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We present a weak form implementation of the nonlinear axisym-
metric shell equations. This implementation is suitable to study
the nonlinear deformations of axisymmetric shells, with the capabil-
ity of considering a general mid-surface shape, non-homogeneous
(axisymmetric) mechanical properties and thickness variations.
Moreover, given that the weak balance equations are arrived to
naturally, any external load that can be expressed in terms of an
energy potential can, therefore, be easily included and modeled.
We validate our approach with existing results from the literature,
in a variety of settings, including buckling of imperfect spherical
shells, indentation of spherical and ellipsoidal shells, and geome-
try-induced rigidity (GIR) of pressurized ellipsoidal shells.
Whereas the fundamental basis of our approach is classic and
well established, from a methodological view point, we hope that
this brief note will be of both technical and pedagogical value to
the growing and dynamic community that is revisiting these canon-
ical but still challenging class of problems in shell mechanics.
[DOI: 10.1115/1.4044816]
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1 Introduction
Shells are among the most iconic slender structures, as they can

exhibit highly nonlinear mechanical responses and undergo a
variety of instabilities [1]. One of the canonical shell problems is
the buckling of a pressurized spherical shell, where the structure
collapses catastrophically as soon as the pressure reaches a critical
value. An analytical prediction for the critical buckling pressure
for a perfect spherical shell was first computed in 1915 by Zoelly
[2], following a linear stability analysis, and later verified with
more refined theories [1,3]. Focusing our attention on linearly
elastic materials, a variety of shell theories have been derived stem-
ming from different kinematic assumptions; for example, the
Donnell–Mushtari–Vlasov (DMV) [4] and Budiansky-Sanders (or
moderate-rotation) [5] theories. Even though this plethora of shell
theories has led to the understanding of many engineering-relevant
phenomena, such as the determination of the critical buckling

pressure of spherical shells, there is only a limited number of prob-
lems where one can make progress through purely analytical
methods [6,7], especially for shells with a generalized shape or non-
homogeneous properties. As such, the need for numerical imple-
mentations of the shell equations has been made clear long ago,
and several computational approaches have been proposed and
have became well established. These numerical strategies include
the weak form implementation of 2D nonlinear shell equations
(e.g., as provided by commercial packages such as ABAQUS) or
systems of ODEs in the case of axisymmetric shells when using
the infinitesimal stain and moderate rotation constructions [8,9].
Even though shell theories and well-defined engineering prob-

lems that said theories target to solve have been around for over a
century, during the past few years, there has been a revived interest
in this class of problems, including the development of novel fabri-
cation techniques [10] that have enabled more controlled experi-
ments [11,12]. In particular, these experiments have further
clarified and enabled a precise and systematic quantification of
the effect of defects on dictating the strength of spherical shells.
Consequently, there has been a revival of numerical methods that
can efficiently solve the nonlinear shell equations, with a particular
emphasis on the buckling and indentation of spherical shells con-
taining engineered small defects [8,11]. The method developed in
Ref. [13] is based on the Budiansky–Sanders theory and is tailored
for (axisymmetric) spherical shells with small defects. This method
involves solving a system of six ODEs in a highly efficient manner,
but the Young’s modulus and the thickness profiles were limited to
be homogeneous even though the model could have been readily
adapted to treat analytic (axisymmetric) non-homogeneous profiles.
Here, we propose an alternative to the different methods already

present in the literature, comprising a weak form implementation of
the nonlinear axisymmetric linearly elastic shell equations, valid for
small strains and presenting no restrictions on the magnitude of the dis-
placements and rotations as developed in Ref. [7]. The underlying
equations that we tackle are standard and well established but the
way we frame them enables for an efficient and easy treatment of axi-
symmetric shells of arbitrary shape, non-homogeneous elastic proper-
ties and thickness profile. In addition, any load, either mechanical or
otherwise, can be readily considered, as long as it can be represented
by a reduced energy functional. From a practical sense, this framework
is also enticing because it can be readily implemented in commercial
multiphysics simulation software, such as COMSOL, for numerical anal-
ysis. We validate this model with existing experimental and numerical
results from the literature on the buckling and indentation of spherical
shells [11,12], as well as on the geometry-induced rigidity of both
spherical and ellipsoidal shells that are pressurized [14,15].

2 Nonlinear Axisymmetric Shell Equations Revisited
For the sake of convenience and completeness, even if classic and

well established, we start by reviewing the nonlinear model for axi-
symmetric linearly elastic shells with no restriction on the magnitude
of displacements and rotations [7]. Let S = r(η1, η2) be a 2D surface
embedded in R3 and parameterized by y= (η1, η2). We adopt the
standard notation that Greek indices α, β, … take values in {1, 2},
whereas Latin indices i, j, … run from 1 to 3. The parametrization
of S enables us to define (covariant) tangent vectors as

aα = r,α ≡
∂r
∂ηα

(1)

as well as the induced surface metric aαβ (first fundamental form)

aαβ = aα · aβ = aβα (2)

where “·” denotes the Euclidean inner product on R3. The inverse
metric is defined via aαγaγβ = δαβ , where summation is implied over
repeated indices and δαβ denotes the Kronecker delta. The metric
and its inverse map between co- and contravariant quantities, e.g.,
the contravariant form of a1 is a1= a1αaα. The unit-length normal
vector a3, which can be identified with the unit outward normal n,
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is defined by a3≡ a3= (a1 × a2)/|a1 × a2|. The second fundamental
form bαβ is given by

bαβ = n · aα,β (3)

We denote the middle surface of the shell in its undeformed config-

uration as S
◦
= r

◦
(s, ϕ), where s ∈ [0, smax] and ϕ∈ [0, 2π). By using

Eqs. (2) and (3), we compute the first and second fundamental forms

of the undeformed middle surface a
◦
and b

◦
. Similarly, quantities

without the accent will refer to the deformed middle surface of the
shell S = r(s, ϕ). Consequently, the strain and bending tensors can
be defined as

Eαβ =
1
2
(aαβ − a

◦
αβ), Kαβ = bαβ − b

◦
αβ (4)

Denoting the thickness of the shell by h, the elastic energy of a
linearly elastic shell can then be expressed as [7]

U =
∫

Eh

2(1 − ν2)
[(1 − ν)Eβ

αE
α
β + νEα

αE
β
β] dω

◦

+
∫

Eh3

24(1 − ν2)
[(1 − ν)Kβ

αK
α
β + νKα

αK
β
β ] dω

◦
(5)

where dω
◦
=

����������
|det(a◦αβ)|

√
dy = a

◦
dy.

In the specific examples that we will focus on in Sec. 4, the
Young’s modulus and the thickness will be assumed to be homoge-
neous and smax = π/2. Therefore, we normalize the energy in Eq. (5)
by E/(16π(1− ν2)) and introduce the trace operator in the unde-
formed metric “tr”, to rewrite the energy as

U = h

∫π/2
0

[(1 − ν)tr(a − a
◦
)2 + νtr2(a − a

◦
)]a

◦
ds

+
h3

3

∫π/2
0

[(1 − ν)tr(b − b
◦
)2 + νtr2(b − b

◦
)]a

◦
ds (6)

where η1= s is the coordinate going along the profile curve from the
north pole. The undeformed middle surface is represented by a

profile curve given by r
◦
(s, ϕ) = r

◦
(s) = (ϕ

◦
(s), ψ

◦
(s)), whereas the

parametrization of the deformed profile curve can be written as
r(s)= (ϕ(s), ψ(s)). We then derive the first and second fundamental
forms for the deformed surface as

a =
ϕ2
s + ψ2

s 0

0 ϕ2

( )

b =
1���������

ϕ2
s + ψ2

s

√ ψssϕs − ϕssψs 0

0 ϕψs

( )
(7)

and the same expressions with the accent hold for the undeformed
surface. The energy in Eq. (6) is a second-order functional of the
two functions, ϕ(s) and ψ(s), defined on the real segment [0, π/2].
For symmetry, we require that ϕ(0)=ψs(0)= 0, whereas the clamp
at the equator considered in our examples imposes ϕ(π/2)=R and
ϕs(π/2)= 0.

2.1 Specification of the Loads. In what follows, we will focus
on two types of loads: (i) live pressure and (ii) point indentation at
the north pole of the shell. The potential associated with the (live)
pressure can be written as P = pΔV , where a positive pressure
causes a negative variation in volume (compression) of the shell.
Neglecting the term proportional to the initial volume (since it
does not enter the balance equations), the potential can be recast
via the divergence theorem as

Pp = p
1
3

∫
r · n dω =

p

3

∫π/2
0

ϕ(ψϕs − ψsϕ) ds (8)

With regard to the point force indentation f at the north pole, the
potential can be written as

Pf =
∫π/2
0

f δ(s)w ds (9)

where δ(s) is the Dirac delta function and w = (r − r
◦
) · n repre-

sents the normal displacement. Appropriately normalizing the
load potentials by E/(16π(1− ν2)), the total energy becomes
U tot = U + Pp + Pf .

3 Numerical Method
Equilibrium equations are generated by imposing δU tot = 0,

for all possible variations δϕ and δψ. We numerically minimize
the functional by discretizing the domain in 100 intervals, using

Hermite cubic shape functions for the unknown fields ϕ̃ = ϕ − ϕ
◦

and ψ̃ = ψ − ψ
◦
, via the Newton–Raphson method. In the specific

illustrative problems considered in Sec. 4, the deflection at the
pole increases monotonically, while the pressure or the force can
be non-monotonic. For this reason, and similarly to what was also
done previously in Ref. [8], we treat p and f as unknowns and the
displacement at the pole as the loading parameter.
We use the commercial package COMSOL MULTIPHYSICS (v. 5.2,

COMSOL Inc.) to automatically generate the balance equations
and solve them via the Newton–Raphson method. However, we
note that the procedure presented could also be implemented in
custom-made codes, given that the balance equations in weak
form could be obtained by hand, albeit resulting in cumbersome
expressions, or via a symbolic mathematical software such as MATH-

EMATICA or MAPLE.
In COMSOL, within the environment “weak form PDE,” the weak

form is discretized using Hermite cubic shape functions, ensuring
the continuity of second derivatives that appear in curvatures.
This discretization yields a nonlinear algebraic system in the
nodal values of ϕ̃ and ψ̃, which is then solved via a standard
Newton–Raphson solver. When the problem involves two sequen-
tial loading stages, e.g., first depressurizing the shell and then
indenting it at the north pole, the weak form is solved in two sequen-
tial steps, where the initial conditions of the second step coincide
with the solution of the first step. Hereon, we will refer to solutions
of this model as the 1D model.

4 Results
Having introduced our framework and the numerical method, we

now apply it to several specific problems that illustrate the pract-
ical and technical value of our approach. We shall focus exclusively

on spherical and ellipsoidal shells, for which ϕ
◦
(s) = a sin (s) and

ψ
◦
(s) = b cos (s).
We start by validating the model by comparing the results for two

cases: (a) the buckling of imperfect spherical shells discussed in
Refs. [11,16] and (b) the indentation of depressurized spherical
shells presented in Ref. [12] that were numerically solved in
Ref. [8]. We point the reader to the Refs. [8,11,12,16] for a more
detailed account and a contextualization of these problems. In
both cases (a) and (b), we have that a= b=R. In case (a), we con-
sider defects at the north pole having the shape of Gaussian dimple,
introduced as a normal displacement of the middle surface by
wI = −δe−(s/β0)2 , where δ is the radial amplitude of the defect and
β is the angular width of the defect [8,11]. To compare our results
obtained through COMSOL with those in Ref. [11], we also use the
dimensionless parameter that characterizes the imperfect shell

λ = 12(1 − ν2)
1/4

(R/h)1/2β0
In Fig. 1(a), we present the normalized pressure p/pc, where pc =
2E/

����������
3(1 − ν2)

√
is the buckling pressure obtained by Zoelly [2], as

a function of the displacement of the north pole, normalized by
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the thickness of the shell. The results from our 1D model are
reported in colored solid lines, whereas the results from FEM and
ODE model by Hutchinson based on the Budiansky–Sanders
theory are reported in dashed and dash-dotted lines, respectively.
For each model, four different values of the defect amplitude
were computed, namely �δ = δ/h = (0.03, 0.1, 0.3, 1), and excellent
agreement is observed among the three methods, thereby indicat-
ing the validity of our approach. We now investigate wider ranges
of the normalized defect amplitude (0 ≤ δ ≤ 3) and λ (in steps of
Δλ= 0.25). In Fig. 1(b), we plot the associated knockdown factors
(defined as the ratio between the buckling pressure of an imperfect
shell to the buckling pressure of the equivalent perfect shell) as a
function of �δ. The solid black lines are the results from the pre-
sented 1D model for λ∈ [1, 5], and they show the emergence of
a plateau for the knockdown factor that, above a critical defect
amplitude depending on λ, becomes insensitive to the defect.
This plot was already shown in Refs. [11,16] where a fitted enve-
lope was proposed (red dashed curve). Again, the agreement
among the data is excellent, as the set of curves from our 1D
model all lies above in a way that is consistent with the previously
computed envelope.

In Fig. 2, we present the results on the indentation at the north
pole of a depressurized spherical shell, superposed on top of the
experimental data that was reported in Ref. [12]. The plot shows
the indentation force f, normalized by 2πD/R where D=Eh3/
(12(1− ν2)) is the bending stiffness, as a function of the normalized
additional displacement at the north pole �ξ =

�������
1 − ν2

√
Δwpole/h for

different values of the internal pressure. The experimental data
from Ref. [12] are reported in solid colored lines and the ODE
results from Ref. [8] are depicted in dashed black lines, whereas
the results from the 1D model are in solid black lines. As the pres-
sure inside the shell is decreased, the structure is energetically closer
to buckling and this translates into a smaller rigidity (the initial
linear slope) and a lower peak of the indenting force. Note that
the behavior is subcritical, meaning that the shell would buckle
when the force reaches its maximum if the indenter was not glued
to the shell. In the limit of p/pc → 1, an infinitesimal force would
cause the shell to buckle (zero initial slope).
As a third and final illustrative example of our approach, we use

the 1D model to study the geometry-induced (GIR) rigidity K of
pressurized spherical and ellipsoidal shells. Restraining ourselves
to axisymmetric deformations, this rigidity is defined and measured
by indenting the shell at the north pole and measuring the slope of
the force-displacement curve for different values of the internal
pressure. Using our 1D model, we reproduced the results presented
in Refs. [14,15], and we compare them with the theoretical predic-
tion for the GIR derived in Ref. [14] via the DMV theory for sphe-
rical shells, which was then modified and proposed for ellipsoidal
shells in Ref. [15]:

K =
8D

l2b

π(τ2−1)1/2

2arctanh(1 − τ−2)1/2
(10)

where τ = p/(4k2M
�����
EhD

√
) is the dimensionless applied pressure,

lb = (D/Ehκ2M) is the local bending scale at the pole, and κM is
the mean curvature of the shell at the pole. Figure 3 shows the
dimensionless rigidity K/

��������
k2MEhD

√
versus the dimensionless pres-

sure τ for ellipsoidal and spherical perfect shells, as predicted by
Eq. (10) (solid black line) and by the 1D model (colored dashed
lines), which we use to explore two ellipsoidal shells and one

(a)

(b)

Fig. 1 Buckling of imperfect spherical shells: (a) normalized
pressure versus normalized displacement for different normal-
ized defect amplitudes �δ via FEM (dashed lines) [11], ODEs
obtained by Hutchinson (dashed dotted lines) [11] and the
present 1D model (solid lines) and (b) knockdown factor versus
�δ for different values of λ via the 1D model (solid black lines),
the fitted envelope determined in Ref. [11] is plotted as the
dashed line

Fig. 2 Indentation of a pressurized shell. The indentation force f,
normalized by 2πD/R, is plotted versus the normalized additional
displacement at the north pole �ξ =

��������
1− ν2

√
Δwpole/h for different

values of the internal pressure. The experimental data were
extracted from Ref. [12] and were presented as the colored
solid lines; the data from the ODEmodel were obtained by Hutch-
inson and Thompson [8] and is shown as the dashed lines; and
the data from our 1D model were shown as the solid black lines.
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spherical shells, i.e., a/b= 0.5, 1, 2. The plot shows good agreement
between the 1D model and the theory. Note that the numerical
curves start to slightly deviate from theory for larger pressures.
This mismatch is due to the eventual large stretching strains that
the shell experiences for large pressures (beyond ≈ 5%). In partic-
ular, higher strains are attained for shells with higher values of the
aspect ratio b/a. For example, the curve for b/a= 2 ends before τ=
10 since the strains are too large (5–6%) for a linearly elastic shell
model to be applicable.
To provide the reader with an idea about the computation time

and convey the efficiency of our numerical implementation, a full
pressure buckling simulation, with the normalized displacement at
the north pole increasing from 0 to 10, takes approximately 3 s
on a laptop with a 2.80 GHz quad-core processor and 16 GB of
RAM. It is also important to notice that the weak form implemen-
tation enables the treatment of the three examples presented here
by only changing the parameters defining the initial shape and acti-
vating/deactivating the different loads. As such, the examples
explored above demonstrate the efficiency and versatility of our
tool to address axisymmetric shell problems.

5 Concluding Remarks
We have presented a method to solve the nonlinear axisymmetric

shell equations, in the case of linearly elastic materials, with no
assumptions on the magnitude of the displacement and rotations.

The method is fast and efficient in handling an arbitrary axisymmet-
ric shape, as well as any axisymmetric nonhomogeneity in the thick-
ness and/or material properties. In this technical brief, we validated
our approach with specific results for the buckling and indenta-
tion of spherical shells, and the GIR of ellipsoidal shells. Due to
its formulation, the model can handle any mechanical and non-
mechanical load, as long as it can be represented via an energy func-
tional as in the case of natural curvature [17] or magnetic fields. The
code can be made available upon request.
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