2025
Melt-extruded light-responsive amphibious liquid crystal elastomer fibers with reprogrammable actuation modes
Chemical Engineering Journal. 2025. Vol. 505, p. 159358. DOI : 10.1016/j.cej.2025.159358.Thermally Drawn Shape and Stiffness Programmable Fibers for Medical Devices
Advanced Healthcare Materials. 2025. p. 2403235. DOI : 10.1002/adhm.202403235.2024
Microfluidic wet spinning of soft polydimethylsiloxane polymer optical fibers
Materials and Design. 2024. Vol. 248, p. 113466. DOI : 10.1016/j.matdes.2024.113466.Thermally drawn multi-material fibers: From fundamental research to industrial applications
National Science Review. 2024. Vol. 11, num. 10, p. nwae290. DOI : 10.1093/nsr/nwae290.Moulding and Microfluidic Wet Spinning of the Soft Polymer Optical Fibers for Sensory Applications
Lausanne, EPFL, 2024.All-Dielectric Nanophotonic via Glass Fluid Instabilities
Lausanne, EPFL, 2024.2023
Polydimethylsiloxane based soft polymer optical fibers: From the processing-property relationship to pressure sensing applications
Materials & Design. 2023. Vol. 232, p. 112115. DOI : 10.1016/j.matdes.2023.112115.Self-powered transformer intelligent wireless temperature monitoring system based on an ultra-low acceleration piezoelectric vibration energy harvester
Nano Energy. 2023. Vol. 114, p. 108662. DOI : 10.1016/j.nanoen.2023.108662.Soft Multimaterial Magnetic Fibers and Textiles
Advanced Materials. 2023. DOI : 10.1002/adma.202212202.The Development of Aptamer-Coupled Microelectrode Fiber Sensors (apta-?FS) for Highly Selective Neurochemical Sensing
Analytical Chemistry. 2023. Vol. 95, num. 17, p. 6791 – 6800. DOI : 10.1021/acs.analchem.2c05046.Thermally Drawn Elastomer Nanocomposites for Soft Mechanical Sensors
Advanced Science. 2023. DOI : 10.1002/advs.202207573.High-performance triboelectric nanogenerator via photon-generated carriers for green low-carbon system
Nano Energy. 2023. Vol. 108, p. 108206. DOI : 10.1016/j.nanoen.2023.108206.Semiconductor-based device architectures in multimaterial fibers
Lausanne, EPFL, 2023.2022
Highly Integrated Multi-Material Fibers for Soft Robotics
Advanced Science. 2022. DOI : 10.1002/advs.202204016.Controlled filamentation instability as a scalable fabrication approach to flexible metamaterials
Nature Communications. 2022. Vol. 13, num. 1, p. 6154. DOI : 10.1038/s41467-022-33853-1.Surface Plasmon Effect Dominated High-Performance Triboelectric Nanogenerator for Traditional Chinese Medicine Acupuncture
Research. 2022. Vol. 2022, p. 9765634. DOI : 10.34133/2022/9765634.Thermally Drawn CNT-Based Hybrid Nanocomposite Fiber for Electrochemical Sensing
Biosensors-Basel. 2022. Vol. 12, num. 8, p. 559. DOI : 10.3390/bios12080559.Highly Stretchable Flame-Retardant Skin for Soft Robotics with Hydrogel-Montmorillonite-Based Translucent Matrix
Soft Robotics. 2022. Vol. 9, num. 1, p. 98 – 118. DOI : 10.1089/soro.2020.0003.Thermally drawn chemically active fibre device and a method of fabrication thereof
EP4281217; WO2022157539.
2022.Functionalization of polymer optical fibers for medical application
Lausanne, EPFL, 2022.Self-Assembled Dewetting as a Fabrication Platform for Photonics Applications
2022. European Conference on Optical Communication (ECOC), ELECTR NETWORK, Sep 18-22, 2022.2021
Unraveling the Influence of Thermal Drawing Parameters on the Microstructure and Thermo-Mechanical Properties of Multimaterial Fibers
Small. 2021. p. 2101392. DOI : 10.1002/smll.202101392.Thermally-Drawn Multi-Electrode Fibers for Bipolar Electrochemistry and Magnified Electrochemical Imaging
Advanced Materials Technologies. 2021. p. 2101066. DOI : 10.1002/admt.202101066.All-in-Fiber Electrochemical Sensing
Acs Applied Materials & Interfaces. 2021. Vol. 13, num. 36, p. 43356 – 43363. DOI : 10.1021/acsami.1c11593.Prediction of Self-Assembled Dewetted Nanostructures for Photonics Applications via a Continuum-Mechanics Framework
Physical Review Applied. 2021. Vol. 3, num. 16, p. 034025. DOI : 10.1103/PhysRevApplied.16.034025.Second harmonic generation in glass-based metasurfaces using tailored surface lattice resonances
Nanophotonics. 2021. Vol. 10, num. 13, p. 3465 – 3475. DOI : 10.1515/nanoph-2021-0277.Stretchable and Sensitive Silver Nanowire-Hydrogel Strain Sensors for Proprioceptive Actuation
Acs Applied Materials & Interfaces. 2021. Vol. 13, num. 31, p. 37816 – 37829. DOI : 10.1021/acsami.1c08305.Novel insights into the design of stretchable electrical systems
Science Advances. 2021. Vol. 7, num. 27, p. eabf7558. DOI : 10.1126/sciadv.abf7558.Functionalized Fiber Reinforced Composites via Thermally Drawn Multifunctional Fiber Sensors
Advanced Materials Technologies. 2021. p. 2000957. DOI : 10.1002/admt.202000957.Soft functional fibers for mechanical sensing and actuation
Lausanne, EPFL, 2021.Design and Fabrication of Stretchable Photonic Fibers
Lausanne, EPFL, 2021.Electronic Multi-material Fibers and Textiles: Novel Designs and Applications
Lausanne, EPFL, 2021.Ultimate Feature Sizes in Thermally Drawn Fibers: from Fundamental Analysis to Novel Functional Fibers
Lausanne, EPFL, 2021.Novel Insights into Thin Film Instabilities: From Fundamentals to Metamaterial Applications
Lausanne, EPFL, 2021.Novel design strategies for modulating conductive stretchable system response based on periodic assemblies
2021
Edible fiber
JP2021513617; US2021000155; EP3752006; CN111683539; WO2019158494.
2021.Elongated microstructured capacitive sensor
US2022307878; EP4022273; WO2021038456.
2021.2020
Nanoscale Controlled Oxidation of Liquid Metals for Stretchable Electronics and Photonics
Advanced Functional Materials. 2020. p. 2006711. DOI : 10.1002/adfm.202006711.Structured nanoscale metallic glass fibres with extreme aspect ratios
Nature Nanotechnology. 2020. Vol. 15, p. 875 – 882. DOI : 10.1038/s41565-020-0747-9.High-efficiency super-elastic liquid metal based triboelectric fibers and textiles
Nature Communications. 2020. Vol. 11, num. 1, p. 3537. DOI : 10.1038/s41467-020-17345-8.Soft and stretchable liquid metal transmission lines as distributed probes of multimodal deformations
Nature Electronics. 2020. Vol. 3, p. 316 – 326. DOI : 10.1038/s41928-020-0415-y.Facile Fabrication of Microfluidic Chips for 3D Hydrodynamic Focusing and Wet Spinning of Polymeric Fibers
Polymers. 2020. Vol. 12, num. 3, p. 633. DOI : 10.3390/polym12030633.Microstructured Biodegradable Fibers for Advanced Control Delivery
Advanced Functional Materials. 2020. p. 1910283. DOI : 10.1002/adfm.201910283.Thermally drawn advanced functional fibers: New frontier of flexible electronics
Materials Today. 2020. Vol. 35, p. 168 – 194. DOI : 10.1016/j.mattod.2019.11.006.Microstructured biodegradable fibers for advanced controlled release
Lausanne, EPFL, 2020.Method and system for fabricating glass-based nanostructures on large-area planar substrates, fibers, and textiles
US11579523; US2020257194.
2020.Multi-material and Multi-functional Optical Fibers: Fabrication and Opportunities
2020. Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, May 10-15, 2020. DOI : 10.1364/CLEO_SI.2020.SF1P.1.Ultralong, complexly structured micro- and nanoscale metallic glasses and fibers
EP3856426; WO2020065551.
2020.2019
Compressible and Electrically Conducting Fibers for Large‐Area Sensing of Pressures
Advanced Functional Materials. 2019. Vol. 30, num. 1, p. 1904274. DOI : 10.1002/adfm.201904274.Microstructured Multimaterial Fibers for Microfluidic Sensing
Advanced Materials Technologies. 2019. p. 1900417. DOI : 10.1002/admt.201900417.Unraveling radial dependency effects in fiber thermal drawing
Applied Physics Letters. 2019. Vol. 115, num. 4, p. 044102. DOI : 10.1063/1.5109469.Polyphenols as Morphogenetic Agents for the Controlled Synthesis of Mesoporous Silica Nanoparticles
Chemistry Of Materials. 2019. Vol. 31, num. 9, p. 3192 – 3200. DOI : 10.1021/acs.chemmater.8b05249.Insights into the fabrication of sub-100 nm textured thermally drawn fibers
Journal Of Applied Physics. 2019. Vol. 125, num. 17, p. 175301. DOI : 10.1063/1.5089022.Self-assembly of nanostructured glass metasurfaces via templated fluid instabilities
Nature Nanotechnology. 2019. Vol. 14, num. 4, p. 320 – 327. DOI : 10.1038/s41565-019-0362-9.Advanced Multimaterial Electronic and Optoelectronic Fibers and Textiles
Advanced Materials. 2019. Vol. 31, num. 1, p. 1802348. DOI : 10.1002/adma.201802348.Thermal Drawing of Polymer Nano-composites: Fluid Dynamic Analysis and Application to Novel Functional Fibers
Lausanne, EPFL, 2019.Super-elastic multi-material optical fibers for health-care applications
2019. Conference on Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XIX, San Francisco, CA, Feb 02-03, 2019. DOI : 10.1117/12.2510697.Programmable self-assembled metasurface for strong field enhancement
2019. Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, May 05-10, 2019. DOI : 10.1364/CLEO_SI.2019.STh1O.3.Microstructured Fibers for the Production of Food
Advanced Materials. 2019. p. 1807282. DOI : 10.1002/adma.201807282.2018
Probing non-Gaussian stochastic gravitational wave backgrounds with LISA
Journal Of Cosmology And Astroparticle Physics. 2018. num. 11, p. 034. DOI : 10.1088/1475-7516/2018/11/034.Direct Synthesis of Selenium Nanowire Mesh on a Solid Substrate and Insights into Ultrafast Photocarrier Dynamics
Journal Of Physical Chemistry C. 2018. Vol. 122, num. 43, p. 25134 – 25141. DOI : 10.1021/acs.jpcc.8b08942.Integration of High-performance Optoelectronic Nanowire-based Devices at Optical Fiber Tips
2018. CLEO. Conference on Lasers and Electro-Optics. Science and Innovations 2018, San Jose, California, USA, May 13–18, 2018. DOI : 10.1364/CLEO_SI.2018.SF2K.4.Template assisted dewetting of optical glasses for large area, flexible and stretchable all dielectric metasurfaces
2018. CLEO. Conference on Lasers and Electro-Optics. Science and Innovations 2018, San Jose, California, USA, May 13–18, 2018. DOI : 10.1364/CLEO_SI.2018.STh1I.5.Multi-material and Multi-functional Optical Fibers
2018. DOI : 10.1364/OFC.2018.Tu2J.6.Stretchable Optical and Electronic Fibers via Thermal Drawing
2018. IEEE International Flexible Electronics Technology Conference (IFETC), Ottawa, CANADA, Aug 07-09, 2018. DOI : 10.1109/IFETC.2018.8583875.Superelastic Multimaterial Electronic and Photonic Fibers and Devices via Thermal Drawing
Advanced Materials. 2018. Vol. 30, num. 27, p. 1707251. DOI : 10.1002/adma.201707251.2017
Controlled Sub-Micrometer Hierarchical Textures Engineered in Polymeric Fibers and Microchannels via Thermal Drawing
Advanced Functional Materials. 2017. Vol. 27, num. 10, p. 1605935. DOI : 10.1002/adfm.201605935.Tailoring Surface Properties of Fiber Materials : Novel Opportunities in the Fabrication of Multi-scale Fiber-based Architectures
Lausanne, EPFL, 2017.Semiconducting Nanowire-Based Optoelectronic Fibers
Advanced Materials. 2017. Vol. 29, num. 27, p. 1700681. DOI : 10.1002/adma.201700681.Feature issue introduction: Multimaterial and Multifunctional Optical Fibers
Optical Materials Express. 2017. Vol. 7, num. 6, p. 1906 – 1908. DOI : 10.1364/Ome.7.001906.Multi-material micro-electromechanical fibers with bendable functional domains
Journal Of Physics D-Applied Physics. 2017. Vol. 50, num. 14, p. 144001. DOI : 10.1088/1361-6463/aa5bf7.Multi-material Optoelectronic Fiber Devices
2017. Conference on Micro- and Nanotechnology (MNT) Sensors, Systems, and Applications IX, Anaheim, CA, USA, APR 09-13, 2017. DOI : 10.1117/12.2262124.Microstructure Engineering in Multi-material Fibers
Lausanne, EPFL, 2017.Microstructure tailoring of selenium-core multimaterial optoelectronic fibers
Optical Materials Express. 2017. Vol. 7, num. 4, p. 1388 – 1397. DOI : 10.1364/OME.7.001388.2015
Hybrid Optical Fibers – An Innovative Platform for In‐Fiber Photonic Devices
Advanced Optical Materials. 2015. Vol. 4, num. 1, p. 13 – 36. DOI : 10.1002/adom.201500319.2014
Self-organized ordered silver nanoparticle arrays obtained by solid state dewetting
Applied Physics Letters. 2014. Vol. 105, num. 20, p. 203102. DOI : 10.1063/1.4901715.