The Coughvid project started in April 2020, and its main aim is to study the potential of Artificial Intelligence techniques for identifying patients with COVID-19 from the analysis of coughing sounds recorded directly by the patients and under poorly controlled conditions (typically at home and with a smartphone device). The final objective is to develop a mobile application for large-scale, zero-cost screening of this disease among the global population.
As a first result of the project, the Coughvid Crowdsourcing dataset has been published as open data:
This dataset contains more than 25,000 crowdsourced recordings representing a wide range of subject ages, genders, geographic locations, and COVID-19 statuses.
Additionally, more than 2,800 recordings have been manually revised and extensively labeled by expert physicians to diagnose medical abnormalities present in the coughs, thereby contributing one of the largest expert-labeled cough datasets in existence that can be used for a plethora of cough audio classification tasks beyond COVID-19.
Videos
Related Publications
The COUGHVID crowdsourcing dataset, a corpus for the study of large-scale cough analysis algorithms | ||||
Orlandic, Lara; Teijeiro, Tomas; Atienza Alonso, David | ||||
2021-06-23 | Scientific Data |