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Designing soft materials with interfacial instabilities
in liquid films
J. Marthelot1, E.F. Strong2, P.M. Reis3 & P.-T. Brun 1

Natural soft materials harness hierarchy and structures at all scales to build function.

Adapting this paradigm to our technological needs, from mechanical, phononic and photonic

metamaterials to functional surfaces prompts the development of new fabrication pathways

with improved scalability, design flexibility and robustness. Here we show that the inherent

periodicity of the Rayleigh–Taylor instability in thin polymeric liquid films can be harnessed to

spontaneously fabricate structured materials. The fluidic instability yields pendant drops

lattices, which become solid upon curing of the polymer, thereby permanently sculpting the

interface of the material. We solve the inverse design problem, taming the instability, so that

the structures we form can be tailored, over a range of sizes spanning over two decades. This

all-in-one methodology could potentially be extended down to the scales where continuum

mechanics breaks down, while remaining scalable.

DOI: 10.1038/s41467-018-06984-7 OPEN

1 Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08540, USA. 2Department of Mechanical Engineering,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA. 3 Flexible Structures Laboratory, Ecole Polytechnique Fdrale de Lausanne, 1015
Lausanne, Switzerland. Correspondence and requests for materials should be addressed to P.-T.B. (email: pbrun@princeton.edu)

NATURE COMMUNICATIONS |          (2018) 9:4477 | DOI: 10.1038/s41467-018-06984-7 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-4175-0604
http://orcid.org/0000-0002-4175-0604
http://orcid.org/0000-0002-4175-0604
http://orcid.org/0000-0002-4175-0604
http://orcid.org/0000-0002-4175-0604
mailto:pbrun@princeton.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Capillary effects are ubiquitous in inert and living matter
where they dominate the dynamics of fluids at small
length scales, in drops, bubbles and thin films1. They are

central to various technological applications spanning the fields of
chemical engineering, bioengineering, and material science. In
their stable limit, capillary effects are routinely used as a method
to straighten interfaces, e.g., in the glass-float process and in
coatings on surfaces and fibers2,3, to functionalize surfaces4,5, and
to deform or assemble small compliant objects6–9. Capillary
effects also foster the fragmentation of a volume of fluid into a
collection of droplets whose radii vary from tenths of nanometers
to several millimeters10–13. These droplets serve as vehicles for
biological materials14, for printing polymeric solutions15,16, or are
destined to combustion17. However, to this day, interfacial
instabilities are rarely seen as a pathway to give spatial order to
materials13,18,19. Such structures could find applications in var-
ious fields from mechanical, phononic, and photonic metama-
terials to functional surfaces4,20–22.

Melts and amorphous phases are universally used in manu-
facturing, given that they can be deformed to take a desired shape,
which becomes a tangible object upon solidification. Examples
include glass blowing, metal casting, plastic molding, soft-litho-
graphy, and 3D printing14,23. While spatial order arises from
applied constraints in these engineered structures, patterns in
nature often capitalize on the inherent periodicity and robustness
of instabilities24.

Here, we show that the Rayleigh–Taylor instability in thin
polymer films can be harnessed at the materials level to sponta-
neously shape solid structures. Specifically, thin liquid elastomeric
coatings are destabilized to generate drop-shaped smooth struc-
tures with tailored geometrical properties, which are predicted by
the theoretical framework we introduce. As the elastomer cures,
these fluid-mediated structures yield an elastic material. We show
that the robustness of the instability across length scales, and
material properties are instrumental in making this passive
methodology a scalable fabrication pathway.

Results
Tailoring the Rayleigh–Taylor instability. Figure 1a outlines our
approach: a liquid elastomeric polymer (polydimetylsiloxane
PDMS Sylgard 184, Dow Corning) is coated on the outside of a
cylinder with radius R. The substrate is then rotated at speed Ω,
either in a lathe or in a centrifuge depending on the targeted
acceleration a= RΩ2 (see Methods). We observe the destabili-
zation of the interface of the film into a lattice of drops. As the
polymer cures, the array of liquid drops solidifies, thereby per-
manently sculpting this initially fluid system (Fig. 1b). The
resulting structure can be used as a network, or the drops may be
peeled off from the substrate and used individually (Fig. 1c),
making of this method an inherently scalable fabrication
pathway.

The Rayleigh–Taylor instability (RTI) in thin liquid films
describes the destabilization of a fluid interface under the action
of surface tension, viscous stresses and an acceleration field,
usually gravity25,26. The drops shown in Fig. 1b, which serve as a
reference case, originate from the linearly most unstable mode of
the RTI in a thin film subject to the destabilizing action of gravity.
The wavelength of the pattern is λM ¼ 2π

ffiffiffi
2

p
‘c, where ‘c is the

capillary length25. This characteristic length is obtained by
balancing gravity and capillary effects so that ‘c ¼

ffiffiffiffiffiffiffiffiffiffi
γ=ρg

p
, where

γ is the surface tension of the liquid, ρ its density and g is the
acceleration of gravity (viscous effects only enter in setting the
time scale of the instability). While gravity yields centrimetric
droplets (‘c ¼ 1:45 mm for PDMS so that λM ’ 13mm), smaller
scales can be reached with the larger acceleration fields we

generate via centrifugation. Typical results are shown in Fig. 1d
and e, corresponding to accelerations RΩ2= 10.2g and a= 1421g,
respectively. In our experiments, we define the location of a drop
by the coordinate of its apex. We then use this data to generate a
Voronoi diagram with partitions of mean area S (inset of Fig. 1f).
We define the wavelength of the lattice as λ ¼ 4=31=4

ffiffiffiffiSp
. The

prefactor corresponds to an ideal regular hexagonal lattice for
which S ¼ ffiffiffiffiffiffiffiffi

3=4
p

λ2. In Fig. 1f, we show that our experiments
collapse on a curve defined by:

λ ¼ λM

ffiffiffiffiffiffiffiffiffi
g

RΩ2

r
; ð1Þ

where R is the radius of rotation and Ω the rotation speed.
Equation 1 matches the classical expression of the most unstable
mode of the RTI when substituting a= RΩ2 for g, thereby
showing that the physics of the instability is unchanged over five
decades of accelerations. We find that an acceleration ranging
between g and 3 × 104g yields drops with wavelength ranging
from 10mm to 50 μm, showing the robustness of the instability
across length scales (see Fig. 1g–i). For accelerations larger than
103g (triangles in Fig. 1f), we worked with silicon wafers, which
were flat, so that the centrifugal forces is not uniform across the
sample. This effect leads to a competition between droplets and
rivulets27.

With the above results in hand, it is thus possible to program
the instability to obtain a drop lattice with wavelength ranging
over three decades, simply by modulating the magnitude of the
acceleration field. The drops are remarkably similar across
lengthscales as evident from Fig. 1j, where our montage is
realized by rescaling each drop by ‘ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ=ρRΩ2

p
, the generalized

capillary length. We anticipate that larger accelerations will
produce a similar trend until other effects such as surface
roughness or intermolecular forces become appreciable. We now
focus on the case where a= g, and investigate thin polymeric
films coated on the underside of horizontal substrates.

From instability to order. We examine the regularity of the
lattice that emerges spontaneously from the RTI. As the lattice
cures, we are able to investigate its geometric properties with ease.
In Fig. 2a, we show photographs of the caustics obtained when
illuminating the translucent samples with a point source. The
star-like shapes in Fig. 2a show the position of the apex of each
drop, while the white segments evidence a network of flat valleys
in the films separating neighboring droplets28. We construct the
Voronoi tessellation using the drops positions, which we show in
Fig. 2b. We find that the Voronoi cell boundaries coincide with
the film valleys. Each drop may be seen as an isolated system,
which has drained the volume initially occupying its tile. There is
a majority of hexagons (blue) as well as some pentagons (green)
and some heptagons (red). The lattice is thus irregular, albeit
composed of tiles of approximatively the same size. Irregularities
are inherent to the instability that starts from the edge of the
film25,26 and progressively invades the sample, accumulating
defects, and geometrical frustrations.

To bypass this effect and improve the monodispersity of the
drops, we carefully design a layout of surface defects on the
substrate. Cylindrical holes (diameter 2 mm, depth 1.6 mm),
regularly spaced, are etched on the substrate (Fig. 2c, d). They are
used as seed perturbations to trigger the instability simultaneously
across the sample. In Fig. 2c and d, we show the results obtained
with a square and a hexagonal seed layout with wavelength λ=
λM. The drops are not centered on the defects, but instead are
located as far as possible from them, i.e., on the vertices of the
dual graph of the seeds pattern. As evident from Fig. 2c and d, we
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are able to organize the lattice of droplets and tailor the geometry
of the unit cell.

The topography of the resulting droplets pattern was
digitized using a 3D laser scanner (NextEngine). Data are
reported in Fig. 2e and f and color-coded such that drops
apex appear in red and valleys in blue. The small cylindrical
cavities evident in Fig. 2c and d mark the location of the seeds.
The initial film flowed away from the seeds in a direction
parallel to the sample25 to feed off the neighboring drops. In the
classical RTI (no seeds, uniform initial coating), the growth rate
of drops in a square pattern is lower than that of a hexagonal
arrangement—such that square lattices are usually not
observed unless forced25. The forcing achieved through the
seeds that have been laid out in a square lattice, appears to be
sufficient to promote this pattern. Note that in both the square
and the hexagonal cases, we observe that the regularity of
the lattice comes along with a degree of uniformity of the drops
amplitude. We now aim to elucidate the underlying
mechanisms that set the amplitude and the shape of these
drops.

Inverse design. In Fig. 3a, we report the final amplitude of drops
for substrates coated with the same initial film thickness (h0=
270 μm), while the work time τw at which the substrates are
inverted is varied. The work time τw denotes the time interval
between the preparation of the polymer, i.e., when curing begins,
and the time at which the sample is inverted, i.e., when the gravity
induced flow begins. The amplitude of the drops is averaged on
75 drops across each sample. For small values of τw (here τw <

2000 s), the final drop amplitude is independent of τw. However,
for larger values of τw smaller drops are obtained. We now turn to
rationalize this dependance.

In our problem, the final state of the film is the result of the
competition between two time scales. First, the RTI initially grows
exponentially with characteristic time τi= 12τv, where τv ¼
μ‘4c=ðσh30Þ is the time scale of drainage in the thin film
surrounding the drops28. Note that this time scale strongly
depends on h0, such that small differences in h0 yield large
differences in τi. Second, the elastomer undergoes crosslinking
and cures with characteristic time τc29. We aim to work with
physical parameters such that τc � τi. To illustrate this time scale
separation, we superimpose in Fig. 3b the dynamics of the drop
growth, measuring the transmittance of the PDMS coating
colored with a black dye, and the time evolution of the polymer
viscosity, for a constant shear rate _γ ¼ 0:1 s�1. We find that the
predicted time scale τi (black line in Fig. 3b) captures the
exponential growth of the instability in our experiments, which
saturates in a time (700 s) significantly smaller than curing time
(3500 s). Saturation is imparted by the increasing difficulty to
drain fluid from the flat regions in-between the drops (as their
thickness decreases). By choosing the initial thickness of the
coating, we manage to operate in a regime where the time scales
of the problem are separated: first the drops form and then the
curing of the polymer solidifies the drops.

At large times, t � τi, and before curing t � τc the system
consists of a series of drops surrounded by thin depleted films28.
Asymptotic analysis of the equations governing this creeping flow
reveals that perturbations to the drops shape relax much faster
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Fig. 1 Harnessing the Rayleigh–Taylor instability at the materials scale. a A thin polymeric film is initially deposited onto a cylinder substrate which is then
rotated so that its interface destabilizes to the Rayleigh–Taylor instability under the action of the destabilizing acceleration a= RΩ2. b Liquid polymer drops
grow into a pattern that freezes as the polymer cures. c The resulting elastic drops may be easily peeled from the substrate. Scale bar, 5 mm. d, e Drop
patterns formed with a= 10.2g and a= 1421g, respectively. Scale bars, 1 cm. f The lattice wavelength, λ, is a function of the acceleration field generating
drops with size ranging from 10mm to 50 μm. The error bars correspond to the standard deviation of measurements obtained across the sample. Inset: a
typical Voronoi construction generated using the drops positions. g–i Experimental pictures and SEM images of drops obtained with an acceleration field
RΩ2/g= 42 (g, scale bar 500 μm), 640 (h, scale bar 50 μm), 12,266 (i, scale bar 10 μm). j Photomontage combining portions of drops (c) and g–i
compared to theory (dashed red line)
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than the intervening region between drops can drain28. As a
result, the drops are in near-equilibrium and their shape may be
derived with a quasi-static approach matched asymptotically to a
surrounding much thinner film. The geometry of the drops is
characterized by θ(s) as defined in inset of Fig. 4a, such that the
tangent to the interface is r′(s)= (cos(θ(s)), sin(θ(s))), where a
prime denotes a differentiation with respect to the arc-length s.
Given the symmetry of the problem, we search for constant-
pressure solutions of

θ′′ðsÞ ¼ �‘�2
c cosθðsÞ þ cosθðsÞ

yðsÞ
� �

; ð2Þ

obtained by balancing gravity and surface tension effects.
Integration of this equation subject to the adequate set of
boundary conditions (x(0)= 0 and θ(0)= 0) is performed using a
shooting algorithm leveraging on the symmetry of the problem so
that the tangent to the drop is horizontal when crossing the x−
axis (at the appex). Results obtained via this method are shown in
Fig. 4a. The family of solutions are color-coded such that
solutions of lesser amplitude (and volume) are marked in blue
and solutions of larger amplitudes are indicated in red. All

solutions are recast in Fig. 4b as a function of their dimensionless
amplitude A=‘c and the dimensionless coating thickness h0=‘c
required to form them (assuming a hexagonal arrangement of the
drops to evaluate their volume, and neglecting the volume of fluid
in the connecting films). The solution branch in Fig. 4b is
multivalued and presents a fold separating stable solutions (small
values of A) and unstable ones (large values of A, thus never
observed in experiments) from regions where no static solutions
exist (large values of h0). The fold-point in the curve corresponds
to the drop presented as a dashed line in Fig. 4a, such that only
the shapes below this curve are expected to be found in our
experiments as we show next.

The amplitudes of the droplets obtained in our experiments for
different initial coating thickness h0 are averaged across the
sample and plotted in Fig. 4b as red triangles. To estimate the
volume of PDMS trapped in the seed, we weigh the drops after
peeling from the sample and recast their volume in terms of h0
using a hexagonal lattice. In Fig. 4c–h, we present photographs of
cross-sectional cuts of the solidified elastic drops along with the
axisymmetric solutions of the drop shapes that best fit them. We
find a favorable agreement between theory and experiments.
Figure 4h is the largest drop that can be obtained experimentally.
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Fig. 2 Control of the drop lattice. a Optical projection of the PDMS drop lattice on a flat surface. Areas are color-coded according to the type of polygon
encountered. b Voronoi mesh of the drop lattice in a. Hexagons appear in blue, pentagons in green, and heptagons in pink. c, d Experimental pictures of
square and hexagonal patterns forced using seeds (shown in yellow and in inset) with wavelength λ. e, f 3D scans of the same droplets, showing their
monodispersity
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Increasing the thickness of the initial film coating further leads to
dripping, as no equilibrium solution exists (fold-point). The
shape of the elastic interface is thus rationalized using arguments
and an equation that belongs to the realm of fluid mechanics.
Such a predictive model allows us to quantitatively solve the
inverse problem: the targeted shape dictates the initial conditions,
chosen using the explicit relation plotted in Fig. 4b. Similar
arguments apply in the context of our centrifuged experiments.
The targeted scale, λ, sets the acceleration and radius obtained
reversing Eq. 1. Drop shapes are then obtained substituting the
generalized capillary length ‘ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ=ρRΩ2

p
for ‘c in Fig. 4b.

Drops with identical dimensionless volume indeed collapse on the
predicted shape as shown in Fig. 1j.

Complex elastic surfaces. At smaller scale, precisely controlling
the surface defect on the substrate and the initial thickness is
more challenging. We propose an alternative approach. We start
with a smooth substrate, which we coat and rotate to generate an
imperfect drop lattice. We then use this lattice as a substrate,
which is coated and rotated again at the same speed. Each time,
the previously obtained lattice serves to force the instability. After
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a few generations, we find that the shapes that we obtain converge
towards the same aspect ratio. In Fig. 5a, we show the hairy elastic
structures obtained after 16 generations of coating at an accel-
eration RΩ2/g= 404.

We then take advantage of the elastic properties of our
materials and show that those structures can be dynamically
actuated into a variety of convex and concave shapes. Under
pressure loading, a hexagonal array of droplets with regular
amplitude bulges to form a dimpled sphere (Fig. 5b and
Supplementary Movie 1). This deformation is reversible owing
to the constitutive properties of the elastomer. Similar deforma-
tions are obtained for hairy surfaces (Fig. 5c and Supplementary
Movie 2) at an intermediate scale. At microscopic scale, two-tier
controlled structures are demonstrated on surfaces permanently
deformed with positive and negative Gaussian curvature and
imaged with SEM (Fig. 5d, e). An additional wrinkle morphology
at the surface of the structure is observed for larger values of
the acceleration (RΩ2/g= 1.2 × 104) with the multiple coating
approach (Fig. 5f). The last layer cures on a substrate which is
elastically deformed due to the acceleration field. When the
centrifugation is stopped after curing, the substrate relaxes so that
the last layer is under compression and the thin film wrinkles30.

Discussion
We have proposed and characterized a passive methodology that
freezes an instability at a stage between a compact macroscopic
liquid volume and its subsequent dispersion into drops, so as to
harness the resulting structure. We have shown that the RTI in
polymer films can be rationalized and tamed to tailor the
resulting structures. The final structure is elastic, albeit its mor-
phology is underpinned by a combination of fluidic processes:
first an instability and then a quasi-static equilibrium. Timing and
initial conditions allowed us to control the drop amplitudes, and
seeds fostered uniform lattices. While centimeter drops are the
norm, we have demonstrated that much smaller scales are
attainable, so that this method could be used in the micro-
fabrication of soft materials with applications to optics or
acoustics, or to control surface properties such as adhesion and
wetting. Our method furthers our capacities in fast-prototyping

complementing additive manufacturing and other conventional
molding techniques. We expect that our approach can be
extended to other liquids, which react or undergo a phase tran-
sition (other polymers, inks, wax, molten glass, and metals) and
other instabilities, therefore opening the way to fabricate a
broader repertoire of shapes.

Methods
Experimental procedure. Vinylpolysiloxane (VPS) or polydimetylsiloxane
(PDMS) were used for the layer fabrication and, for both cases, curing was
performed at room temperature (20 °C). For PDMS (Sylgard 184, Dow Corning),
the base and curing agent were mixed in a weight ratio of 10:1 using a centrifugal
mixer (ARE-310, Thinky) for 30 s at 2000 rpm (clockwise), and then for 30 s at
2200 rpm (counterclockwise). The curing process was sped up by adding an
accelerator (3-6559, Dow Corning) to the PDMS, with a weight ratio of 5:1
(PDMS-base to cure-accelerator). VPS (Elite Double 32, Zhermack) was mixed
with a weight ratio of 1:1 (base to curing agent) using a centrifugal mixer for 10 s
at 2000 rpm (clockwise), and then 10 s at 2200 rpm (counterclockwise). A larger
gravity field was emulated either in a lathe (radii of gyration R= [57,83.8] mm,
rotation speeds Ω= [16.5, 21.9, 34.6,68.9, 102.7] rad s−1), in a centrifuge (Sor-
vall RT6000d, R= 110 mm, Ω= [104.7, 157.1, 261.8, 314.2, 356.0] rad s−1), in a
spin-coater (Laurell WS-650 R= 63.5 mm, rotation speeds Ω= 80–1200 rad s
−1) or in a superspeed centrifuge (Sorvall Lynx4000, R= 65 mm, rotation speeds
Ω= [523.6, 733.0, 1256, 1571, 1885, 2094] rad s−1). To trigger the instability, an
array of square or hexagonal holes (diameter 2 mm, length scale λ) was laser-cut
in an acrylic plate (thickness 1.6 mm) glued on the substrate. The VPS and
PDMS solutions were then spin-coated (Laurell WS-650) on the acrylic plate to
produce uniform layers of initial thickness in the range 150 ≤ h[μm] ≤ 590. The
topography of the resulting droplets patterns was digitized using a 3D laser
scanner (NextEngine) and the data were post-processed using an in-house
Matlab code to quantify the lattice order, length scale, and amplitude of the
droplets in the lattice. The microscopic droplets were imaged with a Scanning
Electron Microscope Philips XL 30 SEM-FEG. The dynamics of the drop growth
was measured by mixing a black dye (Silc-Pig, Smooth-on with a dye con-
centration of 0.1% in mass) in the PDMS suspension prior to curing using the
Beer-Lambert law that relates the transmittance to the thickness and dye con-
centration31. The viscosity of the PDMS polymer solution was characterized with
a rheometer (AR-G2, TA Instruments) as a function of time and at a constant
temperature (20 °C). The shear rate was fixed at _γ � u=h � 0:1 s−1, consistent
with the characteristic drainage velocity and film thickness.

Data availability
The authors declare that the data supporting the findings of this study are available
within the paper and its Supplementary Information Files.
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Fig. 5 Complex elastic surfaces. a Hairy elastic surfaces obtained repeating our methodology 16 times with an acceleration field RΩ2/g= 404. Scale bar,
500 μm. b A hexagonal lattice of drops (RΩ2/g= 1) is pneumatically inflated to form a dimpled sphere. Scale bar, 10 mm. c Similar deformable structures
are formed and actuated at the microscale (RΩ2/g= 404). Scale bar, 1 mm. d–f SEM images of structures (RΩ2/g= 632) permanently deformed on
negative (d, scale bar, 500 μm) and positive (e, scale bar, 500 μm) Gaussian curvature and additional wrinkle morphology (f, scale bar, 20 μm) observed
with an acceleration field RΩ2/g= 1.2 × 104
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