Warning
Please note that the publication lists from Infoscience integrated into the EPFL website, lab or people pages are frozen following the launch of the new version of platform. The owners of these pages are invited to recreate their publication list from Infoscience. For any assistance, please consult the Infoscience help or contact support.
2024
The effect of Ni- and Mo-based materials on thermochemical sulfate reduction by glycerol under hydrothermal process conditions
Chemical Engineering Research & Design. 2024-05-01. Vol. 205, p. 459-466. DOI : 10.1016/j.cherd.2024.03.024.Heterogeneous catalysis via light-heat dual activation: A path to the breakthrough in C1 chemistry
Joule. 2024-02-21. Vol. 8, num. 2, p. 312-333. DOI : 10.1016/j.joule.2023.12.013.2023
Correction: Improving time-resolution and sensitivity of in situ X-ray photoelectron spectroscopy of a powder catalyst by modulated excitation
Chemical Science. 2023-10-11. Vol. 14, num. 39, p. 10979-10980. DOI : 10.1039/d3sc90184j.Improving time-resolution and sensitivity of in situ X-ray photoelectron spectroscopy of a powder catalyst by modulated excitation
Chemical Science. 2023-05-30. DOI : 10.1039/d3sc01274c.Electrochemical synthesis of propylene from carbon dioxide on copper nanocrystals
Nature Chemistry. 2023-04-06. DOI : 10.1038/s41557-023-01163-8.Origin of the Activity Trend in the Oxidative Dehydrogenation of Ethanol over VOx/CeO2
Angewandte Chemie-International Edition. 2023-03-23. Vol. 62, num. 18, p. e202301297. DOI : 10.1002/anie.202301297.Preparation, Quantification, and Reaction of Pd Hydrides on Pd/ Al2O3 in Liquid Environment
Acs Catalysis. 2023-03-03. Vol. 13, num. 5, p. 3323-3332. DOI : 10.1021/acscatal.2c04791.Recent progress in calcium looping integrated with chemical looping combustion (CaL-CLC) using bifunctional CaO/CuO composites for CO2 capture: A state-of-the-art review
Fuel. 2023-02-15. Vol. 334, p. 126630. DOI : 10.1016/j.fuel.2022.126630.Stability and Reactivity of a Polyoxymethylene Dimethyl Ether over Typical Catalysts for Diesel Emission Control (vol 15, pg 848, 2022)
Topics In Catalysis. 2023-01-02. DOI : 10.1007/s11244-022-01774-4.Production of carbon nanomaterials and syngas from biogas reforming and decomposition on one-pot mesoporous nickel alumina catalysts
Alexandria Engineering Journal. 2023-01-15. Vol. 63, p. 143-155. DOI : 10.1016/j.aej.2022.07.056.Thermal Sintering and Phosphorus Poisoning of a Layered Diesel Oxidation Catalyst
Topics In Catalysis. 2023. Vol. 66, p. 777–786. DOI : 10.1007/s11244-022-01752-w.Assessing the effect of O2 dithering on CH4 oxidation on Pd/Al2O3
Chemical Engineering Journal. 2023-01-01. Vol. 451, p. 138865. DOI : 10.1016/j.cej.2022.138865.Stability and Reactivity of a Polyoxymethylene Dimethyl Ether over Typical Catalysts for Diesel Emission Control
Topics In Catalysis. 2023. Vol. 66, p. 797–803. DOI : 10.1007/s11244-022-01725-z.2022
Aging of industrial Fe-zeolite based catalysts for nitrous oxide abatement in nitric acid production plants
Catalysis Science & Technology. 2022-10-31. Vol. 12, num. 24, p. 7308-7321. DOI : 10.1039/d2cy01486f.Monomeric Fe Species in Square Planar Geometry Active for Low Temperature NH3-SCR of NO
Journal Of Physical Chemistry C. 2022-10-05. Vol. 126, num. 41, p. 17510–17519. DOI : 10.1021/acs.jpcc.2c03480.Beware of beam damage under reaction conditions: X-ray induced photochemical reduction of supported VOx catalysts during in situ XAS experiments
Physical Chemistry Chemical Physics. 2022-08-25. Vol. 24, num. 36, p. 21916-21926. DOI : 10.1039/d2cp02721f.In Situ Infrared Spectroscopy of NOx Reduction Catalysts: A Laboratory Exercise for In-Person and Virtual Learning
Journal Of Chemical Education. 2022-06-08. DOI : 10.1021/acs.jchemed.2c00087.Poisoning of Mn-Ce/AC catalysts for low-temperature NH3-SCR of NO by K+ and its counter-ions (Cl- /NO3- /SO42- )
Applied Catalysis A-General. 2022-05-25. Vol. 638, p. 118636. DOI : 10.1016/j.apcata.2022.118636.In situ spectroscopic studies of the effect of water on the redox cycle of Cu ions in Cu-SSZ-13 during selective catalytic reduction of NOx
Chemical Communications. 2022-05-07. Vol. 58, num. 46, p. 6610-6613. DOI : 10.1039/d2cc01786e.Investigation on the Role of Pd, Pt, Rh in Methane Abatement for Heavy Duty Applications
Catalysts. 2022-04-01. Vol. 12, num. 4, p. 373. DOI : 10.3390/catal12040373.Redox Dynamics of Active VOx Sites Promoted by TiOx during Oxidative Dehydrogenation of Ethanol Detected by Operando Quick XAS
Jacs Au. 2022-03-28. Vol. 2, num. 3, p. 762-776. DOI : 10.1021/jacsau.2c00027.Techno-Economic Evaluation of Biological and Fluidised-Bed Based Methanation Process Chains for Grid-Ready Biomethane Production
Frontiers In Energy Research. 2022-03-24. Vol. 9, p. 775259. DOI : 10.3389/fenrg.2021.775259.Effect of an Al2O3-based binder on the structure of extruded Fe-ZSM-5
Catalysis Today. 2022-03-01. Vol. 387, p. 207-215. DOI : 10.1016/j.cattod.2021.09.020.One-pot synthesis of highly dispersed mesoporous Cu/ZrO2 catalysts for NH3-SCR
Catalysis Today. 2022-02-15. Vol. 384, p. 113-121. DOI : 10.1016/j.cattod.2021.05.010.Experimental and modeling-based analysis of reaction pathways on catalysts for natural gas engines under periodic lean/rich oscillations
Chemical Engineering Journal. 2022-02-15. Vol. 430, p. 132848. DOI : 10.1016/j.cej.2021.132848.Restructuring Ni/Al2O3 by addition of Ga to shift product selectivity in CO2 hydrogenation: The role of hydroxyl groups
Journal Of Co2 Utilization. 2022-02-01. Vol. 56, p. 101881. DOI : 10.1016/j.jcou.2021.101881.Particle Size Effects in Ru/CNF Catalysts during Supercritical Water Gasification of Glycerol
Applied Catalysis B: Environmental. 2022. p. 121956. DOI : 10.1016/j.apcatb.2022.121956.2021
Understanding the impact of poison distribution on the performance of Diesel oxidation catalysts
Applied Catalysis B-Environmental. 2021-12-15. Vol. 299, p. 120684. DOI : 10.1016/j.apcatb.2021.120684.Operando diffuse reflectance infrared detection of cyanide intermediate species during the reaction of formaldehyde with ammonia over V2O(5)/ WO3-TiO2
Applied Catalysis B-Environmental. 2021-12-05. Vol. 298, p. 120629. DOI : 10.1016/j.apcatb.2021.120629.Techno-economic assessment of bioethanol production from lignocellulose by consortium-based consolidated bioprocessing at industrial scale
New Biotechnology. 2021-11-25. Vol. 65, p. 53-60. DOI : 10.1016/j.nbt.2021.07.005.Reaction pathways of methane abatement in Pd-Rh three-way catalyst in heavy duty applications: A combined approach based on exhaust analysis, model gas reactor and DRIFTS measurements
Chemical Engineering Journal. 2021-10-15. Vol. 422, p. 129932. DOI : 10.1016/j.cej.2021.129932.Recent progress in syngas production via catalytic CO2 hydrogenation reaction
Applied Catalysis B-Environmental. 2021-10-15. Vol. 295, p. 120319. DOI : 10.1016/j.apcatb.2021.120319.On the relevance of P poisoning in real-world DOC aging
Applied Catalysis B-Environmental. 2021-08-15. Vol. 291, p. 120062. DOI : 10.1016/j.apcatb.2021.120062.Reduction of PdO/Al2O3 in Liquid Cyclohexane Followed In Situ by ATR-IR, High-Energy XRD, and XAS
Journal Of Physical Chemistry C. 2021-08-05. Vol. 125, num. 30, p. 16473-16482. DOI : 10.1021/acs.jpcc.1c01882.Grafting of Alkali Metals on Fumed Silica for the Catalytic Dehydrogenation of Methanol to Formaldehyde
Chemcatchem. 2021-07-08. Vol. 13, num. 17, p. 3864-3877. DOI : 10.1002/cctc.202100685.Stable Palladium Oxide Clusters Encapsulated in Silicalite-1 for Complete Methane Oxidation
Acs Catalysis. 2021-06-18. Vol. 11, num. 12, p. 7371-7382. DOI : 10.1021/acscatal.0c04868.Effect of Short Reducing Pulses on the Dynamic Structure, Activity, and Stability of Pd/Al2O3 for Wet Lean Methane Oxidation
Acs Catalysis. 2021-04-16. Vol. 11, num. 8, p. 4870-4879. DOI : 10.1021/acscatal.1c00328.HCN production from formaldehyde during the selective catalytic reduction of NOx with NH3 over V2O5/WO3-TiO2
Applied Catalysis B-Environmental. 2021-02-01. Vol. 281, p. 119462. DOI : 10.1016/j.apcatb.2020.119462.Increasing the activity of the Cu/CuAl2O4/Al2O3 catalyst for the RWGS through preserving the Cu2+ ions
Chemical Communications. 2021-01-28. Vol. 57, num. 9, p. 1153-1156. DOI : 10.1039/d0cc07142k.Flexible application of biogas upgrading membranes for hydrogen recycle in power-to-methane processes
Chemical Engineering Science. 2021-01-16. Vol. 229, p. 116012. DOI : 10.1016/j.ces.2020.116012.Investigating active phase loss from supported ruthenium catalysts during supercritical water gasification
Catalysis Science & Technology. 2021-10-14. Vol. 11, num. 22, p. 7431-7444. DOI : 10.1039/D1CY00379H.2020
Water Inhibition of Oxymethylene Dimethyl Ether Synthesis over Zeolite H-Beta: A Combined Kinetic and in Situ ATR-IR Study
Acs Catalysis. 2020-08-07. Vol. 10, num. 15, p. 8106-8119. DOI : 10.1021/acscatal.0c01805.Ruthenium on phosphorous-modified alumina as an effective and stable catalyst for catalytic transfer hydrogenation of furfural
Rsc Advances. 2020-03-19. Vol. 10, num. 19, p. 11507-11516. DOI : 10.1039/d0ra00415d.Essential role of oxygen vacancies of Cu-Al and Co-Al spinel oxides in their catalytic activity for the reverse water gas shift reaction
Applied Catalysis B: Environmental. 2020-01-27. Vol. 266, p. 118669. DOI : 10.1016/j.apcatb.2020.118669.Increased nickel exsolution from LaFe0.8Ni0.2O3 perovskite-derived CO2 methanation catalysts through strontium doping
Applied Catalysis A-General. 2020-01-25. Vol. 590, p. 117328. DOI : 10.1016/j.apcata.2019.117328.Selective Catalytic Reduction of NO with NH3 on Cu-SSZ-13: Deciphering the Low and High-temperature Rate-limiting Steps by Transient XAS Experiments
Chemcatchem. 2020-01-09. Vol. 12, num. 5, p. 1429-1435. DOI : 10.1002/cctc.201901916.Liquid phase in situ spectroscopic investigations of heterogeneous catalysts
Lausanne, EPFL, 2020.Advances in heterogeneous catalysis for the synthesis of polyoxymethylene dimethyl ethers
Lausanne, EPFL, 2020.2019
Mechanochemistry-assisted hydrolysis of softwood over stable sulfonated carbon catalysts in a semi-batch process
Rsc Advances. 2019-10-17. Vol. 9, num. 57, p. 33525-33538. DOI : 10.1039/c9ra07668a.Nature of Synergy between Bronsted and Lewis Acid Sites in Sn-Beta Zeolites for Polyoxymethylene Dimethyl Ethers Synthesis
Chemsuschem. 2019-09-10. Vol. 12, num. 19, p. 4421-4431. DOI : 10.1002/cssc.201901814.Modulated Excitation Raman Spectroscopy of V2O5/TiO2: Mechanistic Insights into the Selective Catalytic Reduction of NO with NH3
ACS Catalysis. 2019-08-01. Vol. 9, num. 8, p. 6814-6820. DOI : 10.1021/acscatal.9b01514.Mechanistic implications of lanthanum-modification on gold-catalyzed formic acid decomposition under SCR-relevant conditions
Applied Catalysis B-Environmental. 2019-05-05. Vol. 244, p. 709-718. DOI : 10.1016/j.apcatb.2018.11.092.Segregation of Nickel/Iron Bimetallic Particles from Lanthanum Doped Strontium Titanates to Improve Sulfur Stability of Solid Oxide Fuel Cell Anodes
Catalysts. 2019-04-01. Vol. 9, num. 4, p. 332. DOI : 10.3390/catal9040332.Thermal activation and aging of a V2O3/WO3-TiO2 catalyst for the selective catalytic reduction of NO with NH3
Applied Catalysis A-General. 2019-03-05. Vol. 573, p. 64-72. DOI : 10.1016/j.apcata.2019.01.009.Design of Stable Palladium-Based Zeolite Catalysts for Complete Methane Oxidation by Postsynthesis Zeolite Modification
Acs Catalysis. 2019-03-01. Vol. 9, num. 3, p. 2303-2312. DOI : 10.1021/acscatal.8b04486.Sulfur Poisoning Recovery on a Solid Oxide Fuel Cell Anode Material through Reversible Segregation of Nickel
Chemistry Of Materials. 2019-02-12. Vol. 31, num. 3, p. 748-758. DOI : 10.1021/acs.chemmater.8b03669.Effect of SiO2 on co-impregnated V2O5/WO3/TiO2 catalysts for the selective catalytic reduction of NO with NH3
Catalysis Today. 2019-01-15. Vol. 320, p. 123-132. DOI : 10.1016/j.cattod.2017.11.037.A novel reactor concept for thermal integration of naphtha reforming with propane ammoxidation
Chemical Engineering And Processing-Process Intensification. 2019-12-01. Vol. 146, p. 107659. DOI : 10.1016/j.cep.2019.107659.Hydrothermally Stable Sulfonated Carbons as Solid Acid Catalysts for the Hydrolysis of Lignocellulose
Lausanne, EPFL, 2019.Insights into the Nature of the Active Sites of Tin‐Montmorillonite for the Synthesis of Polyoxymethylene Dimethyl Ethers (OME)
ChemCatChem. 2019-05-06. Vol. 11, num. 13, p. 3010-3021. DOI : 10.1002/cctc.201900502.Cu–Al Spinel as a Highly Active and Stable Catalyst for the Reverse Water Gas Shift Reaction
ACS Catalysis. 2019-06-03. Vol. 9, num. 7, p. 6243-6251. DOI : 10.1021/acscatal.9b01822.2018
Mitigation of Secondary Organic Aerosol Formation from Log Wood Burning Emissions by Catalytic Removal of Aromatic Hydrocarbons
Environmental Science & Technology. 2018-11-20. Vol. 52, num. 22, p. 13381-13390. DOI : 10.1021/acs.est.8b04124.Selective Catalytic Reduction of NOx
Catalysts. 2018-10-12. Vol. 8, num. 10, p. 459. DOI : 10.3390/catal8100459.Reversible Segregation of Ni in LaFe0.8Ni0.2O3 +/-delta During Coke Removal
Chemcatchem. 2018-10-09. Vol. 10, num. 19, p. 4456-4464. DOI : 10.1002/cctc.201800603.Deactivation and Regeneration of Sulfonated Carbon Catalysts in Hydrothermal Reaction Environments
ChemSusChem. 2018-05-07. Vol. 11, num. 13, p. 2189-2201. DOI : 10.1002/cssc.201800678.Time-resolved copper speciation during selective catalytic reduction of NO on Cu-SSZ-13
NATURE CATALYSIS. 2018. Vol. 1, num. 3, p. 221-227. DOI : 10.1038/s41929-018-0032-6.Stable complete methane oxidation over palladium based zeolite catalysts
Nature Communications. 2018. Vol. 9, p. 2545. DOI : 10.1038/s41467-018-04748-x.Numerical Modeling of Hydroperoxyl-Mediated Oxidative Dehydrogenation of Formic Acid under SCR-Relevant Conditions
INDUSTRIAL AND ENGINEERING CHEMISTRY RESEARCH. 2018. Vol. 57, num. 31, p. 10206-10215. DOI : 10.1021/acs.iecr.8b01592.Impact of Catalyst Geometry on Diffusion and Selective Catalytic Reduction Kinetics under Elevated Pressures
CHEMIE INGENIEUR TECHNIK. 2018. Vol. 90, num. 6, p. 795-802. DOI : 10.1002/cite.201700146.Reversible Segregation of Nickel from Perovskite-type Oxides – Applications in Energy Processes
Lausanne, EPFL, 2018.Methane oxidation over a honeycomb Pd-only three-way catalyst under static and periodic operation
Applied Catalysis B-Environmental. 2018. Vol. 220, p. 67-77. DOI : 10.1016/j.apcatb.2017.07.070.2017
Relationship between structures and activities of supported metal vanadates for the selective catalytic reduction of NO by NH3
Applied Catalysis B-Environmental. 2017. Vol. 218, p. 731-742. DOI : 10.1016/j.apcatb.2017.06.061.Catalytic synthesis of polyoxymethylene dimethyl ethers (OME): A review
Applied Catalysis B-Environmental. 2017. Vol. 217, p. 407-420. DOI : 10.1016/j.apcatb.2017.06.007.Water-assisted oxygen activation during gold-catalyzed formic acid decomposition under SCR-relevant conditions
Journal Of Catalysis. 2017. Vol. 349, p. 197-207. DOI : 10.1016/j.jcat.2017.01.006.Increasing the Sensitivity to Short-Lived Species in a Modulated Excitation Experiment
Analytical Chemistry. 2017. Vol. 89, num. 11, p. 5802-5810. DOI : 10.1021/acs.analchem.6b04939.Structural Reversibility and Nickel Particle stability in Lanthanum Iron Nickel Perovskite-Type Catalysts
ChemSusChem. 2017. Vol. 10, num. 11, p. 2505-2517. DOI : 10.1002/cssc.201700358.Deactivation Aspects of Methane Oxidation Catalysts Based on Palladium and ZSM-5
Topics In Catalysis. 2017. Vol. 60, num. 1-2, p. 123-130. DOI : 10.1007/s11244-016-0724-6.2016
Operando XAS study of the influence of CO and NO on methane oxidation by Pd/Al2O3
2016. 16th International Conference on X-ray Absorption Fine Structure (XAFS), Karlsruhe, Germany, 23 – 28 August 2015. p. 012051. DOI : 10.1088/1742-6596/712/1/012051.An operando emission spectroscopy study of Pt/Al2O3 and Pt/CeO2/Al2O3
Physical Chemistry Chemical Physics. 2016. Vol. 18, num. 42, p. 29268-29277. DOI : 10.1039/c6cp05992a.The Significance of Lewis Acid Sites for the Selective Catalytic Reduction of Nitric Oxide on Vanadium-Based Catalysts
Angewandte Chemie-International Edition. 2016. Vol. 55, num. 39, p. 11989-11994. DOI : 10.1002/anie.201605397.Smart material concept: reversible microstructural self-regeneration for catalytic applications
Journal Of Materials Chemistry A. 2016. Vol. 4, num. 30, p. 11939-11948. DOI : 10.1039/c6ta03417a.Selectivity Control in Palladium-Catalyzed Alcohol Oxidation through Selective Blocking of Active Sites
Journal Of Physical Chemistry C. 2016. Vol. 120, num. 26, p. 14027-14033. DOI : 10.1021/acs.jpcc.6b01549.Understanding the anomalous behavior of Vegard’s law in Ce1-xMxO2 (M = Sn and Ti; 0 < x <= 0.5) solid solutions
Physical Chemistry Chemical Physics. 2016. Vol. 18, num. 20, p. 13974-13983. DOI : 10.1039/c6cp01525e.2015
VOx Surface Coverage Optimization of V2O5/WO3-TiO2 SCR Catalysts by Variation of the V Loading and by Aging
Catalysts. 2015. Vol. 5, num. 4, p. 1704-1720. DOI : 10.3390/catal5041704.CO Methanation for Synthetic Natural Gas Production
Chimia. 2015. Vol. 69, num. 10, p. 608-613. DOI : 10.2533/chimia.2015.608.Flame-Made WO3/CeOx-TiO2 Catalysts for Selective Catalytic Reduction of NOx by NH3
Acs Catalysis. 2015. Vol. 5, num. 10, p. 5657-5672. DOI : 10.1021/acscatal.5b01580.Structural Modification of Ni/gamma-Al2O3 with Boron for Enhanced Carbon Resistance during CO Methanation
Chemcatchem. 2015. Vol. 7, num. 20, p. 3261-3265. DOI : 10.1002/cctc.201500567.WO3/CeO2/TiO2 Catalysts for Selective Catalytic Reduction of NOx by NH3: Effect of the Synthesis Method
Chimia. 2015. Vol. 69, num. 4, p. 220-224. DOI : 10.2533/chimia.2015.220.Generation of NH3 Selective Catalytic Reduction Active Catalysts from Decomposition of Supported FeVO4
Acs Catalysis. 2015. Vol. 5, num. 7, p. 4180-4188. DOI : 10.1021/acscatal.5b00738.Operando Attenuated Total Reflectance FTIR Spectroscopy: Studies on the Different Selectivity Observed in Benzyl Alcohol Oxidation
Chemcatchem. 2015. Vol. 7, num. 16, p. 2534-2541. DOI : 10.1002/cctc.201500432.Promotion of Ammonium Formate and Formic Acid Decomposition over Au/TiO2 by Support Basicity under SCR-Relevant Conditions
Acs Catalysis. 2015. Vol. 5, num. 8, p. 4772-4782. DOI : 10.1021/acscatal.5b01057.2014
Effect of ammonia on the decomposition of ammonium formate over Au/TiO2 under oxidizing conditions relevant to SCR: Enhancement of formic acid decomposition rate and CO2 production
Applied Catalysis A: General. 2014. Vol. 486, p. 219-229. DOI : 10.1016/j.apcata.2014.08.034.SCR vor Turbolader – Einfluss des Drucks auf die NOx-Reduktion
MTZ – Motortechnische Zeitschrift. 2014. Vol. 75, num. 4, p. 68-73. DOI : 10.1007/s35146-014-0323-7.Ammonia Storage and Release in SCR Systems for Mobile Applications
Urea-SCR Technology for deNOx After Treatment of Diesel Exhausts; New York, NY: Springer New York, 2014. p. 485-506.Ammonium formate decomposition over Au/TiO2: a unique case of preferential selectivity against NH3 oxidation
Chemical Communications. 2014. Vol. 50, num. 53, p. 6998-7000. DOI : 10.1039/c4cc00196f.2013
Subsecond and in Situ Chemical Speciation of Pt/Al2O3 during Oxidation Reduction Cycles Monitored by High-Energy Resolution Off-Resonant X-ray Spectroscopy
Journal of the American Chemical Society. 2013. Vol. 135, num. 51, p. 19071-19074. DOI : 10.1021/ja410146c.- Publications 2012
- Publications 2011
- Publications 2010
- Publications 2009
- Publications 2008
- Publications 2007
- Publications 2006
- Publications 2005
- Publications 2004
- Publications 2003
- Publications 2002
- Publications 2001
- Publications 1990-2000
Publications 2013
- D. Peitz, A.M. Bernhard, M. Mehring, M. Elsener, O. Kröcher, Harnstoffhydrolyse für die selektive katalytische Reduktion von NOx: Vergleich der Flüssig- und Gasphasenzersetzung, Chemie Ingenieur Technik 2013, 85(5), 625-631. doi:10.1002/cite.201200183
- M. Mehring, M. Elsener, O. Kröcher, Diesel Soot Catalyzes the Selective Catalytic Reduction of NOx with NH3, Topics Catal. 2013, 56, 440-445. doi:10.1007/s11244-013-9993-5
- A.M. Bernhard, D. Peitz, M. Elsener, O. Kröcher, Quantification of Gaseous Urea by FT-IR Spectroscopy and Its Application in Catalytic Urea Thermolysis, Topics Catal. 2013, 56, 130-133. doi:10.1007/s11244-013-9941-4
- D. Peitz, A.M. Bernhard, M. Elsener, O. Kröcher, Liquid-Phase Catalytic Decomposition of Novel Ammonia Precursor Solutions for the Selective Catalytic Reduction of NOx, Topics Catal. 2013, 56, 19-22. doi:10.1007/s11244-013-9922-7
- T. Baidya, A. Bernhard, M. Elsener, O. Kröcher, Hydrothermally Stable WO3/ZrO2–Ce0.6Zr0.4O2 Catalyst for the Selective Catalytic Reduction of NO with NH3, Topics Catal. 2013, 56, 23-28. doi:10.1007/s11244-013-9923-6
- A.M. Bernhard, D. Peitz, M. Elsener, T. Schildhauer, O. Kröcher, Catalytic urea hydrolysis in the selective catalytic reduction of NOx: Catalyst screening and kinetics on anatase TiO2 and ZrO2, Catal. Sci. Technol. 2013, 3(4), 942-951. doi:10.1039/C2CY20668D
- L. Sharifian, Y.M. Wright, K. Boulouchos, M. Elsener, O. Kröcher, Calibration of a model for selective catalytic reduction with ammonia, including NO oxidation, and simulation of NOx reduction over an Fe-zeolite catalyst under highly transient conditions, Int. J. Eng. Res. 2013, 149, 107-121. doi:10.1177/1468087412437825
- I. Czekaj, S. Brandenberger, O. Kröcher, Theoretical studies on the stabilization of iron complexes in the ZSM-5 frame, Micropor. Mesopor. Mater. 2013, 169, 97-102. doi:10.1016/j.micromeso.2012.10.018
- A.M. Bernhard, I. Czekaj, M. Elsener, O. Kröcher, Adsorption and catalytic thermolysis of gaseous urea on anatase TiO2 studied by HPLC analysis, DRIFT spectroscopy and DFT calculations, Appl. Catal. B 2013, 134-135, 316-323. doi:10.1016/j.apcatb.2013.01.009
Publications 2012
- S. Brandenberger, O. Kröcher, Active sites, deactivation and stabilization of Fe-ZSM-5 for the selective catalytic reduction (SCR) of NO with NH3, Chimia 2012, 66, 687-693. doi:10.2533/chimia.2012.687
- Ch. Gerhart, B. Schulz, O. Kröcher, D. Peitz, E. Jacob, Selektive katalytische Reduktion von Stickoxiden – Teil 1: Formiate als Ammoniak-Speicherverbindungen, MTZ 2012, 11, 906-912. Download from ATZ online
- M. Mehring, M. Elsener, O. Kröcher, Selective catalytic reduction of NOx with ammonia over soot, ACS Catalysis 2012, 2, 1507-1518. doi:10.1021/cs300184q
- Ch. Gerhart, H.-P. Krimmer, B. Hammer, B. Schulz, O. Kröcher, D. Peitz, Th. Sattelmayer, P. Toshev, G. Wachtmeister, A. Heubuch, E. Jacob, Development of a 3rd Generation SCR NH3-Direct Dosing System for Highly Efficient DeNOx, SAE Technical Paper Series 2012-01-1078. doi:10.4271/2012-01-1078
- M. Mehring, M. Elsener, L. Bächli, O. Kröcher, The influence of H2SO4 on soot oxidation with NO2, Carbon 2012, 50, 2100-2109. doi:10.1016/j.carbon.2011.12.061
- A.M. Bernhard, D. Peitz, M. Elsener, A. Wokaun, O. Kröcher, Hydrolysis and thermolysis of urea and its decomposition byproducts biuret, cyanuric acid and melamine over anatase TiO2, Appl. Catal. B 2012, 115-116, 129-137. doi:10.1016/j.apcatb.2011.12.013
- T.J. Schildhauer, M. Elsener, O. Kröcher, J. Moser, I. Begsteiger, D. Chatterjee, K. Rusch, Measurement of vanadium emissions from SCR catalysts: Method development and temperature dependency, Proc. 7th International Exhaust Gas and Particulate Emissions Forum, 6-7 March 2012, Ludwigsburg (Germany), pp. 123-131.
- A. Heubuch, G. Wachtmeister, P. Toshev, Th. Sattelmayer, D. Peitz, O. Kröcher, C. Gerhart, B. Schulz, R. Brunner, E. Jacob, Neue Verfahren zur Ammoniakbereitstellung und Messung für die SCR-Anwendung, Wissenschaftsymposium Automobiltechnik, 21–22 March 2012, Braunschweig (Germany).
Publications 2011
- M. Mehring, M. Elsener, O. Kröcher, Mikroanalytik und Reaktivität von Dieselpartikeln, MTZ 2011, 09, 690-696. Download from ATZ online
- D. Peitz, A. Bernhard, M. Elsener, O. Kröcher, Laboratory test reactor for the investigation of liquid reducing agents in the selective catalytic reduction of NOx, Rev. Sci. Inst. 2011, 82, 084101. doi:10.1063/1.3617463.
- L. Sharifian, Y. M. Wright, K. Boulouchos, M. Elsener, O. Kröcher, Transient simulation of NOx reduction over a Fe-Zeolite catalyst in an NH3-SCR system and study of the performance under different operating conditions, SAE Int. J. Fuels Lubr. 2011, 5, 370-379. SAE Technical Paper Series 2011-01-2084. doi:10.4271/2011-01-2084.
- E. Rohart, O. Kröcher, M. Casapu, R. Marques, D. Harris, C. Jones, Acidic Zirconia Mixed Oxides for NH3-SCR Catalysts for PC and HD Applications, SAE Technical Paper Series 2011-01-1327. doi:10.4271/2011-01-1327
- S. Brandenberger, O. Kröcher, A. Tissler, R. Althoff, Effect of Structural and Preparation Parameters on the Activity and Hydrothermal Stability of Metal-Exchanged ZSM-5 in the Selective Catalytic Reduction of NO by NH3, Ind. Eng. Chem. Res. 2011, 50, 4308-4319. doi:10.1021/ie101771e.
- A.M. Bernhard, I. Czekaj, M. Elsener, A. Wokaun, O. Kröcher, Evaporation of Urea at Atmospheric Pressure, J. Phys. Chem. A 2011, 115, 2581-2589. doi:10.1021/jp112066m.
- M. Casapu, A. Bernhard, D. Peitz, M. Mehring, M. Elsener, O. Kröcher, A Niobia-Ceria based multi-purpose catalyst for selective catalytic reduction of NOx, urea hydrolysis and soot oxidation in diesel exhaust, Appl. Catal. B 2011, 103, 79-84. doi:10.1016/j.apcatb.2011.01.011.
- M. Mehring, M. Elsener, O. Kröcher, Development of a TG-FTIR system for investigations with condensable and corrosive gases, J. Therm. Anal. Calorim. 2011, 105, 545–552. doi:10.1007/s10973-010-1178-x
- T. Todorova, D. Peitz, O. Kröcher, A. Wokaun, B. Delley, Guanidinium Formate Decomposition on the (101) TiO2-Anatase Surface: Combined Minimum Energy Reaction Pathway Calculations and Temperature-Programmed Decomposition Experiments, J. Phys. Chem. C 2011, 115 (4), 1195–1203. doi:10.1021/jp106523b
- S. Brandenberger, M. Casapu, O. Kröcher, A. Tissler, R. Althoff, Hydrothermal deactivation of Fe-ZSM-5 catalysts for the selective catalytic reduction of NO with NH3, Appl. Catal. B 2011, 101, 649–659. doi:10.1016/j.apcatb.2010.11.006
Publications 2010
- L. Sharifian, Y. M. Wright, K. Boulouchos, M. Elsener, O. Kröcher, Simulation of NOx reduction in an ammonia-SCR system with a Fe-zeolite catalyst and calibration of related parameters, Proceedings of the ASME Conference 2010, IMECE2010-40431.
- M. Casapu, O. Kröcher, M. Mehring, M. Nachtegaal, C. Borca, M. Harfouche, D. Grolimund, Characterization of Nb-Containing MnOx-CeO2 Catalyst for Low-Temperature Selective Catalytic Reduction of NO with NH3, J. Phys. Chem. C 2010, 114 (21), 9791–9801. doi:10.1021/jp911861q.
- O. Kröcher, M. Elsener, M. Mehring, A. Bernhard, Hochentwickelte Thermoanalyse-Verfahren zur Charakterisierung von Russ und Ablagerungen in Harnstoff-SCR-Systemen / Highly developed thermal analysis methods for the characterization of soot and urea SCR systems, Proceedings of the 6th International Exhaust Gas and Particulate Emissions Forum, 9-10 March 2010, Ludwigsburg (Germany), pp. 148-159. Download
- S. Brandenberger, O. Kröcher, A. Tissler, R. Althoff, The determination of the activities of different iron species in Fe-ZSM-5 for SCR of NO by NH3, Appl. Catal. B 2010, 95, 348-357. doi:10.1016/j.apcatb.2010.01.013
- S. Brandenberger, O. Kröcher, A. Tissler, R. Althoff, Estimation of the fractions of different nuclear iron species in uniformly metal-exchanged Fe-ZSM-5 samples based on a Poisson distribution, Appl. Catal. A 2010, 373, 168-175. doi:10.1016/j.apcata.2009.11.012
Publications 2009
- O. Kröcher, M. Elsener, M. Votsmeier, Determination of effective diffusion coefficients through the walls of coated diesel particulate filters, Ind. Eng. Chem. Res. 2009, 48 (23), 10746–10750. doi:10.1021/ie901269v
- S. Brandenberger, O. Kröcher, A. Wokaun, A. Tissler, R. Althoff, The role of Bronsted-acidity in the selective catalytic reduction of NO with ammonia over Fe-ZSM-5, J. Catal. 2009, 268, 297-306. doi:10.1016/j.jcat.2009.09.028
- I. Czekaj, J. Wambach, O. Kröcher, Modelling Catalyst Surfaces Using DFT Cluster Calculations, Int. J. Mol. Sci. 2009, 10, 4310-4329. Free download
- O. Kröcher, M. Widmer, M. Elsener, D. Rothe, Adsorption and Desorption of SOx on Diesel Oxidation Catalysts, Ind. Eng. Chem. Res. 2009, 48, 9847–9857. doi:10.1021/ie900882p
- O. Kröcher, M. Elsener, Hydrolysis and oxidation of gaseous HCN over heterogeneous catalysts, Appl. Catal. B 2009, 92, 75-89. doi:10.1016/j.apcatb.2009.07.021
- I. Czekaj, O. Kröcher, Decomposition of Urea in the SCR Process: Combination of DFT Calculations and Experimental Results on the Catalytic Hydrolysis of Isocyanic Acid on TiO2 and Al2O3, Top. Catal. 2009, 52, 1740-1745. doi:10.1007/s11244-009-9344-8
- T. Todorova, O. Kröcher, B. Delley, DFT study of structural and vibrational properties of guanidinium derivatives, Theochem 2009, 907, 16-21. doi:10.1016/j.theochem.2009.04.017
- O. Kröcher, M. Elsener, Materials for thermohydrolysis of urea in a fluidized bed, Chem. Eng. J. 2009, 152, 167-176. doi:10.1016/j.cej.2009.04.030
- M. Casapu, O. Kröcher, M. Elsener, Screening of doped MnOx-CeO2 catalysts for low-temperature NO-SCR, Appl. Catal. B 2009, 88, 413-419. doi:10.1016/j.apcatb.2008.10.014
- O. Kröcher, M. Elsener, E. Jacob, A model gas study of ammonium formate, methanamide and guanidinium formate as alternative ammonia precursor compounds for the selective catalytic reduction of nitrogen oxides in diesel exhaust gas, Appl. Catal. B 2009, 88, 66-82. doi:10.1016/j.apcatb.2008.09.027
Publications 2008
- O. Kröcher, M. Elsener, Combination of V2O5/WO3-TiO2, Fe-ZSM5, and Cu-ZSM5 catalysts for the selective catalytic reduction of nitric oxide with ammonia, Ind. Eng. Chem. Res. 2008, 47, 8588–8593. doi:10.1021/ie800951a
- S. Brandenberger, O. Kröcher, A. Tissler, R. Althoff, The state of the art in selective catalytic reduction of NOx by ammonia using metal-exchanged zeolite catalysts, Catal. Rev. Sci. Eng. 2008, 50, 492-531. doi:10.1080/01614940802480122
- I. Czekaj, O. Kröcher, G. Piazzesi, DFT Calculations, DRIFT Spectroscopy and Kinetic Studies on the Hydrolysis of Isocyanic Acid on the TiO2-Anatase (101) Surface, J. Mol. Catal. A 2008, 280, 68-80. doi:10.1016/j.molcata.2007.10.027
- D. Nicosia, I. Czekaj, O. Kröcher, Chemical deactivation of V2O5/WO3-TiO2 SCR catalysts by additives and impurities from fuels, lubrication oils, and urea solution: Part II. Characterization study of the effect of alkali and alkaline earth metals, Appl. Catal. B 2008, 77, 228-236. doi:10.1016/j.apcatb.2007.07.032
- O. Kröcher, M. Elsener, Chemical deactivation of V2O5/WO3-TiO2 SCR catalysts by additives and impurities from fuels, lubrication oils, and urea solution – I. Catalytic Studies, Appl. Catal. B 2008, 75, 215-227. doi:10.1016/j.apcatb.2007.04.021
- O. Kröcher, M. Elsener, E. Jacob, Neue Reduktionsmittel für die Low NOx-SCR-Technik / New reducing agents for the low-NOx SCR technology, Proceedings of the 5th International Exhaust Gas and Particulate Emissions Forum, 19-20 February 2008, Ludwigsburg (Germany), pp. 98-119. Download
Publications 2007
- O. Kröcher, Aspects of catalyst development for mobile urea-SCR systems – from vanadia-titania catalysts to metal-exchanged zeolites, Stud. Surf. Sci. Catal. 2007, 171, 261-289. doi:10.1016/S0167-2991(07)80210-2
- D. Nicosia, M. Elsener, O. Kröcher, P. Jansohn, Basic investigation of the chemical deactivation of V2O5/WO3-TiO2 SCR catalysts by potassium, calcium, and phosphate, Topics Catal. 2007, 42-43, 333-336. doi:10.1007/s11244-007-0200-4
- G. Piazzesi, D.Nicosia, M. Devadas, O. Kröcher, M. Elsener, A. Wokaun, Investigation of HNCO adsorption and hydrolysis on Fe-ZSM5, Catal. Lett. 2007, 115, 33-39. doi:10.1007/s10562-007-9072-2
- O. Kröcher, M. Elsener, Ammonia measurement with a pH electrode in the ammonia/urea-SCR process, Meas. Sci. Technol. 2007, 18, 771-778. doi:10.1088/0957-0233/18/3/029
- M. Devadas, O. Kröcher, M. Elsener, A. Wokaun, G. Mitrikas, N. Söger, M. Pfeifer, Y. Demel, L. Mussmann, Characterization and catalytic investigation of Fe-ZSM5 for urea-SCR, Catal. Today 2007, 119, 137-144. doi:10.1016/j.cattod.2006.08.018
- O. Kröcher, New challenges for urea-SCR systems: From vanadia-based to zeolite-based SCR catalysts, 1st Conference: MinNOx – Minimization of NOx Emissions through Exhaust Aftertreatment, 1-2 February 2007, Berlin (Germany).
Publications 2006
- I. Czekaj, G. Piazzesi, O. Kröcher, A. Wokaun, DFT modeling of the hydrolysis of isocyanic acid over the TiO2 anatase (1 0 1) surface: Adsorption of HNCO species, Surf. Sci. 2006, 600, 5158-5167. doi:10.1016/j.susc.2006.08.037
- M. Devadas, O. Kröcher, M. Elsener, A. Wokaun, N. Söger, M. Pfeifer, Y. Demel, L. Mussmann, Influence of NO2 on the selective catalytic reduction of NO with ammonia over Fe-ZSM5, Appl. Catal. B 2006, 67, 187-196. doi:10.1016/j.apcatb.2006.04.015
- K. Tikhomirov, O. Kröcher, M. Elsener, M. Widmer, A. Wokaun, Manganese based materials for diesel exhaust SO2 traps, Appl. Catal. B 2006, 67, 160-167. doi:10.1016/j.apcatb.2006.03.025
- K. Tikhomirov, O. Kröcher, A. Wokaun, Influence of potassium doping on the activity and the sulfur poisoning resistance of soot oxidation catalysts, Catal. Lett. 2006, 109, 49-53. doi:10.1007/s10562-006-0055-5
- O. Kröcher, M. Devadas, M. Elsener, A. Wokaun, N. Söger, M. Pfeifer, Y. Demel, L. Mussmann, Investigation of the selective catalytic reduction of NO by NH3 on Fe-ZSM5 monolith catalysts, Appl. Catal. B 2006, 66, 208-216. doi:10.1016/j.apcatb.2006.03.012
- G. Piazzesi, M. Elsener, O. Kröcher, A. Wokaun, Influence of NO2 on the hydrolysis of isocyanic acid over TiO2, Appl. Catal. B 2006, 65, 169-174. doi:10.1016/j.apcatb.2006.01.002
- G. Piazzesi, M. Devadas, O. Kröcher, M. Elsener, A. Wokaun, Isocyanic acid hydrolysis over Fe-ZSM5 in urea-SCR, Catal. Commun. 2006, 7, 600-603. doi:10.1016/j.catcom.2006.01.022
- G. Piazzesi, O. Kröcher, M. Elsener, A. Wokaun, Adsorption and hydrolysis of isocyanic acid on TiO2, Appl. Catal. B 2006, 65, 55-61. doi:10.1016/j.apcatb.2005.12.018
- K. Tikhomirov, O. Kröcher, M. Elsener, A. Wokaun, MnOx-CeO2 mixed oxides for the low-temperature oxidation of diesel soot, Appl. Catal. B 2006, 64, 72-78. doi:10.1016/j.apcatb.2005.11.003
Publications 2005
- M. Devadas, O. Kröcher, A. Wokaun, Catalytic investigation of Fe-ZSM5 in the selective catalytic reduction of NOx with NH3, React. Kin. Catal. Lett. 2005, 86 (2), 347-354. doi:10.1007/s11144-005-0331-1
- O. Kröcher, M. Elsener, M. Koebel, An ammonia and isocyanic acid measuring method for soot containing exhaust gases, Anal. Chim. Acta 2005, 537, 393-400. doi:10.1016/j.aca.2004.12.082
- O. Kröcher, Aus der Forschung in die Praxis: Saubere Dieselmotoren dank Stickoxid-Umwandlung mit Harnstoff, Vjschr. Naturf. Ges. Zürich 2005, 150/1-2, 49-50.
- K. Boulouchos, O. Kröcher, T. Lutz, NOx-Reduktion für PW-Dieselmotoren, auto&technik 2005, 4, 28-32. Link
Publications 2004
- J. Despres, M. Elsener, M. Koebel, O. Kröcher, B. Schnyder, A. Wokaun, Catalytic oxidation of nitrogen monoxide over Pt/SiO2, Appl. Catal. B 2004, 50, 73-82. doi:10.1016/j.apcatb.2003.12.020
- M. Koebel, M. Elsener, O. Kröcher, Ch. Schär, R. Röthlisberger, F. Jaussi, M. Mangold, NOx Reduction in the Exhaust of Mobile Heavy-Duty Diesel Engines by Urea-SCR, Topics Catal. 2004, 30/31, 43-48. doi:10.1023/B:TOCA.0000029726.38961.2b
- C. M. Schär, C. Onder, M. Elsener, H. Geering, Model-Based Control of an SCR System for a Mobile Application, Proceedings of the FISITA 2004 World Automotive Congress.
- C. M. Schär, C. Onder, H. Geering, M. Elsener, Modelling and control of an SCR system, Proceedings of the IFAC Symposium on Advances in Automotive Control AAC04.
Publications 2003
- C. M. Schär, C. H. Onder, H. P. Geering, M. Elsener, Control of a Urea SCR Catalytic Converter System for a Mobile Heavy Duty Diesel Engine, SAE Technical Paper Series 2003-01-0776. Link
- J. Despres, M. Koebel, O. Kröcher, M. Elsener, A. Wokaun, Storage of NO2 on BaO/TiO2 and the influence of NO, Appl. Catal. B 2003, 43, 389-395. doi:10.1016/S0926-3373(03)00004-3
- M. Koebel, E. O. Strutz, Thermal and Hydrolytic Decomposition of Urea for Automotive Selective Catalytic Reduction Systems: Thermochemical and Practical Aspects, Ind. Eng. Chem. Res. 2003, 42, 2093-2100. doi:10.1021/ie020950o
- J. Despres, M. Koebel, O. Kröcher, M. Elsener, A. Wokaun, Adsorption and desorption of NO and NO2 on Cu-ZSM-5, Micropor. Mesopor. Mater. 2003, 58, 175-183. doi:10.1016/S1387-1811(02)00627-3
- M. Elsener, H. P. Geering, F. Jaussi, M. Koebel, O. Kröcher, M. Mangold, Ch. Onder, R. Röthlisberger, Ch. Schär, Aufbau und Vermessung eines DeNOx-Systems auf der Basis von Harnstoff-SCR, MTZ 2003, 11, 966-971. Download from ATZ online
- NOx katalytisch reduzieren, auto&technik 2003, 3, 22-23.
Publications 2002
- G. Madia, M. Koebel, M. Elsener, A. Wokaun, The Effect of an Oxidation Precatalyst on the NOx Reduction by Ammonia SCR, Ind. Eng. Chem. Res. 2002, 41, 3512-3517. doi:10.1021/ie0200555
- G. Madia, M. Elsener, M. Koebel, F. Raimondi, A. Wokaun, Thermal stability of vanadia-tungsta-titania catalysts in the SCR process, Appl. Catal. B 2002, 39, 181-190. doi:10.1016/S0926-3373(02)00099-1
- G. Madia, M. Koebel, M. Elsener, A. Wokaun, Side Reactions in the Selective Catalytic Reduction of NOx with Various NO2 Fractions, Ind. Eng. Chem. Res. 2002, 41, 4008-4015. doi:10.1021/ie020054c
- M. Koebel, G. Madia, F. Raimondi, A. Wokaun, Enhanced Reoxidation of Vanadia by NO2 in the Fast SCR Reaction, J. Catal. 2002, 209, 159-165. doi:10.1006/jcat.2002.3624
- M. Koebel, M. Elsener, G. Madia, Selective catalytic reduction of NO and NO2 at low temperatures, Catal. Today 2002, 73, 239-247. doi:10.1016/S0920-5861(02)00006-8
- C. M. Schär, M. Elsener, C. Onder, H. Geering, Control Strategies for the DeNOx System of a Mobile Application, Proceedings of the FISITA 2002 World Automotive Congress, Helsinki, 2002.
Publications 2001
- M. Koebel, M. Elsener, G. Madia, Recent Advances in the Development of Urea-SCR for Automotive Applications, SAE Technical Paper Series 2001-01-3625. doi:10.4271/2001-01-3625
- M. Koebel, M. Elsener, G. Madia, Reaction Pathways in the Selective Catalytic Reduction Process with NO and NO2 at Low Temperatures, Ind. Eng. Chem. Res. 2001, 40, 52-59. doi:10.1021/ie000551y
- M. Koebel, M. Elsener, G. Madia, NOx-Verminderung in Dieselabgasen mit Harnstoff-SCR bei tiefen Temperaturen, MTZ 2001, 62 (2), 166-175. Download from ATZ online
Publications 1990-2000
- M. Kleemann, M. Elsener, M. Koebel, A. Wokaun, Hydrolysis of Isocyanic Acid on SCR Catalysts, Ind. Eng. Chem. Res. 2000, 39, 4120-4126. doi:10.1021/ie9906161
- M. Kleemann, M. Elsener, M. Koebel, A. Wokaun, Investigation of the ammonia adsorption on monolithic SCR catalysts by transient response analysis, Appl. Catal. B 2000, 27, 231-242. doi:10.1016/S0926-3373(00)00158-2
- M. Koebel, M. Elsener, M. Kleemann, Urea-SCR: a promising technique to reduce NOx emissions from automotive diesel engines, Catal. Today 2000, 59, 335-345. doi:10.1016/S0920-5861(00)00299-6
- M. Koebel, M. Elsener, Oxidation of Diesel-Generated Volatile Organic Compounds in the Selective Catalytic Reduction Process, Ind. Eng. Chem. Res. 1998, 37, 3864-3868. DOI:10.1021/ie9801103
- M. Koebel, M. Elsener, Selective Catalytic Reduction of NO over Commercial DeNOx-Catalysts: Comparison of the Measured and Calculated Performance, Ind. Eng. Chem. Res. 1998, 37, 327-335. doi:10.1021/ie970569h
- M. Koebel, M. Elsener, Selective Catalytic Reduction of NO over Commercial DeNOx-Catalysts: Experimental Determination of Kinetic and Thermodynamic Parameters, Chem. Eng. Sci. 1998, 53, 657-669. doi:10.1016/S0009-2509(97)00342-4
- M. Koebel, M. Elsener, T. Marti, NOx-Reduction in Diesel Exhaust Gas with Urea and Selective Catalytic Reduction, Combust. Sci. Technol. 1996, 121, 85-102. doi:10.1080/00102209608935588
- M. Koebel, M. Elsener, Determination of Urea and its Thermal Decomposition Products by High-Performance Liquid Chromatography, J. Chromatogr. 1995, 689, 164-169. doi:10.1016/0021-9673(94)00922-V
- M. Koebel, M. Elsener, Entstickung von Abgasen nach dem SNCR-Verfahren; Ammoniak oder Harnstoff als Reduktionsmittel?, Chem. Ing. Tech. 1992, 64 (10), 934-937. doi:10.1002/cite.330641014
- M. Koebel, Vor- und Nachteile stickstoffhaltiger Reduktionsmittel beim Einsatz in mobilen SCR-Systemen, 3. Dresdner Motorenkolloquium, May 20-21, 1999, pp. 76-83.
- M. Koebel, M. Elsener, Schwefeltrioxidbestimmung in Abgasen nach der Isopropanolmethode – eine kritische Betrachtung, Gefahrstoffe Reinhaltung der Luft 1997, 57, 193-199.
- M. Koebel, Entstickung von Dieselabgasen mit Harnstoff-SCR, VDI-Berichte 1993, 1019, 195-211.
- M. Koebel, Stickoxidminderung in Abgasen, SIA 1992, 110 (38), 693-700.
- M. Koebel, M. Elsener, H. P. Eicher, Stickoxidminderung bei stationären Dieselmotoren mittels SCR und Harnstoff als Reduktionsmittel, BKW/TÜ/Umwelt 1991, No.3 (Special Luftreinhaltung), E24-E32.
- M. Koebel, M. Elsener, Stickoxidminderung bei Dieselmotoren, SIA 1991, 109 (9), 187-192.
- M. Koebel, M. Elsener, H. P. Eichler, Selektive katalytische Reduktion von Stickoxiden – mit Harnstoff gegen Stickoxide, Technische Rundschau 1990, 82 (49), 74-79.