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We combine experiments with simulations to investigate the fluid-structure interaction of a flexible
helical rod rotating in a viscous fluid, under low Reynolds number conditions. Our analysis takes into
account the coupling between the geometrically nonlinear behavior of the elastic rod with a nonlocal
hydrodynamic model for the fluid loading. We quantify the resulting propulsive force, as well as the
buckling instability of the originally helical filament that occurs above a critical rotation velocity. A scaling
analysis is performed to rationalize the onset of this instability. A universal phase diagram is constructed to
map out the region of successful propulsion and the corresponding boundary of stability is established.
Comparing our results with data for flagellated bacteria suggests that this instability may be exploited in
nature for physiological purposes.
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Bacteria often rely on the deformation of filamentary
helical structures, called flagella, for locomotion [1]. The
propulsion arises from a complex fluid-structure interaction
between the structural flexibility of the flagellum and the
viscous forces generated by the flow. This fluid-structure
interaction may lead to geometrically nonlinear deforma-
tions [2,3], which in turn can be exploited for turning [4],
tumbling [5], bundle formation [6], and polymorphic
transformations [7,8].
Resistive force theories (RFT) [9,10] are often used to

model the role of viscous forces on flexible filaments [11],
at low Reynolds number. These simplify the viscous
loading by introducing local geometry-dependent drag
coefficients. More sophisticated descriptions consider non-
local hydrodynamic effects, albeit typically assuming that
the filament is rigid such that elastic forces are ignored
[12,13]. The few studies that have coupled long-range
hydrodynamics with elasticity either assume small deflec-
tions [13] or approximate the filament as a network of
springs [14,15], thereby oversimplifying the mechanics of
the problem. One exception is the study of buckling of a
straight elastic filament loaded by viscous stresses [16].
More recently, a systematic computational study has been
performed on a discretized model based on Kirchhoff’s
theory for elastic rods (in the form of a chain of connected
spheres), coupled with RFT [3]. This study was significant
in that it was the first, to the best of our knowledge, to
report a series of buckling instabilities of the flagellum that
arise during locomotion and suggested its relevance to the
biological system. Moreover, it addressed the important
rotation-translation coupling. However, recent experiments
[12,17] and simulations [13] have pointed to the over-
simplifying nature of RFT to model propulsion in a
quantitatively predictive manner. Therefore, there is a

timely need for a description that fully couples a geomet-
rically nonlinear elastic model of the filament [18] with
long-range hydrodynamic interactions [10], along with
precision experiments for detailed validation.
Here, motivated by the locomotion of uniflagellated

bacteria, we perform a combined experimental and numeri-
cal investigation of the dynamics of a helical elastic
filament rotated in a viscous fluid. Our goal is to pre-
dictively understand the underlying mechanical instabil-
ities. In our precision model experiments, we reproduce and
systematically quantify the dynamics of the filament, as a
function of the control and physical parameters of the
system. In parallel, we perform numerical simulations that
model the elastic rod using the discrete elastic rods (DER)
method [19], coupled to a viscous drag described by
Lighthill’s slender body theory (LSBT) [10]. After validating
the numerics against experiments, we quantify the steady
state configurations of the filament and explore the multi-
dimensional phase space of the resulting propulsive force.
Existing data on the physical properties of bacterial flagella
are sparse [20], given the experimental challenges associated
with their measurement. As such, we seek a dimensionless
description that encompasses the geometric parameters of
natural flagella, with an emphasis on the propulsive force
and onset of buckling. The phase boundary for this insta-
bility is mapped out, onto which we locate a number of
natural bacterial systems. These results motivate us to
speculate on the potential biological relevance of the
mechanical instabilities of rotating flagella.
In Fig. 1(a), we provide a photograph of our apparatus.

As a model for flagella, we cast a series of elastomeric rods
with vinylpolysiloxane [21] and independently varied each
of the geometric parameters (axial length l or contour
length L, helix radius R, pitch λ, and cross-sectional radius
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r0, or area moment of inertia, I ¼ πr40=4) and material
properties (the Young’s modulus E of the rod was deter-
mined by analyzing the shape of a suspended annulus [22]).
The rod was assumed to be incompressible (Poisson’s ratio,
ν ≈ 0.5). During fabrication, a polyvinyl chloride tube was
wrapped around a cylindrical object along a helical
geometry and was used as a mold for the rods. The density
of the rod was adjusted by adding iron filings (Dowling
Magnets) to the polymer, prior to casting. Once cured and
demolded, the filament was clamped at one end, immersed
in a bath of glycerin (20 × 20 × 30 cm3), and rotated using
a stepper motor [23]. Using digital imaging, we recon-
structed the deformed configurations of the filament and
quantified its dynamics. To ensure constant and reproduc-
ible values for the fluid viscosity, the glycerin bath was
inserted within an external water tank to accurately control
the temperature within �0.5 °C (Brinkmann Lauda RC6).
By tuning the temperature, 7.6 ≤ θ½°C� ≤ 32.4, we varied
the viscosity of glycerin in the range 0.50≤ μ½Pa · s� ≤ 4.45
(�0.05 Pa · s). The density of glycerin is ρm ¼ 1.24
g=cm3, and despite our best effort for density matching,
our rods had a slightly higher value (≲5%) than glycerin,
which is, however, included in the numerics.
For our simulations, we combined DER [19], a robust

and efficient computational tool for the mechanics of rods,
and LSBT [10], a viscous force model that accounts for
nonlocal hydrodynamics. Both DER and LSBT were
independently validated against precision experiments in
Ref. [24] and in Ref. [12], respectively. The helical rod is

described by its center line, parametrized by the arc length
s [Fig. 1(b)]. For the fluid loading, LSBT is used to relate
[10] the local velocity uðsÞ and the force per unit length
fðsÞ at each point on the rod center line:

uðsÞ ¼ f⊥ðsÞ
4πμ

þ
Z
jrðs0;sÞj>δ

fðs0Þ · JðrÞds0; ð1Þ

where f⊥ðsÞ ¼ fðsÞ · ½I − tðsÞ ⊗ tðsÞ� is the component of
f in the plane perpendicular to the tangent tðsÞ, rðs0; sÞ is
the position vector from s0 to s, δ ¼ ðr0

ffiffiffi
e

p
=2Þ is the natural

cutoff length, and JðrÞ ¼ ð1=8πμÞ½ðI=jrjÞ þ ðr ⊗ rÞ=jrj3�
is the Oseen tensor. Equation (1) is then discretized and cast
into a 3N sized linear system of the formU ¼ AF, whereN
is the number of nodes of the discretized rod [23]. At each
time step in DER, the viscous forces F are evaluated from
the velocities U and the matrix A that only depends on the
geometric configuration of the rod. To advance in time, we
apply this external force together with elastic forces, update
the rod configuration, and iterate. Self-contact, possible
only after buckling, is neglected throughout, although this
does not compromise the agreement with experiments.
We first establish a connectionwith existing literature for a

naturally straight filament rotating in a viscous fluid [16] and
then consider naturally curved rods. In Fig. 2(a), we present
experimental photographs of undeformed (top) and
deformed (bottom) configurations, for three representative
caseswith decreasing natural radius of curvature of the rodR
while fixing its contour length at L ¼ 12.00� 0.05 cm.
These three cases are (i) straight rod (clamped at an angle of
α ¼ 15°, for consistency with Ref. [16]), (ii) moderately
curved rod (R=L ¼ 0.56, α ¼ 0), and (iii) highly curved rod
(R=L ¼ 0.29,α ¼ 0).All other parameters for this part of the
study were kept fixed: r0 ¼ 1.58� 0.02 mm, rod density,
ρr ¼ 1.306� 0.002 g=cm3, E ¼ 1255� 49 kPa, and μ ¼
1.32� 0.05 Pa · s, which ensured a Reynolds number
< 10−1. The resulting configurations (after initial transients)
for these three cases are found tovarydramaticallywithR=L.
The role of natural curvature is quantified further in

Fig. 2(b), where we plot the steady state suspended height
(vertical distance from the clamp to the bottom of the rod h)
normalized by the height in the nonrotating case, i.e.,
h̄ ¼ h=h0, as a function of the imposed angular velocity ω.
Excellent quantitative agreement is found between experi-
ments and simulations, with no fitting parameters. Given
that the value of the propulsion force at the clamp is too low
to be measured experimentally, we extract it from the
simulations at each time step as Fp ¼ −

R
L
0 ðf · ezÞds,

where f is obtained from Eq. (1). In Fig. 2(c), we normalize
the propulsive force, F̄p ¼ FpL2=ðEIÞ, by the character-
istic bending force in the rod and plot F̄p versus ω.
Qualitative and quantitative differences are observed
between the three cases: straight, moderately curved, and
highly curved rods. The first two undergo a shape transition
at ω ≈ 0.2 rad=s. However, the propulsion force of the

FIG. 1 (color online). (a) Experimental apparatus: a helical rod
(1), is rotated by a motor (2), inside a glycerin bath (3), that is
enclosed by an externalwater tank (4) for temperature control. Two
orthogonal video cameras (5) and (6) record the rod. (b) Schematic
diagram of the rod. (c),(d) Examples of the deformed rod at
ω ¼ 0.6 rad=s, from both experiments and simulations: (c1),(c2)
helical and (d1),(d2) buckled configurations (movie in Ref. [23]).
See text for the properties of rod and fluid.
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straight rod is always positive, whereas it is negative for the
moderately curved rod. By contrast, the highly curved rod
exhibits a nonmonotonic behavior: h̄ first increases to reach
a maximum value at ω ≈ 1.0 rad=s, where buckling occurs,
and eventually h̄ ≈ 1. Since the propulsion depends on the
deformed configuration, the resulting Fp versus ω relation
is markedly different from the previous two cases; Fp first
changes sign from negative to positive at ω ≈ 0.3 rad=s,
reaches a maximum at ω ≈ 2.4 rad=s, and then changes
sign again at ω ≈ 2.6 rad=s. The coupled effect of curva-
ture, flexibility, and fluid forces can thus produce nontrivial
behavior in both geometry and propulsion.
Reassured by the quantitative agreement between

numerics and experiments, we turn to the dynamics of
helical filaments as macroscopic analogues of bacterial
flagella [13,25]. These rods were rotated in the glycerin
bath (μ ¼ 1.6� 0.05 Pa · s) at angular velocities in the
range 0 < ω½rad=s� ≤ 0.8. For now, we focus on a case with
E ¼ 1255� 49 kPa, ρr ¼ 1.273� 0.022 g=cm2, l ¼ 20�
0.5 cm, λ ¼ 5� 0.5 cm, R ¼ 1.59� 0.1 cm, and r0 ¼
1.58� 0.02 mm. Under these conditions, the Reynolds
number always remains smaller than 10−2 and the Stokes
flow assumption is appropriate throughout. In Fig. 3(a), we
present a sequence of experimental photographs for our

representative helical rod rotated at ω ¼ 0.6 rad=s, starting
from rest. The corresponding time series for the normalized
suspended height h̄ is plotted in Fig. 3(b) for both experi-
ments (solid line) and simulations (dashed line), with good
agreement between the two. Any mismatch arises primarily
from self-contact that is neglected in the simulations.
Initially (t≲ 100 s), h̄ ∼ 1, but the configuration eventually
becomes increasingly distorted due to the appearance of
regions of chiral inversion, even if the axis of the helix
remains vertical. At later times, the rod bundles and the
suspended height reaches an approximate steady state, with
h̄ ∼ 0.6. The time series of the normalized propulsive force,
F̄p ¼ Fpl2=ðEIÞ, calculated from the simulations, is plot-
ted in Fig. 3(c). Concurrently with the drop in h̄ at
t ≈ 150 s, F̄p becomes increasingly unsteady, which we
will show arises through a buckling instability.
In Fig. 3(d), we plot the late time average of h̄ over 740 s

past the initial transients (t > 360 s) versus ω. We find that
h̄ ∼ 1 up to ωb ¼ 0.51 rad=s, after which it sharply drops.
Hereafter, we shall refer to ωb as the critical buckling
velocity, above which fluid loading arising due to the
rotation causes the helical filament to buckle. The corre-
sponding F̄p is plotted in Fig. 3(e) as a function of ω, and
we find that it increases monotonically up to ωb. Note that a

FIG. 2 (color online). (a) Experimental images of (a1) straight
rod, (a2) R=L ¼ 0.56, and (a3) R=L ¼ 0.29 in their undeformed
(top row) and deformed state (bottom row) at ω ¼ 3.14 rad=s.
(b) Normalized suspended height h̄ versus angular velocity ω for
experiments and simulations. (c) Simulation data of normalized
propulsive force F̄p versus ω.

FIG. 3 (color online). (a) Sequence of experimental images at
ω ¼ 0.6 rad=s. Material properties are provided in the text
(movie in Ref. [23]). Time series of (b) normalized height
h̄ðtÞ and (c) normalized propulsive force F̄pðtÞ. (d) Normalized
height h̄ in steady state (t > 360 s) versus ω. (e) Normalized
propulsive force F̄p in steady state versus ω, with the shaded
region representing the standard deviation.
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rigid helix would yield a linear dependence between F̄p and
ω [12] [dashed line in Fig. 3(e)]. For ω < ωb, flexibility of
the helical filament leads to a sublinear F̄p, when compared
to the rigid case. For ω > ωb, the average value of F̄p drops
sharply, albeit with significant fluctuations [the shaded
region in Fig. 3(e) corresponds to the standard deviation of
the averaged force value]. Similar to Fp, we can also
measure the input torque Tp necessary to sustain rotation,
and this allows us to quantify the propulsive efficiency,
which we define as η ¼ Fpl=Tp. The efficiency remains
almost constant as a function of angular velocity for
ω < ωb, but drops to a lower value upon buckling [23].
Also, see Ref. [3] for a characterization of propulsion as a
function of input torque.
We proceed to rationalize the dependence of the buckling

velocity on the physical parameters of our system. The
viscous force acting on the helical filament scales as
Fv ∼ μωl2. Regarding the helix as an effective beam allows
us to estimate its critical buckling load as Fc ∼ EI=l2.
Instability is expected to occur when Fv ≈ Fc, which yields
ωb ¼ ω̄bEI=ðμl4Þ, where ω̄b ¼ ˆ̄ωðλ=l; R=λÞ is a dimen-
sionless function that depends on the geometry of the helix
alone. To systematically investigate the dependence of ωb
on the various parameters, we start with the values for the
rod used in Figs. 3 and 4(a), and plot ωb versus Er40=ðμl4Þ,
for a given geometry (λ=l ¼ 4 and R=λ ¼ 0.32). In both
experiments (filled symbols) and simulations (open sym-
bols), each one of the four parameters fE; r0; μ; lg is
independently varied, while fixing the other three. We find
that the data collapse onto a straight line, thereby support-
ing our scaling analysis. To characterize the effect of the
geometry fλ=l; R=λg, we independently vary the helix
radius R and pitch λ while fixing E, μ, r0, and l. In
Fig. 4(b), we plot ωb as a function of the normalized pitch
λ=l at fixed R ¼ 1.59 cm. The dependence of ωb on the
normalized radius R=λ at λ ¼ 5 cm is shown in Fig. 4(c).
From both of these plots, we conclude that ωb varies

nonlinearly with λ=l and R=λ. These parameters must be
taken into account when mapping the results from our
model system to a regime that is relevant to bacterial
locomotion, which is addressed next.
Finally, we take advantage of the efficiency of our

algorithm to provide a biologically relevant description
of ω̄b. We use the parameters of the rod used in Fig. 3,
except that the fluid and flagellum are assumed to be
density matched and the axial length is increased to
l ¼ 0.4 m, so that r0 ≪ fλ; R; lg. Supported by the data
(see Ref. [23]), we approximate ω̄b ¼ M̂ðR=λÞN̂ðλ=lÞ by
M̂ðR=λÞ ¼ ðR=λÞ−m, with m ¼ 1.96� 0.05 (see Ref. [23]
for details). Using this result, in Fig. 4(d) we construct a
phase diagram for the propulsive force versus both ω̄ ·
ðR=λÞm and λ=l, where ω̄ ¼ ωμl4=ðEIÞ is the normalized
angular velocity. In Fig. 4(d), we also superpose the
parameter values corresponding to bacterial flagella of
specific organisms (see caption), which are estimated by
taking the characteristic orders of magnitude values for
μ ¼ 10−3 Pa · s, EI ¼ 10−23 N · m2 [11] (this estimate
ranges from 10−24 [26] to 10−22 [20]), and ω ¼
102–103 Hz [4,17,27]. Moreover, the geometric parameters
fλ=l; R=λg for some common bacteria (see caption of
Fig. 4) are taken from Refs. [12,17]. The data suggest
that natural flagella rotate at a rate approximately within 1
order of magnitude of ωb, where we have taken into
account the estimated range of ω (error bars) and the
known uncertainty in EI (rectangles). Note that, for
simplicity and generality, we ignored the role of the
cell body, and focused on a single helical filament, even
though a number of the bacteria considered here are
multiflagellated.
Our results raise the hypothesis that the flexibility of

flagella imposes an upper bound on propulsive force
through ωb, above which buckling occurs. Moreover, in
addition to the localized bucking that can happen at the
hook of the flagellum [4], the reconfigurations that arise in

FIG. 4 (color online). Buckling velocity ωb versus (a) characteristic angular velocity Er40=μl
4, (b) normalized pitch λ=l, and (c)

normalized helix radius R=λ. In (a), one of the four parameters fE; r0; μ; lg was varied keeping the others fixed. In (b) and (c), the helix
pitch and radius, respectively, were varied while fixing all the other parameters. (d) Dependence of propulsive force (color bar) on both
the normalized pitch λ=l and ω̄ðR=λÞm, with m ¼ 1.96� 0.05, obtained at R=λ ¼ 0.2 (see Ref. [23]). The symbols correspond to (1)
Caulobacter crescentus (wild) (circle), (2) Rhizobium lupini (curly) (upward triangle), (3) Salmonella (wild) (right pointing triangle), (4)
Rhizobium lupini (semicoiled) (downward triangle), (5) Escherichia coli (diamond), (6) Vibrio alginolyticus (left pointing triangle)
[12,17]. Filled (and open) symbols correspond to the lower (and upper) bound estimates EI ¼ 10−23 N · m2 (and EI ¼ 10−24 N · m2).
The error bars represent the range in angular velocity, ω=ð2πÞ ¼ 500� 200 Hz.
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the postbuckling regime of the flagellum suggest the
possibility of a novel functional turning mechanism.
This remains an open question, however, given the current
uncertainty on the known properties of flagella. As such,
our investigation calls for additional experimental work to
more precisely measure the properties of natural bacterial
flagella, and more accurately image their dynamics.

We thank Roman Stocker for enlightening discussions,
and we are grateful to the National Science Foundation
(CMMI-1129894) for financial support.
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