
edness for V -valued maps; for instance, V could be a Banach space with isometric
G-representation. We will usually assume that this coefficient module is dual (e.g.
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V = R or a unitary representation on Hilbert space). More generally, when G is
a locally compact group we (ab)use the same notations H∗, H∗

b for the continuous
(bounded) cohomology; for present purposes, it is simply defined by requiring that
all cochains be continuous1.

I will mainly concentrate on the group case; a theorem of M. Gromov of funda-
mental importance states that the morphism H∗

b(π1(M), R) → H∗
b(M, R) induced by

the classifying map is an isomorphism (Corollary p. 40 in [67]; see also [11]).
The above definitions, especially in the group case, might seem artificial. The

next section is an attempt to challenge this perception. Nevertheless, I should point
out that there is not a single countable group G for which H∗

b(G, R) is known, unless
it is known to vanish in all degrees. For instance, here is what is known for the free
group F2 and trivial coefficients: H1

b(F2, R) vanishes, H2
b(F2, R) and H3

b(F2, R) are
infinite-dimensional [11, §3], [66], [139].

However, in the case of connected groups, all known results seem to indicate that
bounded cohomology with trivial coefficients is much better behaved than for discrete
groups. The connected case can be reduced to semi-simple Lie groups, prompting
the following question.

Problem A. Let G be a connected semisimple Lie group with finite centre. Is the
comparison map

H∗
b(G, R) −→ H∗(G, R)

an isomorphism?

At this time, it seems that the question of injectivity and surjectivity of this compar-
ison map are two quite different issues; existing proofs are of a very different nature.
Perhaps this will change with a better understanding of the bounded cohomology of
Lie groups. But for the time being, I would like to single out the subquestion below
because it is the aspect most relevant for several questions discussed in this text.

Problem A′. Is the comparison map of Problem A surjective?

A related conjecture was proposed by J. Dupont [43]; compare also the introduction
of [14] and 9.3.8, 9.3.9 in [112]. One can also ask the same questions more generally
for products of semisimple algebraic groups over local fields. For more general
coefficient modules, even if only irreducible unitary representations are considered,
both injectivity and surjectivity fail [25].

2. Three ways to stumble upon H∗
b

I will now sketch briefly three circumstances leading naturally to study bounded
cohomology: (1) group algebras; (2) bounds and refinements of classical invariants;
(3) quasification.

1I emphasise that when G is not discrete, this is not the same as the cohomology of the classifying space BG.
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2.1. Cohomology of group algebras. The usual Eilenberg–MacLane cohomology
of a discrete group � can be seen as a particular case of the cohomology of algebras;
namely, it is isomorphic to the cohomology of the group algebra A = R�.2 Here A is
the free R-vector space on � endowed with the convolution product. In other words,
it is the universal object obtained by forcing upon the group � an R-linear structure
extending the multiplication in �. Recall that the cohomology of A is defined by
Ext-functors, which means that one considers complexes of linear morphisms

A ⊗ · · · ⊗ A −→ R

to R or more generally to suitable coefficient modules.
Now, this free vector space A brings along its “free norm”, that it, the �1-norm; the

latter extends as the projective tensor norm on the above tensor products [72, I§1.1].
Why not, then, take this topology into account and compute the cohomology of the
topological algebra A? This amounts to considering complexes of continuous linear
morphisms

A ⊗π · · · ⊗π A −→ R,

where ⊗π is the notation indicating the choice of the projective tensor norm. The point
is that this cohomology is nothing else than the bounded cohomology of �, as follows
readily from the properties of ⊗π . Once we deal with this continuous cohomology
of A, we may of course replace A by its completion �1(�) without affecting the
outcome. In conclusion, the bounded cohomology of groups is a particular case of
the cohomology of Banach algebras as exposed in B. Johnson’s 1972 memoir [89]
(see also A.Ya. Helemskiı̆ [76]). I would like to point out that the group algebra
case (that is, bounded cohomology) was indeed prominent in B. Johnson’s memoir.
One can find therein several aspects that became intensively studied later, such as
quasimorphisms, amenability and the problem of the existence of outer derivations.
Nevertheless, it is M. Gromov’s paper (which also refers to ideas of W. Thurston) that
gave all its impetus to the theory.

Here are two questions to conclude this outline. First, we point out that for C

*-algebras and specifically von Neumann algebras, other cohomologies have been
studied, such as completely bounded cohomology, where the notion of boundedness
is quite different from our setting; see Christensen–Effros–Sinclair [33]. Consider
the von Neumann algebra L(�) associated to a countable group �, which is the
completion of A for a much weaker topology than above. Then, there is not anymore a
straightforward correlation between �-modules and L(�)-bimodules as there was for
�1(�). However, there is a precise analogy instead: the theory of correspondences (see
A. Connes [36] and S. Popa [130]). Whilst this will not provide a precise dictionary
from the Eilenberg–MacLane cohomology of � to some cohomology of L(�), it still

2For exact statements, one needs to give more details on how to handle the coefficients involved; for instance, A
is suitable for coefficients that are real vector spaces. Moreover, Hochschild cohomology of algebras involves A-
bimodules as coefficients, whilst a priori the cohomology of � is defined for modules. Not taking this into account
would identify the Hochschild cohomology with a sum of Eilenberg–MacLane cohomology of centralisers of
representatives of the conjugacy classes of �. We will omit all details here.
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raises the interesting possibility to define for L(�) an analogue of the L2-cohomology
of � in the sense of M. Atiyah [4], Cheeger–Gromov [31] and W. Lück [101]. Such
an analogue has been proposed by A. Connes and D. Shlyakhtenko in [38].

Here is how this programme connects to the topic of our discussion. For present
purposes, let us think of the L2-cohomology of � as the Eilenberg–MacLane coho-
mology H∗(�, �2(�)), where �2(�) is endowed with the regular representation3. The
bounded cohomology H∗

b(�, �2(�)) has also proved very useful in degree two (see
Sections 4.1 and 4.2), even though one cannot measure its size as is done by means
of the von Neumann dimension in the case of H∗(�, �2(�)).

Problem B. Perform a construction analogous to Connes–Shlyakhtenko [38] but
corresponding to H∗

b(�, �2(�)) instead of H∗(�, �2(�)). Provide non-triviality results,
at least in degree two.

The second question is more indeterminate:

Problem C. Consider the cyclic cohomology of locally convex algebras A as in §II.5
of A. Connes’ [37]. What can be said for A = �1(�)?

The cyclic homology of the group algebra A = R� (devoid of any topology) has
been studied notably by D. Burghelea [29]. For an example with a locally convex
completion of A, smaller than �1(�) and closer to the spirit of [37], see R. Ji [87].

2.2. Refinements of ordinary cohomology and numerical bounds. Certain clas-
sical cohomology classes are given by explicit cocyles that happen to be bounded.
This is of particular interest for characteristic classes, since explicit bounds on char-
acteristic numbers of flat bundles carry important geometric information, such as in
the Milnor–Wood inequality; we refer to J. Dupont [43] for more on such bounds.

Here is an example of this situation: The Euler number of a flat oriented n-vector
bundle over a compact manifold M measures the obstruction to finding a non-van-
ishing section. It can be computed by triangulating M , choosing generic “affine”
sections over the resulting simplices and then adding up obstruction signs ±1 for
each simplex – see D. Sullivan [141] and J. Smillie [138]; compare also [7, F.4]. The
resulting number is clearly bounded in terms of the number of simplices, though this
bound is mysterious. One obtains a nice conceptual bound by observing that the Euler
class of GL+

n (R) has an explicit cocycle representative which is bounded, e.g. as in
Ivanov–Turaev [86] (GL+

n refers to the group of matrices with positive determinant).

Problem D. Let π = (B → M) be a flat oriented n-vector bundle over a com-
pact manifold M . Given additional structure on π , define a natural class Eb(π) in
Hn

b(M, R) whose image in Hn(M, R) is the Euler class E(π) of π .

3This is correct under the finiteness assumption Fn, where n is the degree of the cohomology considered. For
the general case, one should follow W. Lück [101].



An invitation to bounded cohomology 5

In particular, given a compact orientable n-manifold M with additional structure,
find a natural definition of Eb(M)

def= Eb(T M → M).
I should certainly be a bit more specific here, since after all one way to see the

Milnor–Wood inequality is to consider an explicit cocycle for the Euler class E that
witnesses its boundedness. However, this is quite different from having a natural
invariant in Hn

b(M, R), already because the map Hn
b(M, R) → Hn(M, R) can be far

from injective. The fact that additional structure on M should be required to rigid-
ify the situation is suggested by the fact that Hn

b(M, R) is canonically isometrically
isomorphic to the bounded cohomology of the fundamental group � = π1(M) [67,
p. 40]. By contrast, the Euler class as class of BGL+

n (R) is unbounded (compare also
footnote 1); thus the idea would be to transit via the group cohomology:

Consider for instance the setting of compact orientable manifolds supporting an
affine structure. In that case the Euler class E(M) will come from the structure
group GL+

n (R) by pull-back through the holonomy representation of π1(M) via
Hn(π1(M), R) and the classifying map. In that case one would have a completely
canonical choice for Eb(M) if, as suggested by Problem A, one proves

H∗
b(PSLn(R), R) ∼= H∗(PSLn(R), R).

Indeed, an easy argument shows that this would imply

Hn
b(GL+

n (R), R) ∼= Hn(GL+
n (R), R), n �= 1.

A motivation for Problem D is the following.

Problem D′. Use a natural definition of Eb(M) to prove that, for any compact ori-
entable manifold M supporting an affine structure, Eb(M) vanishes.

This would settle the Chern–Sullivan problem of the vanishing of the Euler-
Poincaré number of such manifolds M .

The example of the boundedness of the Euler class can be considerably gener-
alised: M. Gromov proves in [67] that all primary4 characteristic classes are bounded,
at least when viewed as classes of the structure group made discrete. A different
proof avoiding the use of H. Hironaka’s resolution of singularities was provided by
M. Bucher-Karlsson in her thesis [14]; it is also shown in [14, p. 60] how it follows
that these primary characteristic classes are bounded already when viewed as classes
of the topological group G. In other words, they lie in the image of the comparison
map H∗

b(G, R) → H∗(G, R).

Problem E. Prove the same statement for secondary characteristic classes5.

As pointed out in [14], this would then solve Problem A′. Indeed, J. Dupont and
F. Kamber proved in [44] that, as an algebra, H∗(G, R) is generated by primary and

4More precisely, the characteristic classes of flat G-bundles, where G is an algebraic subgroup of GLn(R).
5See Cheeger–Simons [32] and M. Bucher-Karlsson [14] for the definition of secondary classes.
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secondary classes when G is a connected semisimple Lie group with finite centre.
(The product is easily seen to preserve boundedness of cohomology classes.)

Once a natural bounded representative has been identified for a classical cohomo-
logical invariant, this opens the door to a refined invariant: Indeed, the bounded class
of that bounded cocycle contains a priori much more information than the class one
started with. This is because it is easier for cocycles to be cohomologous than to be
“boundedly cohomologous”, that is, equivalent modulo bounded coboundaries.

A beautiful illustration of this phenomenon has been given by É. Ghys in [63] and
goes as follows. Recall that if a group � acts by orientation-preserving homeomor-
phisms on the circle, it inherits an Euler class in H2(�, Z). This class has a canonical
representative taking only values {0, 1}, thus determining a bounded class. Whilst the
original class determines only the obstruction to lifting the �-action to an action on
the line, É. Ghys proves that the bounded class completely characterises the action up
to semi-conjugacy.

Another important benefit of identifying an ordinary cohomology class as being
bounded is the Gromov seminorm. Since homology classes are given by cycles,
i.e. formal finite linear combinations of simplices (singular or otherwise), there is a
numerical invariant attached to every homological class, the Gromov seminorm, which
is by definition the infimum of the total mass of all linear combinations representing
that class. This is a method of assigning a numerical invariant to cohomological
invariants. For instance, this number is computed for the Kähler class by Domic–
Toledo [42] and Clerc–Ørsted [34].

In particular, M. Gromov [67] defines the simplicial volume of a closed (connected,
orientable) manifold M to be the seminorm of its fundamental class (for the relative
case, see also [99]). This invariant, besides its own interest, provides bounds for
the minimal volume of M over all (suitably normalised) Riemannian structures, as
explained by M. Gromov in [67]. The relevance of bounded cohomology is that any
upper bound on a cocycle with non-trivial homological pairing on the given cycle
provides a non-trivial lower bound on the Gromov seminorm of the cycle.

W. Thurston and M. Gromov (see the 1978 notes [142] and [67]) have shown
how to use negative curvature to prove the boundedness of fundamental classes –
equivalently, the positivity of the simplicial volume. The case of symmetric spaces
has been solved only quite recently, with J.-F. Lafont and B. Schmidt proving in [100]
that the simplicial volume of any closed locally symmetric space of non-compact
type is positive. (A crucial ingredient of their proof is the work of C. Connell and
B. Farb [35].) Actually, the case of the symmetric space of SL3(R) is not covered
by [100]; it was claimed in [134], but the proof therein is incomplete. However
a proof is provided by M. Bucher-Karlsson in [13]. M. Gromov has conjectured
more generally that closed manifolds with non-positive curvature and negative Ricci
curvature have positive simplicial volume.

2.3. Quasification. The word quasification is meant to refer to the process whereby
a geometric or algebraic notion is modified to an approximate variant; typically, a
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defining equality or inequality is relaxed by imposing that it hold up to some constants
only. Here are a few examples of this overly vague principle.

(i) Quasi-isometries. Whereas a map f : X → Y between metric spaces X, Y is
called isometric if dY (f (x), f (x′)) equals dX(x, x′) for all x, x′ ∈ X, it is said to be
quasi-isometric if there is some constant C �= 0 such that

C−1dX(x, x′) − C ≤ dY (f (x), f (x′)) ≤ CdX(x, x′) + C for all x, x′ ∈ X.

A quasi-isometry is a quasi-isometric map whose image has finite codiameter. Here
are two important motivations for this notion: (1) Geometric rigidity questions such
as Mostow’s strong rigidity [119] lead to consider quasi-isometries of symmetric
spaces arising from a homotopy equivalence between two of its compact quotients;
(2) Geometric group theory has had considerable success, following M. Gromov, in
viewing finitely generated groups as metric spaces and studying their geometry [68],
[71]; however, this point of view is well-defined only up to quasi-isometry.

As a matter of terminology, a rough isometry shall be a quasi-isometry where
additive constants only are allowed:

dX(x, x′) − C ≤ dY (f (x), f (x′)) ≤ dX(x, x′) + C.

(ii) Gromov-hyperbolicity. In the context of point (2) in (i) above, one calls
a geodesic metric space Gromov-hyperbolic if any finite configuration of points is
roughly isometric to a configuration in a tree; the additive constant is allowed to
depend on the space and the number of points only. (For comparison with more
usual definitions, see 2 §2, Theorem 12 (ii) in [64].) This notion is a quasi-isometry
invariant even though it is a priori defined by rough isometries.

The theory of those finitely generated groups that are Gromov-hyperbolic as metric
spaces is one of the major contribution to modern group theory; we refer to M. Gro-
mov [69].

(iii) Hyers–Ulam stability. D. Hyers observed in [80] that whenever a mapping f

between Banach spaces satisfies the additive equation upon some constant δ, then f

is at finite distance (at most δ) of a truly additive mapping. A subsequent joint paper
with S. Ulam [81] proposed the more delicate question of the stability of the equation
defining isometries; more precisely: If f is a rough isometry, is it close to an isometry?
After many partial results spanning half a century (starting with the Hilbertian case
in [81]), the general case was solved affirmatively by P. Gruber [73] and J. Gevirtz [62]
and the sharp constant provided by M. Omladič and P. Šemrl [122] in 1995.

The stability question was broadened to other contexts by Hyers–Ulam [82], [83]
and a great many other authors. Within the context of isometries, three examples are:
quaternionic hyperbolic spaces (P. Pansu [125]), higher rank symmetric spaces and
buildings (Eskin–Farb [47] and Kleiner–Leeb [97]), hyperbolic buildings (Bourdon–
Pajot [10]).

The connection between quasification and bounded cohomology appears when one
considers the stability of cocycles. Indeed, suppose that f is “almost an n-cocycle”
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for a group G in the Hyers–Ulam sense, say for a Banach G-module V . Specifically,
in the model of the inhomogeneous bar-resolution, f is a map Gn → V with the
property that

g1f (g2, . . . , gn+1)+
n∑

j=1

(−1)jf (g1, . . . , gjgj+1, . . . gn+1)+(−1)n+1f (g1, . . . , gn)

is bounded independently of g1, . . . gn+1 ∈ G. The map δf : Gn+1 → V defined by
the above expression is therefore a bounded (n + 1)-cocycle; indeed it is certainly
a cocycle since it is defined as a coboundary. The latter observation means that δf

represents a trivial class in usual cohomology Hn+1(G, V ). But is it trivial as bounded
cohomology class in Hn+1

b (G, V )? The definition of bounded cohomology gives us
the answer: this class is trivial if and only if f is at finite distance of an actual n-
cocycle Gn → V . In conclusion, the Hyers–Ulam stability problem for Hn(G, V ) is
exactly captured by the kernel of the comparison map

EHn+1
b (G, V )

def= Ker
(
Hn+1

b (G, V ) −→ Hn+1(G, V )
)

in one degree higher: EHn+1
b describes “n-quasicocycles”. This could be made formal

by introducing suitably complexes of quasicocycles and defining the corresponding
cohomology groups H∗

quasi(G, V ). It is then straightforward to verify that one has an
infinite exact sequence

· · · → Hn−1
quasi(G, V ) → Hn

b(G, V ) → Hn(G, V )

→ Hn
quasi(G, V ) → Hn+1

b (G, V ) → · · ·
Consider the simplest case, namely n = 1 and V = R:

Definition 2.1. A quasimorphism is a map f : G → R such that

sup
g,h∈G

|f (g) − f (gh) + f (h)| < ∞.

A quasimorphism is non-trivial if it is not a bounded perturbation of a homomorphism,
or equivalently if it determines a non-zero class in H2

b(G, R).

B. Johnson proves already in [89, 2.8] that the free group F2 admits a non-
trivial quasimorphism. This was considerably generalised and it is now known that
EH2

b(G, R) is infinite-dimensional for (non-elementary) free groups, surface groups,
Gromov-hyperbolic groups, free products (R. Brooks [11], Brooks-Series [12],
Y. Mitsumatsu [111], Barge–Ghys [5], Epstein–Fujiwara [46], K. Fujiwara [49], [50],
R. Grigorchuk [66]); generalising all the previous cases, for all groups acting on a
Gromov-hyperbolic metric space in a weakly proper way (Bestvina–Fujiwara [8]; see
also U. Hamenstädt [74]). Moreover, J. Manning [102, 4.29] shows that if there is
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any quasimorphism that is what he calls bushy, then, already H2
b(G, R) is infinite-

dimensional. (Contrary to what has sometimes been suggested, EH2
b(G, R) may

however be of finite non-zero dimension [115]; thus not every quasimorphism is
bushy.) Very interesting quasimorphism of a completely different nature have been
constructed by Entov–Polterovich [45], Biran–Entov–Polterovich [9], Gambaudo–
Ghys [58] and P. Py [131]. There, quasification is the additional freedom that allows
to extend the Calabi homomorphism as a quasimorphism to larger groups that do not
admit any non-zero homomorphism.

One checks that amenable groups do not have non-trivial quasimorphisms. In a
completely opposed direction, it was proved in [23], [24] that irreducible lattices in
semisimple Lie groups of higher rank have no non-trivial quasimorphisms. Interest-
ingly, this property is not quasi-isometry invariant [23, 1.7].

Increasing the generality, let us consider unitary representations V . Since
H1(G, V ) classifies affine isometric actions on the Hilbert space V , it follows that
EH2

b(G, V ) contains information about rough G-actions on V , namely maps � from G

to the affine isometry group of V such that

sup
g,h∈G

sup
v∈V

‖ �(g)(�(h)v) − �(gh)v ‖ < ∞

(this forces the linear part of � to be an actual representation).The results of [23],
[24] show that any such rough action of a higher rank lattice has bounded “orbits”.
Using Hyers–Ulam stability [81], we deduce the following corollary for higher rank
lattices: Every action by rough isometries (of a given constant) on a Hilbert space
has bounded orbits.

Another natural problem is to consider ε-representations (or near representations)
of the group G on a Hilbert space V , that is, maps π : G → U(V ) to the unitary
group U such that

sup
g,h∈G

‖ π(g)π(h) − π(gh) ‖op < ε,

wherein the norm is now the operator norm. The corresponding stability question is
now: How close is π to an actual unitary representation? (In operator norm.)

When G is finite or more generally compact (with appropriate continuity ad-
denda), la Harpe–Karoubi proved that for every δ > 0 there is ε > 0 such that every
ε-representation of � is δ-close to a unitary representation [40]. This was then es-
tablished for amenable groups by D. Kazhdan in [95] using an ingenious notion of
ε-cocycles. This device is however not obviously related to bounded cohomology.

Problem F. Can one reformulate in terms of bounded cohomology the problem of
the stability of unitary representations?

D. Kazhdan also gives an example showing that for surface groups the phenomenon
of stability of unitary representations fails to hold (Theorem 2 in [95]).
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Problem F′. Prove (or disprove): Let � be a lattice in a connected simple Lie group
of real rank at least two, e.g. � = SL3(Z). Then for every δ > 0 there is ε > 0 such
that every ε-representation of � is δ-close to a unitary representation.

Notice that this conjectural stability does not follow from Kazhdan’s property (T);
just as for bounded cohomology, a stronger rigidity property of higher rank groups
needs to be used. Indeed, any group G with a non-trivial quasimorphism f : G → R
lacks the stability of unitary representations: Consider for η ∈ R the map π : G →
U(C) for which π(g) is the multiplication by eiηf (g). This is an ε-representations
when η is small enough, but will not be quite close to a representation. Now recall
that any non-elementary hyperbolic group admits non-trivial quasimorphisms and that
there are many hyperbolic groups with property (T).

3. The rôle of amenability

The relevance of amenability to bounded cohomology has been patent ever since
B. Johnson’s memoir [89], where it is shown that a locally compact group G is
amenable if and only if Hn

b(G, V ) vanishes for all n > 0 and all dual Banach modules
V (compare also G. Noskov [120]). Since Hn

b(G, V ) appears in [89] as the Banach
algebra cohomology of the group algebra of G, B. Johnson uses this characterisation
to define the amenability of general Banach algebras. This suggests to consider the
“bounded-cohomology dimension” of a group (or Banach algebra); more precisely:

Definition 3.1. (i) Let dim	
b(G) ∈ N ∪ {∞} denote the smallest integer such that

Hn
b(G, V ) vanishes for all n > dim	

b(G) and all dual Banach modules V .

(ii) Let dimb(G) ∈ N ∪ {∞} denote the smallest integer such that Hn
b(G, V )

vanishes for all n > dimb(G) and all Banach modules V .

Thus G is amenable if and only if dim	
b(G) = 0. There is a priori a hierar-

chy of increasingly weak generalisations of amenability given by dim	
b(G) = n,

n ∈ N (compare [89], §10.10; standard homological techniques reduce the property
dim	

b(G) ≤ n to showing vanishing in degree n + 1 only). It is not clear whether this
hierarchy is really non-trivial; we refer to Section 5.4, where it is shown for instance
that dim	

b �= 1, 2. The dimension dimb(G) seems more mysterious; see [88] for some
results.

3.1. Amenable actions. Just as proper G-spaces are relevant to compute the usual
cohomology of a group G, there is a notion of amenable G-spaces relevant for bounded
cohomology. Recall that properness is reflected in the possibility to perform finite
(or compact) averaging, at least when the coefficient modules are topological vector
spaces. The notion of averaging is the naïve one when the proper G-space is a
homogeneous space G/K with finite or compact isotropy K < G, and can be carried
out e.g. using Bruhat functions in the more general case.
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The idea now is that bounded cocycles should allow averaging under more general
circumstances: after all, the definition of amenable groups is that they permit equivari-
ant averaging of bounded functions. The analogue of properness should accordingly
generalise homogeneous G-spaces G/K with amenable isotropy group K < G. This
is precisely the notion introduced by R. Zimmer [145], [146]: A Lebesgue space
(S, ν) with non-singular G-action is called amenable if (i) the stabiliser of ν-almost
every point is an amenable subgroup of G, (ii) the equivalence relation on S induced
by the action is amenable. (This, however, is not Zimmer’s original formulation.)

An important feature of this approach is that one has to work within the measurable
category, because the general averaging process arising from amenability does not
preserve continuity.

As suggested by the analogy with properness, one has the following result: The
G-space S is amenable if and only if the G-module L∞(S) is relatively injective in
a sense suitably adapted to bounded cohomology [24], [112]. It then follows from
functorial machinery that the bounded cohomology H∗

b(G, V ) of a locally compact
group G in a coefficient module V is canonically realised by the complex

0 −→ L∞(S, V )G −→ L∞(S2, V )G −→ L∞(S3, V )G −→ · · · .

Such a statement does require a functorial theory for the bounded cohomology of
groups. Even though H2

b lacks the basic properties of cohomological functors, such a
machinery has been developed; see R. Brooks [11], N. Ivanov [85], G. Noskov [120],
[121] for discrete groups and [24], [112] for locally compact groups and for the
connection with amenable spaces.

All this would not be very useful without interesting examples of amenable spaces;
the foremost example is provided by Poisson boundaries of random walks. Recall that
a random walk on G is given by a probability μ on G, which for simplicity we assume
full, that is: (i) μ is absolutely continuous with respect to Haar measures, (ii) the
support of μ generates G as a semi-group. To such a random walk one associates a
non-singular G-space S = ∂μG, the Poisson boundary; see H. Furstenberg [53], [54],
[55], Kaı̆manovich–Vershik [94], V. Kaı̆manovich [90], A. Furman [52]. R. Zimmer
proved that this G-space is amenable [144], [145]. (For another proof, see [92].)

One reason why the Poisson boundary S = ∂μG is a useful example of amenable
space is that it is much “smaller” than the only obvious amenable G-space, G itself.
Specifically, for μ symmetric, the diagonal action on S2 is ergodic, as shown by
L. Garnett [60, Remark p. 301] (generalising an argument which goes back to a 1939
paper of E. Hopf [79]). In fact, it satisfies even a much stronger double ergodicity
property introduced in [24], [112]: Every G-equivariant measurable map on S2 to
every continuous separable Banach G-module is constant. (The existence of random
walks with this property was established in [24], whilst the general – and nicer – proof
was later provided by V. Kaı̆manovich in [91].) If we consider the above complex,
we deduce that in this situation we have a canonical identification

H2
b(G, V ) ∼= {

cocycles in L∞(S3, V )G
}
/{constants}.
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This concrete realisation is one of the most useful facts for studying bounded coho-
mology, as it allows to control explicitly whether or not a cocycle represents a non-
vanishing class. Not only is this crucial to prove vanishing as well as non-vanishing
theorems; it is also the main ingredient to prove cohomological statements such as
the splitting

H2
b(G1 × G2, V ) ∼= H2

b(G1, V
G2) ⊕ H2

b(G2, V
G1)

for product groups G = G1 × G2, see [24]. I emphasise that the occurrence of the
space of Gi-invariants V Gi is what distinguishes this statement from a mere Künneth
formula and makes it consequential for rigidity applications (just as Y. Shalom’s
splitting formula for usual cohomology implies rigidity statements in [136]).

3.2. Amenability degree. The remarkable properties of the Poisson boundary sug-
gest the following notion.

Definition 3.2. Let G be a countable group (or more generally a locally compact σ -
compact group). Define the amenability degree a(G) ∈ N ∪{∞} to be the supremum
of all integers n for which there is some amenable G-space (X, μ) such that the
diagonal G-action on Xn has finitely many ergodic components.

For an amenable group G, the amenability degree is a(G) = ∞ since one can
take X to be a point. On the other hand, the properties of Poisson boundaries show
that a(G) ≥ 2 for any G. We claim: Every non-elementary Gromov-hyperbolic
group G satisfies a(G) = 2. Indeed, this holds more generally6 for all groups G with
infinite-dimensional H2

b(G, R) in view of the discussion in Section 3.1:

Proposition 3.3. If G has infinite-dimensional Hn
b(G, R), then a(G) ≤ n.

Problem G. What are the possible values of a(G)? Can one have 3 < a(G) < ∞?

Note that G = PSL2(R) satisfies a(G) ≥ 3 in view of its canonical action on the
projective line. I have no example ready of a countable group G with 2 < a(G) < ∞.

Problem H. Does a(G) = ∞ imply that G is amenable?

The latter question has a connection to an old question7 about R. Thompson’s
group F , namely: is it is or is it ain’t amenable? A positive answer to Problem H
would prove that F is non-amenable.

Proof. Recall first that F can be defined as the group of all piecewise affine homeo-
morphisms of the interval [0, 1] with finitely many breakpoints at dyadic rationals and
whose slopes are all powers of two [30]. The similar definition with X = R/Z instead
of [0, 1] yields a group T whose diagonal action on Xn is ergodic for all n (indeed, its

6But the hyperbolic case can also be treated by a more geometric argument.
7Reportedly already considered by R. Thompson in the sixties, and then independently asked by R. Geoghegan

in 1979.
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action on dyadic rationals is oligomorphic). The stabiliser of any dyadic point of X is
isomorphic to F , whilst the stabiliser of a non-dyadic point is an increasing union of
groups isomorphic to F . Thus, if F is amenable, every stabiliser is amenable. On the
other hand, the equivalence relation of the T -action on X can be seen to be hyperfinite
in the Borel sense. It follows that the T -action on X would be amenable with respect
to any quasi-invariant measure, and a(T ) = ∞ would follow. On the other hand, it is
well-known and easy to verify that T contains non-Abelian free subgroups, hence is
non-amenable. (The above line of reasoning would actually imply that the T -action
on R/Z is amenable in the topological sense of [3].) �

A first step towards Problems G and H could be the following question.

Problem I. Let B be the Poisson boundary of a symmetric (full) random walk on the
group G. Suppose that the diagonal G-action on B4 is ergodic. Does it follow that G

is amenable?

One can perhaps investigate this question by considering the space of pairs of
bi-infinite random paths on G, where a bi-infinite random path refers to a random
sequence

( . . . , x−2, x−1, x0, x1, . . . , xn, . . . ), xi ∈ G, i ∈ Z,

where all increments x−1
n xn+1 are i.i.d. according to the random walk (and, say,

x0 follows Haar measure class). The diagonal G-action commutes with the shift of
indices and one can try to construct invariants of pairs of such paths under some
assumption similar to non-recurrence of the random walk. For instance, consider the
length in N, or location in G, of the shortest segment in a Cayley graph connecting
two paths; even equivariant G-valued “invariants” prevent higher ergodicity. Whilst
there is a natural map from pairs of bi-infinite paths to B4, it is not clear whether
Problem I can be solved in this way.

4. Rigidity

Bounded cohomology has proved to be very useful to establish rigidity results. One
can distinguish roughly three settings: obstructions, invariants, superrigidity.

(i) Obstructions. The idea here is simply to play off vanishing against non-
vanishing; that is, to prove that for certain groups �, H there can be no non-trivial
homomorphism � → H because (a) � has a vanishing property for H∗

b and (b) H and
certain of its subgroups have non-zero classes in H∗

b. Of course, the sense in which
homomorphisms are non-trivial need to be precised and will affect which subgroups
of H are considered. Interestingly, parts (a) and (b) are in general of a completely dif-
ferent nature and are proved by very different means (and often by different authors).

Example 4.1. This rather coarse strategy can be quite effective. For instance, if
� is a higher rank lattice, it can be used to re-prove the following result of Farb–
Kaı̆manovich–Masur [93], [48]: Every representation of � into any mapping class
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group has finite image. Indeed, � has no non-trivial quasimorphisms [23], [24]. On
the other hand, by [8] any non virtually Abelian subgroup of mapping class groups
has an infinite-dimensional space of quasimorphisms. It follows that any image of �

in a mapping class group is virtually Abelian and hence finite. (Notice that this proof
does not use Margulis’ normal subgroup theorem.)

(ii) Invariants. Sometimes one particular invariant in H∗
b classifies homomor-

phisms. A first example appeared in Section 2.2 with É. Ghys’ study of actions on
the circle up to semi-conjugacy. Another is A. Iozzi’s proof [84] of Matsumoto’s
theorem [106]. Here is a further instance due to Burger–Iozzi [18] and Burger–Iozzi–
Wienhard [20]:

Example 4.2. Let X be an irreducible Hermitian symmetric space not of tube type,
and let H = Is0(X) be (the connected component of) its isometry group. By [23],
H2

b(H, R) is generated by a bounded representative ω of the Kähler class of X. It is
proved in [20] that for any finitely generated group �, the Zariski-dense representa-
tions π : � → H are classified up to conjugacy by the invariant π∗ω in H2

b(�, R).
(The case H = SU(p, q) was previously proved in [18].)

A more refined analysis is possible for representations of surface groups by consid-
ering the Toledo number associated to the pull-back of the Kähler class; see the study
of maximal representations presented by Burger–Iozzi–Wienhard [22] and some of
its consequences [19]. Of particular importance in this context are tight homomor-
phisms, namely those representations π for which π∗ preserves the norm of the Kähler
class [21], [143].

(iii) Superrigidity. The use of richer coefficient modules, specifically of the regular
representation V = �2(�), allows in some cases to encode the entire geometric
situation into H2

b(�, V ). This is described in the next two sections.
Non-trivial coefficients of L∞ type have been used in [113] to establish coho-

mological stabilization of the general linear groups. They have also been used by
Burger–Iozzi to study representations that are maximal for yet another invariant,
the generalized Toledo number, establishing deformation rigidity for representations
into SU(m, 1) of lattices in SU(n, 1) (m ≥ n ≥ 2), extending the famous result of
Goldman–Millson [65] to non-uniform lattices [15], [16], [17].

4.1. Negative curvature made cohomological. M. Gromov suggests in [71, 7.E1]
how to turn the thin triangle property of negatively curved manifolds into a cohomolog-
ical invariant (and refers to Z. Sela [135]); in his construction, Kazhdan’s property (T)
is used to ensure non-triviality. Building on similar ideas and using the multiple er-
godicity of Poisson boundaries (Section 3.1), it is shown in [117], [110] that one has
H2

b(�, �2(�)) �= 0 for a large class of “negatively curved” groups � (see also [75]).
This result can be combined with rigidity techniques (such as Furstenberg maps)

and cohomological results from [24], [112] in order to obtain superrigidity theorems.
Specifically, it can be fed into the splitting formula at the end of Section 3.1 to obtain
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geometric information. As a first illustration, consider the result below; here H2
b is

used as a tool to control completely all existing homomorphisms, rather than just
provide an obstruction when no homomorphism exists.

Let � < G = G1 × G2 be a lattice in a product of arbitrary locally compact
groups that is irreducible in the sense that its projection to each Gi is dense. Let
H = Isom(X) be the isometry group of a metric space X that is negatively curved
in the sense that it is either a proper CAT(-1) space or a Gromov-hyperbolic graph of
bounded valency.

Theorem ([116, 1.5]). Any non-elementary homomorphism � → H extends to a
continuous homomorphism G → H (which must factor through some Gi), possibly
after factoring out a compact normal subgroup of H .

A similar statement holds more generally for cocycles in the sense of R. Zim-
mer [146].

(Compare [117], [110].) For previous results concerning algebraic groups, see
Margulis [103], [104], Burger–Mozes [26], S. Adams [1] and Y. Gao [59]; for results
in the setting of CAT(0) spaces, see [114]. The theorem above applies e.g. when G is
a semisimple group, or when � is a Burger–Mozes group [27], [28], or when � is a
Kac–Moody group [132], [133].

Problem J. Does there exist a geometric characterisation of the non-vanishing of
H2

b(�, �2(�))? Is it a quasi-isometry invariant amongst finitely generated groups?

If this property could be reformulated e.g. in terms of quasi-actions on suitable
negatively curved spaces, then such a reformulation could be construed as an analogue
of J. Stalling’s famous splitting theorem [140]. Indeed, in all known cases our classes
in H2

b(�, �2(�)) are in the kernel of the comparison map. Therefore, they appear as
quasifications of the space H1(�, R�) relevant to Stalling’s theorem.

Remark 4.3. In a different direction, there is indeed a characterisation of Gromov-
hyperbolic groups due to I. Mineyev [109]; the main ingredient therein is the sur-
jectivity of the comparison map in degree two, see M. Gromov [69, 8.3.T] and
I. Mineyev [108]. It is unclear whether one could obtain interesting definitions of
a rank by postulating surjectivity in a given higher degree. Using another type of ex-
otic cohomology, namely �∞ cohomology, S. Gersten also provided a characterisation
of hyperbolicity (see [61] and compare [2]).

4.2. Orbit equivalence. Consider ergodic free measure-preserving actions of a
countable group � on a probability space (X, μ). The quotient space X/� is com-
pletely singular, but can nevertheless be investigated by shifting the focus to the type
II1 measured equivalence relation R ⊆ X × X induced by the action. Accordingly,
one calls two actions (by possibly different groups) orbit equivalent (OE) if the re-
sulting relations are isomorphic. The Ornstein–Weiss theorem [123] implies that all
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such action of all amenable countable groups are OE. It is therefore of interest to find
obstructions to OE or better yet rigidity results.

The context of Section 4.1 comes into play as follows. Let � = �1 ×�2 be a prod-
uct of torsion-free groups with H2

b(�i, �
2(�i)) �= 0, e.g. non-elementary hyperbolic

groups. Consider a �-space (X, μ) that is irreducible in the sense that each �i-action
is ergodic.

Theorem ([118, 1.6]). Any �-space that is OE to X is actually conjugated to X,
possibly twisting the action by an automorphism of �.

Theorem ([118, 1.9]). If any mildly mixing action of any torsion-free group � is OE
to X, then � is isomorphic to � and the actions are conjugated.

Compare with Hjorth–Kechris [78]. One can also use our techniques to show
[118, 1.14]: There exists a continuum of mutually non weakly isomorphic relations
of type II1 with trivial outer automorphism group.

5. Randomorphisms

The notion of randomorphism between two groups is proposed below. It is closely
connected to orbit equivalence and related ideas; thus, not much originality is claimed,
except perhaps for the language proposed, which I believe has its own appeal.

5.1. Random maps. The space GH of all maps f : H → G between the countable
groups H, G has a natural structure of Polish space, given by the product uniform
structure (with G viewed discrete). Therefore, it makes sense to think of “random
maps” f : H → G simply as probability measures on this nice Polish space. To avoid
redundancy coming from the free G-action(s), we define the Polish space

[H, G] def= {f : H → G : f (e) = e}
(a closed subspace of GH ). There is a natural H -action on [H, G] defined by

(h.f )(x)
def= f (xh)f (h)−1 for f ∈ [H, G], h, x ∈ H.

The basic observation is that a homomorphism H → G is nothing but an H -fixed
point for this action.

Definition 5.1. A randomorphism from H to G is an H -invariant probability measure
on [H, G].

Notice that the subset of injective maps is closed in [H, G]. This suggest a naïve
notion of injectivity for randomorphisms:

Definition 5.2. A randomorphism is a randembedding if it is supported on the injective
maps. We say that H is a random subgroup of G if it admits a randembedding into G.



An invitation to bounded cohomology 17

Compare with the notion of placement proposed by M. Gromov [70, 4.5] and
with Y. Shalom’s related viewpoint on uniform embeddings [137]. One can verify
that a point in [H, G] is almost periodic (i.e. its H -orbit relatively compact) if the
corresponding map is Lipschitz in the appropriate sense.

Definition 5.3. A randomorphism, randembedding or random subgroup is geometric
if the corresponding measure is compactly supported in [H, G].
Problem K. Which groups admit the non-Abelian free group F2 as a geometric
random subgroup?

The following has been proved by D. Gaboriau and independently R. Lyons (pri-
vate communication); Gaboriau’s proof uses percolation techniques, relying among
other things on [124] and [77].

Theorem 5.4. Every non-amenable group admits F2 as a random subgroup.

5.2. Back to orbit equivalence. If the two countable groups G, H have OE actions
as in Section 4.2 on (X, μ) and (Y, ν) respectively, then there is a measure space
isomorphism F : X → Y such that F(H.x) = G.F(x) almost everywhere. One can
also consider the more general situation where F(H.x) ⊆ G.F(x); for instance, H

could be a subgroup of a group having an action orbit equivalent to the G-action. By
freeness, there is a measurable map

α : H × X −→ G

defined almost everywhere by F(h.x) = α(h, x).F (x). This map is a cocycle in that
is satisfies

α(hk, x) = α(h, k.x)α(k, x) for h, k ∈ H, μ − a.e. x ∈ X.

The cocycle α yields a measurable map α̂ : X → [H, G] defined by α̂(x)(h) =
α(h, x). This map is H -equivariant, and therefore the measure α̂∗μ is a randomor-
phism from H to G.

Observe that regardless of any measure, there is a tautological cocycle E : H ×
[H, G] → G with respect to the H -action on [H, G] defined by E(h, f ) = f (h). In
the above construction, the map α̂ intertwines the cocycle α to the tautological cocycle.
Therefore, [H, G] together with its tautological cocycle has a way to reflecting all OE
cocycles within the space of all invariant probability measures on [H, G].

The Ornstein–Weiss theorem [123] shows in particular that every amenable group
is a random subgroup of Z. Therefore, one has the following striking “Random Tits
Alternative”:

Any countable group is either a random subgroup8 of Z or has F2 as a random
subgroup.

8actually, measure equivalent to Z; compare Section 5.5.
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The viewpoint of measured relations and OE allows to formulate a related question:
Does any non-amenable type II1 relation contains the orbits of a F2-action? (See
Kechris–Miller [96, 28.14] and D. Gaboriau [57, 5.16]). This is only known to hold
for relations of non-trivial cost (M. Pichot [126], Kechris–Miller [96, 28.8]; see [56]
for the notion of cost).

5.3. Modules. Just as a homomorphism H → G yields a pull-back functor from
G-modules to H -modules, we can define pull-backs through randomorphisms:

Definition 5.5. Let V be a coefficient G-module, μ a randomorphism from H to G

and 1 ≤ p ≤ ∞. The Lp-pull-back of V through μ is the Banach space Lp(μ, V )

endowed with the H -action

(h.ϕ)(f )
def= f (h−1)−1ϕ(h−1.f ), h ∈ H, ϕ ∈ Lp(μ, V ), f ∈ [H, G].

We are mostly interested in p = 2, ∞. For instance, analysing the case V = �2(G)

shows:

Lemma 5.6. A random subgroup of an amenable group is itself amenable.

Recall that in the case of injective homomorphisms, the pull-back has an adjoined
functor called (co-)induction. There is again an analogue for randembeddings. Con-
sider GH with precomposition by right H -translation and postcomposition by right
G-translation. This is isomorphic to the E-twisted (cf. [146, p .65]) product H -space
[H, G]×G endowed with an additional G-action by right multiplication. Therefore,
it inherits an invariant σ -finite regular Borel measure μ̃ defined as the product of μ

with the counting measure. The following generalises induction (compare [70, 4.5.C]
and [118, 4.1]).

Definition 5.7. Let V be a coefficient H -module, μ a randembedding from H to
G and 1 ≤ p ≤ ∞. The Lp-induced module of V through μ is the Banach space
Lp(μ̃, V )H of H -equivariant maps endowed with the G-action by right translations.

5.4. Application to bounded cohomology. The induction methods used in [118]
can be seen to yield the following.

Proposition 5.8. Let H be a random subgroup of G and V a coefficient H -module.
Let W be the L∞-induced module. For every n ≥ 0 there is an injection Hn

b(H, V ) ↪→
Hn

b(G, W).

(Due to the unwieldy nature of L∞ spaces, it is essential in [118] to have a similar
injectivity statement for the Lp-induced module with p < ∞, e.g. p = 2. However,
the latter is only known to hold when n ≤ 2.)

Corollary 5.9. If H is a random subgroup of G, then dim	
b(H) ≤ dim	

b(G).

Appealing to Theorem 5.4, we conclude:
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Corollary 5.10. No group can have dim	
b = 1, 2.

Problem L. Is dim	
b(F2) infinite? If so, is even Hn

b(F2, R) non-zero for all n ≥ 2?

If dim	
b(F2) = ∞, then it follows that the hierarchy proposed by B. Johnson (cf.

beginning of Section 3) collapses completely, since we then have dim	
b(G) = 0 or ∞

for every group G, according to whether it is amenable or not.

5.5. Categorical approach. As we have seen, orbit equivalences yield randomor-
phisms. However orbit equivalence is symmetrical; the intuition is that these ran-
domorphism should more precisely be “isomorphisms” in an appropriate category
whose morphisms are represented by randomorphisms. A related problem is that
the notion of randembedding of Definition 5.2 does not follow the usual categorical
pattern that should define mono-randomorphisms. A third issue is that it is unclear
when a randomorphism should be considered to be an epimorphism.

In order to address these points, it is necessary to define the composition of two
randomorphisms. It seems that there are (at least) two natural composition products:

(i) The independent product. Let G, H, L be countable groups. The composition
map

[L, H ] × [H, G] −→ [L, G], (f, f ′) �−→ f ′ � f

is continuous. Given probability measures μ, ν on [L, H ] respectively [H, G], denote
by ν�μ the image of the product measure μ×ν under this map. Thus ν�μ is the product
of independently chosen random maps. If both μ, ν are randomorphisms, then so is
ν � μ. The main defect of the independent product is the scarcity of randomorphisms
that are invertible for this product.

(ii) The fibred product. Another product has the flavour of groupoids and is defined
as follows. Two randomorphisms μ from L to H and ν from H to G are composable
if there is an isomorphism of Lebesgue spaces

F : ([L, H ], μ) ∼=−−→ ([H, G], ν)

which is equivariant with respect to the tautological cocycle L × [L, H ] → H ; that
is, F(�.f ) = f (�).F (f ) μ-a.e. In that case we define the fibred product ν ·

F
μ as the

image of μ under the map

[L, H ] −→ [L, G], f �−→ F(f ) � f.

Both products are a particular case of the construction that associates a randomorphism
from L to G to the data of a randomorphism from L to H together with a measurable
map from [L, H ] to probability measures on [H, G] that is equivariant with respect
to the tautological cocycle. In all cases the verification follows from the formula
�.(f ′ � f ) = (f (�).f ′) � (�.f ).
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Problem M. (i) Subsume both product in one categorical construction, for instance
by defining a suitable equivalence relation on randomorphisms. (ii) Produce an in-
teresting definition of a group of auto-randomorphisms of a given group G. (iii) Re-
formulate A. Furman’s results [51] as a determination of this group for higher rank
lattices.

5.6. Random forests. Let G be a countable group and A ⊆ G a non-empty finite
subset. Define the compact G-space of unoriented9, labelled 4-regular graphs as

GA
def= {

(xi,g) ∈ ∏
g∈G(gA)Z/4Z : xh,i+2 = g when h = xg,i

}
.

The topology is the product topology and k ∈ G acts by (kx)g,i = k(xk−1g,i).

Definition 5.11. The space FA of 4-forests is the closed G-invariant subspace FA ⊆
GA of those elements (xi,g) for which every connected component is acyclic.

An immediate application of Tarski’s theorem on paradoxical decompositions (or
of appropriate proofs of it) yields:

Proposition 5.12. The group G is non-amenable if and only if FA �= ∅ for A large
enough.

Problem K′. For which groups does there exists an invariant probability measure on
FA for some A?

Notice that there is a canonical continuous map FA −→ [F2, G] which is F2-
equivariant when the left hand side is endowed with the natural F2-action defined
by the labelling of the forests. Moreover, this map ranges in the space of injections.
Therefore, groups with a measure as in Problem K′ will have a geometric random free
subgroup as in Problem K.

6. Additional questions

Here is the motivation that prompted me to consider randomorphisms to begin with.
It is an old observation of J. Dixmier [41] and M. Day [39] that every uniformly
bounded representation of an amenable group is unitarizable, i.e. conjugated to a
unitary representation. The problem of the converse to this statement proposed in
J. Dixmier’s 1950 article [41] is still open, despite remarkable work most notably by
G. Pisier (see [128], [129] and [127]).

It is nevertheless possible to show very explicitly that any group containing F2 has
uniformly bounded representations that are not unitarizable (see e.g. Theorem 2.1 and
Lemma 2.7 in [128]). On the other hand, one can also induce such representations
from random subgroups exactly as explained above and still obtain uniformly bounded
representations.

9We make the usual convention that an unoriented edge consists of two opposed oriented edges.
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Problem N. (i) Is the uniformly bounded representation induced as above non-
unitarizable? (ii) Is this true at least for randembeddings of F2 arising from an
invariant measure on the space of forests?

We have seen that the vanishing of H∗
b with general dual coefficients characterises

amenability; however, it is not enough to consider trivial coefficients R even in all
degrees. Indeed, refining the method of J. Mather [105], Matsumoto–Morita [107]
have proved that the (non-amenable) group of compactly supported homeomorphisms
of Rn has vanishing H∗

b with trivial coefficients. Is the situation nicer for linear groups?

Problem O. (i) Let � < GLd(C) be a subgroup that is not virtually soluble (equiva-
lently, � is non-amenable). Is Hn

b(�, R) non-zero for some 1 < n < d2? (ii) If not, is
there at least a separable dual Banach �-module V with Hn

b(�, V ) non-zero for some
n ≥ 2?

One way to approach the problem would be to prove first the conjecture proposed
as Problem A′. This done, one needs to deduce geometric finiteness properties from
the annihilation of the pull-back H∗

b(G, R) → H∗
b(�, R). The latter step is not at all

hopeless, especially in view of the results of B. Klingler for usual cohomology in [98].
One hint to the difficulties that could arise (in addition to Problem A′) is the fact

that B. Klingler needs non-trivial coefficient modules. However, as mentioned in the
introduction, the analogous statement to Problems A and A′ fails already for unitary
representations. Therefore, either one needs to construct cohomology classes for such
representations that are genuinely new (as in [25]) and prove results similar to those
of [98] for such classes, or one needs to argue that even trivial coefficients suffice
because pull-back in bounded cohomology tends to be injective in cases where the
usual pull-back is not. (For example, the volume form of the hyperbolic plane restricts
non-trivially in H2

b to free lattice subgroups of PSL2(R), whilst it vanishes when sent
to usual cohomology.)

An alternative approach for linear groups could be to consider more generally
polynomially bounded cocycles.

Problem P. Let G = G(k) be a simple group of k-rank r > 0 over a local field k.
Quasify B. Klingler’s cocycles [98] in order to obtain new classes in degree r + 1 for
cohomology with polynomial growth degree r − 1 (in a suitable module).

I suspect that (r + 1)-cohomology with polynomial growth degree r − 1 is indeed
the right place to look for “rank r phenomena”.

Ch. Bavard proves [6] that a group has non-trivial quasimorphisms if and only if
its stable commutator length is non-zero.

Problem Q (M. Abért). Let k be a countable field of infinite transcendence degree
over its prime field. Does the group SL3(k[X]) have non-trivial quasi-morphisms?

The interest of SL3(k[X]) in connection with Ch. Bavard’s result is that for fields k

as above this group is known to have infinite commutator width, which is a priori not
enough to control the stable length.
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Finally a question from [113]. For a prime p, denote by vp : Q \ {0} → Z
the p-adic valuation (normalised by vp(pn) = −n). If q is another prime, define
Dp,q : Q \ {0, 1} → Z by

Dp,q(x) = vp(x)vq(1 − x) − vq(x)vp(1 − x).

This function is obviously unbounded; on the other hand, one can form arbitrary linear
combinations of such Dp,q by varying the primes p, q.

Problem R. Is the function
∑

p<q αp,qDp,q unbounded on Q\{0, 1} for every family
of real numbers {αp,q} (unless they are all zero)?

It was observed in [113] that a positive answer would imply H3
b(GL2(Q), R) = 0.

Moreover, it follows from the stabilisation results of [113] that the latter vanishing
would imply H3

b(GLn(Qp), R) = 0 for all n ∈ N and all primes p.
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