Publications

2024

The effect of Ni- and Mo-based materials on thermochemical sulfate reduction by glycerol under hydrothermal process conditions

C. Chang; F. Vogel; O. Krocher; D. Baudouin 

Chemical Engineering Research & Design. 2024-05-01. Vol. 205, p. 459-466. DOI : 10.1016/j.cherd.2024.03.024.

Heterogeneous catalysis via light-heat dual activation: A path to the breakthrough in C1 chemistry

B. Xie; D. Hu; P. Kumar; V. V. Ordomsky; A. Y. Khodakov et al. 

Joule. 2024-02-21. Vol. 8, num. 2, p. 312-333. DOI : 10.1016/j.joule.2023.12.013.

2023

Correction: Improving time-resolution and sensitivity of in situ X-ray photoelectron spectroscopy of a powder catalyst by modulated excitation

M. Roger; L. Artiglia; A. Boucly; F. Buttignol; M. Agote-Aran et al. 

Chemical Science. 2023-10-11. Vol. 14, num. 39, p. 10979-10980. DOI : 10.1039/d3sc90184j.

Improving time-resolution and sensitivity of in situ X-ray photoelectron spectroscopy of a powder catalyst by modulated excitation

M. Roger; L. Artiglia; A. Boucly; F. Buttignol; M. Agote-Aran et al. 

Chemical Science. 2023-05-30. DOI : 10.1039/d3sc01274c.

Electrochemical synthesis of propylene from carbon dioxide on copper nanocrystals

J. Gao; A. Bahmanpour; O. Krocher; S. M. Zakeeruddin; D. Ren et al. 

Nature Chemistry. 2023-04-06. DOI : 10.1038/s41557-023-01163-8.

Origin of the Activity Trend in the Oxidative Dehydrogenation of Ethanol over VOx/CeO2

A. Zabilska; M. Zabilskiy; R. J. G. Nuguid; A. H. H. Clark; I. I. I. Sadykov et al. 

Angewandte Chemie-International Edition. 2023-03-23. Vol. 62, num. 18, p. e202301297. DOI : 10.1002/anie.202301297.

Preparation, Quantification, and Reaction of Pd Hydrides on Pd/ Al2O3 in Liquid Environment

T. Fovanna; M. Nachtegaal; A. H. Clark; O. Krocher; D. Ferri 

Acs Catalysis. 2023-03-03. Vol. 13, num. 5, p. 3323-3332. DOI : 10.1021/acscatal.2c04791.

Recent progress in calcium looping integrated with chemical looping combustion (CaL-CLC) using bifunctional CaO/CuO composites for CO2 capture: A state-of-the-art review

J. Chen; L. Duan; Y. Ma; Y. Jiang; A. Huang et al. 

Fuel. 2023-02-15. Vol. 334, p. 126630. DOI : 10.1016/j.fuel.2022.126630.

Stability and Reactivity of a Polyoxymethylene Dimethyl Ether over Typical Catalysts for Diesel Emission Control (vol 15, pg 848, 2022)

M. Elsener; E. Jacob; D. Ferri; O. Krocher 

Topics In Catalysis. 2023-01-02. DOI : 10.1007/s11244-022-01774-4.

Production of carbon nanomaterials and syngas from biogas reforming and decomposition on one-pot mesoporous nickel alumina catalysts

N. El Hassan; K. Jabbour; A. H. Fakeeha; Y. Nasr; M. A. Naeem et al. 

Alexandria Engineering Journal. 2023-01-15. Vol. 63, p. 143-155. DOI : 10.1016/j.aej.2022.07.056.

Thermal Sintering and Phosphorus Poisoning of a Layered Diesel Oxidation Catalyst

M. Agote-Aran; V. V. Jacobsen; M. Elsener; F. W. Schuetze; C. M. Schilling et al. 

Topics In Catalysis. 2023. Vol. 66, p. 777–786. DOI : 10.1007/s11244-022-01752-w.

Assessing the effect of O2 dithering on CH4 oxidation on Pd/Al2O3

M. Roger; O. Kroecher; D. Ferri 

Chemical Engineering Journal. 2023-01-01. Vol. 451, p. 138865. DOI : 10.1016/j.cej.2022.138865.

Stability and Reactivity of a Polyoxymethylene Dimethyl Ether over Typical Catalysts for Diesel Emission Control

M. Elsener; E. Jacob; D. Ferri; O. Kroecher 

Topics In Catalysis. 2023. Vol. 66, p. 797–803. DOI : 10.1007/s11244-022-01725-z.

2022

Aging of industrial Fe-zeolite based catalysts for nitrous oxide abatement in nitric acid production plants

F. Buttignol; D. Rentsch; I. Alxneit; A. Garbujo; P. Biasi et al. 

Catalysis Science & Technology. 2022-10-31. Vol. 12, num. 24, p. 7308-7321. DOI : 10.1039/d2cy01486f.

Monomeric Fe Species in Square Planar Geometry Active for Low Temperature NH3-SCR of NO

D. Wierzbicki; A. H. Clark; O. Kroecher; D. Ferri; M. Nachtegaal 

Journal Of Physical Chemistry C. 2022-10-05. Vol. 126, num. 41, p. 17510–17519. DOI : 10.1021/acs.jpcc.2c03480.

Beware of beam damage under reaction conditions: X-ray induced photochemical reduction of supported VOx catalysts during in situ XAS experiments

A. Zabilska; A. H. Clark; D. Ferri; M. Nachtegaal; O. Kroecher et al. 

Physical Chemistry Chemical Physics. 2022-08-25. Vol. 24, num. 36, p. 21916-21926. DOI : 10.1039/d2cp02721f.

In Situ Infrared Spectroscopy of NOx Reduction Catalysts: A Laboratory Exercise for In-Person and Virtual Learning

R. J. G. Nuguid; M. Nachtegaal; O. Krocher; D. Ferri 

Journal Of Chemical Education. 2022-06-08. DOI : 10.1021/acs.jchemed.2c00087.

Poisoning of Mn-Ce/AC catalysts for low-temperature NH3-SCR of NO by K+ and its counter-ions (Cl- /NO3- /SO42- )

J. Yang; S. Ren; R. J. G. Nuguid; D. Ferri; Q. Liu et al. 

Applied Catalysis A-General. 2022-05-25. Vol. 638, p. 118636. DOI : 10.1016/j.apcata.2022.118636.

In situ spectroscopic studies of the effect of water on the redox cycle of Cu ions in Cu-SSZ-13 during selective catalytic reduction of NOx

H. Lee; R. J. G. Nuguid; S. W. Jeon; H. S. Kim; K. H. Hwang et al. 

Chemical Communications. 2022-05-07. Vol. 58, num. 46, p. 6610-6613. DOI : 10.1039/d2cc01786e.

Investigation on the Role of Pd, Pt, Rh in Methane Abatement for Heavy Duty Applications

M. Wang; P. D. Eggenschwiler; T. Franken; M. Agote-Aran; D. Ferri et al. 

Catalysts. 2022-04-01. Vol. 12, num. 4, p. 373. DOI : 10.3390/catal12040373.

Redox Dynamics of Active VOx Sites Promoted by TiOx during Oxidative Dehydrogenation of Ethanol Detected by Operando Quick XAS

A. Zabilska; A. H. Clark; B. M. Moskowitz; I. E. Wachs; Y. Kakiuchi et al. 

Jacs Au. 2022-03-28. Vol. 2, num. 3, p. 762-776. DOI : 10.1021/jacsau.2c00027.

Techno-Economic Evaluation of Biological and Fluidised-Bed Based Methanation Process Chains for Grid-Ready Biomethane Production

A. Gantenbein; O. Kroecher; S. M. A. Biollaz; T. J. Schildhauer 

Frontiers In Energy Research. 2022-03-24. Vol. 9, p. 775259. DOI : 10.3389/fenrg.2021.775259.

Effect of an Al2O3-based binder on the structure of extruded Fe-ZSM-5

F. Buttignol; A. Garbujo; P. Biasi; D. Rentsch; O. Kroecher et al. 

Catalysis Today. 2022-03-01. Vol. 387, p. 207-215. DOI : 10.1016/j.cattod.2021.09.020.

One-pot synthesis of highly dispersed mesoporous Cu/ZrO2 catalysts for NH3-SCR

O. H. Bjorkedal; S. K. Regli; R. J. G. Nuguid; P. E. Vullum; O. Krocher et al. 

Catalysis Today. 2022-02-15. Vol. 384, p. 113-121. DOI : 10.1016/j.cattod.2021.05.010.

Experimental and modeling-based analysis of reaction pathways on catalysts for natural gas engines under periodic lean/rich oscillations

M. Wang; P. D. Eggenschwiler; D. Ferri; O. Krocher 

Chemical Engineering Journal. 2022-02-15. Vol. 430, p. 132848. DOI : 10.1016/j.cej.2021.132848.

Restructuring Ni/Al2O3 by addition of Ga to shift product selectivity in CO2 hydrogenation: The role of hydroxyl groups

A. M. Bahmanpour; R. J. G. Nuguid; L. M. Savereide; M. D. Mensi; D. Ferri et al. 

Journal Of Co2 Utilization. 2022-02-01. Vol. 56, p. 101881. DOI : 10.1016/j.jcou.2021.101881.

Particle Size Effects in Ru/CNF Catalysts during Supercritical Water Gasification of Glycerol

C. Hunston; D. Baudouin; L. Koning; A. Agarwal; O. Kröcher et al. 

Applied Catalysis B: Environmental. 2022.  p. 121956. DOI : 10.1016/j.apcatb.2022.121956.

2021

Understanding the impact of poison distribution on the performance of Diesel oxidation catalysts

M. Agote-Aran; M. Elsener; F. W. Schuetze; C. M. Schilling; M. Sridhar et al. 

Applied Catalysis B-Environmental. 2021-12-15. Vol. 299, p. 120684. DOI : 10.1016/j.apcatb.2021.120684.

Operando diffuse reflectance infrared detection of cyanide intermediate species during the reaction of formaldehyde with ammonia over V2O(5)/ WO3-TiO2

R. J. G. Nuguid; M. Elsener; D. Ferri; O. Krocher 

Applied Catalysis B-Environmental. 2021-12-05. Vol. 298, p. 120629. DOI : 10.1016/j.apcatb.2021.120629.

Techno-economic assessment of bioethanol production from lignocellulose by consortium-based consolidated bioprocessing at industrial scale

D. Dempfle; O. Krocher; M. H-P. Studer 

New Biotechnology. 2021-11-25. Vol. 65, p. 53-60. DOI : 10.1016/j.nbt.2021.07.005.

Reaction pathways of methane abatement in Pd-Rh three-way catalyst in heavy duty applications: A combined approach based on exhaust analysis, model gas reactor and DRIFTS measurements

M. Wang; P. D. Eggenschwiler; T. Franken; D. Ferri; O. Krocher 

Chemical Engineering Journal. 2021-10-15. Vol. 422, p. 129932. DOI : 10.1016/j.cej.2021.129932.

Recent progress in syngas production via catalytic CO2 hydrogenation reaction

A. M. Bahmanpour; M. Signorile; O. Kroecher 

Applied Catalysis B-Environmental. 2021-10-15. Vol. 295, p. 120319. DOI : 10.1016/j.apcatb.2021.120319.

On the relevance of P poisoning in real-world DOC aging

M. Agote-Aran; M. Elsener; F. W. Schuetze; C. M. Schilling; M. Sridhar et al. 

Applied Catalysis B-Environmental. 2021-08-15. Vol. 291, p. 120062. DOI : 10.1016/j.apcatb.2021.120062.

Reduction of PdO/Al2O3 in Liquid Cyclohexane Followed In Situ by ATR-IR, High-Energy XRD, and XAS

T. Fovanna; I. Alxneit; A. H. Clark; S. Checchia; M. Di Michiel et al. 

Journal Of Physical Chemistry C. 2021-08-05. Vol. 125, num. 30, p. 16473-16482. DOI : 10.1021/acs.jpcc.1c01882.

Grafting of Alkali Metals on Fumed Silica for the Catalytic Dehydrogenation of Methanol to Formaldehyde

C. J. Baranowski; J. Brandon; A. M. Bahmanpour; O. Kroecher 

Chemcatchem. 2021-07-08. Vol. 13, num. 17, p. 3864-3877. DOI : 10.1002/cctc.202100685.

Stable Palladium Oxide Clusters Encapsulated in Silicalite-1 for Complete Methane Oxidation

T. Li; A. Beck; F. Krumeich; L. Artiglia; M. K. Ghosalya et al. 

Acs Catalysis. 2021-06-18. Vol. 11, num. 12, p. 7371-7382. DOI : 10.1021/acscatal.0c04868.

Effect of Short Reducing Pulses on the Dynamic Structure, Activity, and Stability of Pd/Al2O3 for Wet Lean Methane Oxidation

T. Franken; M. Roger; A. W. Petrov; A. H. Clark; M. Agote-Aran et al. 

Acs Catalysis. 2021-04-16. Vol. 11, num. 8, p. 4870-4879. DOI : 10.1021/acscatal.1c00328.

HCN production from formaldehyde during the selective catalytic reduction of NOx with NH3 over V2O5/WO3-TiO2

M. Elsener; R. J. G. Nuguid; O. Krocher; D. Ferri 

Applied Catalysis B-Environmental. 2021-02-01. Vol. 281, p. 119462. DOI : 10.1016/j.apcatb.2020.119462.

Increasing the activity of the Cu/CuAl2O4/Al2O3 catalyst for the RWGS through preserving the Cu2+ ions

A. M. Bahmanpour; B. P. Le Monnier; Y-P. Du; F. Heroguel; J. S. Luterbacher et al. 

Chemical Communications. 2021-01-28. Vol. 57, num. 9, p. 1153-1156. DOI : 10.1039/d0cc07142k.

Flexible application of biogas upgrading membranes for hydrogen recycle in power-to-methane processes

A. Gantenbein; J. Witte; S. M. A. Biollaz; O. Krocher; T. J. Schildhauer 

Chemical Engineering Science. 2021-01-16. Vol. 229, p. 116012. DOI : 10.1016/j.ces.2020.116012.

Investigating active phase loss from supported ruthenium catalysts during supercritical water gasification

C. Hunston; D. Baudouin; M. Tarik; O. Kröcher; F. Vogel 

Catalysis Science & Technology. 2021-10-14. Vol. 11, num. 22, p. 7431-7444. DOI : 10.1039/D1CY00379H.

2020

Water Inhibition of Oxymethylene Dimethyl Ether Synthesis over Zeolite H-Beta: A Combined Kinetic and in Situ ATR-IR Study

C. J. Baranowski; T. Fovanna; M. Roger; M. Signorile; J. McCaig et al. 

Acs Catalysis. 2020-08-07. Vol. 10, num. 15, p. 8106-8119. DOI : 10.1021/acscatal.0c01805.

Ruthenium on phosphorous-modified alumina as an effective and stable catalyst for catalytic transfer hydrogenation of furfural

T. Fovanna; S. Campisi; A. Villa; A. Kambolis; G. Peng et al. 

Rsc Advances. 2020-03-19. Vol. 10, num. 19, p. 11507-11516. DOI : 10.1039/d0ra00415d.

Essential role of oxygen vacancies of Cu-Al and Co-Al spinel oxides in their catalytic activity for the reverse water gas shift reaction

A. Bahmanpour; F. E. Héroguel; M. Kiliç; C. J. Baranowski; P. A. Schouwink et al. 

Applied Catalysis B: Environmental. 2020-01-27. Vol. 266, p. 118669. DOI : 10.1016/j.apcatb.2020.118669.

Increased nickel exsolution from LaFe0.8Ni0.2O3 perovskite-derived CO2 methanation catalysts through strontium doping

P. Steiger; O. Kroecher; D. Ferri 

Applied Catalysis A-General. 2020-01-25. Vol. 590, p. 117328. DOI : 10.1016/j.apcata.2019.117328.

Selective Catalytic Reduction of NO with NH3 on Cu-SSZ-13: Deciphering the Low and High-temperature Rate-limiting Steps by Transient XAS Experiments

A. H. Clark; R. J. G. Nuguid; P. Steiger; A. Marberger; A. W. Petrov et al. 

Chemcatchem. 2020-01-09. Vol. 12, num. 5, p. 1429-1435. DOI : 10.1002/cctc.201901916.

Liquid phase in situ spectroscopic investigations of heterogeneous catalysts

T. X. F. Fovanna / O. Kröcher; D. Ferri (Dir.)  

Lausanne, EPFL, 2020. 

Advances in heterogeneous catalysis for the synthesis of polyoxymethylene dimethyl ethers

C. J. Baranowski / O. Kröcher (Dir.)  

Lausanne, EPFL, 2020. 

2019

Mechanochemistry-assisted hydrolysis of softwood over stable sulfonated carbon catalysts in a semi-batch process

D. Scholz; J. Xie; O. Kroecher; F. Vogel 

Rsc Advances. 2019-10-17. Vol. 9, num. 57, p. 33525-33538. DOI : 10.1039/c9ra07668a.

Nature of Synergy between Bronsted and Lewis Acid Sites in Sn-Beta Zeolites for Polyoxymethylene Dimethyl Ethers Synthesis

C. J. Baranowski; M. Roger; A. M. Bahmanpour; O. Kroecher 

Chemsuschem. 2019-09-10. Vol. 12, num. 19, p. 4421-4431. DOI : 10.1002/cssc.201901814.

Modulated Excitation Raman Spectroscopy of V2O5/TiO2: Mechanistic Insights into the Selective Catalytic Reduction of NO with NH3

R. J. G. Nuguid; D. Ferri; A. Marberger; M. Nachtegaal; O. Krocher 

ACS Catalysis. 2019-08-01. Vol. 9, num. 8, p. 6814-6820. DOI : 10.1021/acscatal.9b01514.

Mechanistic implications of lanthanum-modification on gold-catalyzed formic acid decomposition under SCR-relevant conditions

M. Sridhar; S. Brose; D. Siewert; D. Ferri; J. A. van Bokhoven et al. 

Applied Catalysis B-Environmental. 2019-05-05. Vol. 244, p. 709-718. DOI : 10.1016/j.apcatb.2018.11.092.

Segregation of Nickel/Iron Bimetallic Particles from Lanthanum Doped Strontium Titanates to Improve Sulfur Stability of Solid Oxide Fuel Cell Anodes

P. Steiger; D. Burnat; O. Krocher; A. Heel; D. Ferri 

Catalysts. 2019-04-01. Vol. 9, num. 4, p. 332. DOI : 10.3390/catal9040332.

Thermal activation and aging of a V2O3/WO3-TiO2 catalyst for the selective catalytic reduction of NO with NH3

A. Marberger; M. Elsener; R. J. G. Nuguid; D. Ferri; O. Krocher 

Applied Catalysis A-General. 2019-03-05. Vol. 573, p. 64-72. DOI : 10.1016/j.apcata.2019.01.009.

Design of Stable Palladium-Based Zeolite Catalysts for Complete Methane Oxidation by Postsynthesis Zeolite Modification

A. W. Petrov; D. Ferri; O. Krocher; J. A. van Bokhoven 

Acs Catalysis. 2019-03-01. Vol. 9, num. 3, p. 2303-2312. DOI : 10.1021/acscatal.8b04486.

Sulfur Poisoning Recovery on a Solid Oxide Fuel Cell Anode Material through Reversible Segregation of Nickel

P. Steiger; D. Burnat; H. Madi; A. Mai; L. Holzer et al. 

Chemistry Of Materials. 2019-02-12. Vol. 31, num. 3, p. 748-758. DOI : 10.1021/acs.chemmater.8b03669.

Effect of SiO2 on co-impregnated V2O5/WO3/TiO2 catalysts for the selective catalytic reduction of NO with NH3

A. Marberger; D. Ferri; D. Rentsch; F. Krumeich; M. Elsener et al. 

Catalysis Today. 2019-01-15. Vol. 320, p. 123-132. DOI : 10.1016/j.cattod.2017.11.037.

A novel reactor concept for thermal integration of naphtha reforming with propane ammoxidation

S. Ebrahimian; D. Iranshahi; A. M. Bahmanpour 

Chemical Engineering And Processing-Process Intensification. 2019-12-01. Vol. 146, p. 107659. DOI : 10.1016/j.cep.2019.107659.

Hydrothermally Stable Sulfonated Carbons as Solid Acid Catalysts for the Hydrolysis of Lignocellulose

D. F. Scholz / O. Kröcher; F. Vogel (Dir.)  

Lausanne, EPFL, 2019. 

Insights into the Nature of the Active Sites of Tin‐Montmorillonite for the Synthesis of Polyoxymethylene Dimethyl Ethers (OME)

C. J. Baranowski; A. M. Bahmanpour; F. Héroguel; J. S. Luterbacher; O. Kröcher 

ChemCatChem. 2019-05-06. Vol. 11, num. 13, p. 3010-3021. DOI : 10.1002/cctc.201900502.

Cu–Al Spinel as a Highly Active and Stable Catalyst for the Reverse Water Gas Shift Reaction

A. M. Bahmanpour; F. Héroguel; M. Kılıç; C. J. Baranowski; L. Artiglia et al. 

ACS Catalysis. 2019-06-03. Vol. 9, num. 7, p. 6243-6251. DOI : 10.1021/acscatal.9b01822.
publication thumbnail

Prominent role of mesopore surface area and external acid sites for the synthesis of polyoxymethylene dimethyl ethers (OME) on a hierarchical H-ZSM-5 zeolite

C. J. Baranowski; A. M. Bahmanpour; F. Héroguel; J. S. Luterbacher; O. Kröcher 

Catalysis Science & Technology. 2019. Vol. 9, num. 2, p. 366-376. DOI : 10.1039/C8CY02194E.

2018

Mitigation of Secondary Organic Aerosol Formation from Log Wood Burning Emissions by Catalytic Removal of Aromatic Hydrocarbons

S. M. Pieber; A. Kambolis; D. Ferri; D. Bhattu; E. A. Bruns et al. 

Environmental Science & Technology. 2018-11-20. Vol. 52, num. 22, p. 13381-13390. DOI : 10.1021/acs.est.8b04124.

Selective Catalytic Reduction of NOx

O. Kröcher 

Catalysts. 2018-10-12. Vol. 8, num. 10, p. 459. DOI : 10.3390/catal8100459.

Reversible Segregation of Ni in LaFe0.8Ni0.2O3 +/-delta During Coke Removal

P. Steiger; M. Nachtegaal; O. Krocher; D. Ferri 

Chemcatchem. 2018-10-09. Vol. 10, num. 19, p. 4456-4464. DOI : 10.1002/cctc.201800603.

Deactivation and Regeneration of Sulfonated Carbon Catalysts in Hydrothermal Reaction Environments

D. Scholz; O. Kröcher; F. Vogel 

ChemSusChem. 2018-05-07. Vol. 11, num. 13, p. 2189-2201. DOI : 10.1002/cssc.201800678.

Time-resolved copper speciation during selective catalytic reduction of NO on Cu-SSZ-13

A. Marberger; A. Petrov; P. Steiger; M. Elsener; O. Krocher et al. 

NATURE CATALYSIS. 2018. Vol. 1, num. 3, p. 221-227. DOI : 10.1038/s41929-018-0032-6.

Stable complete methane oxidation over palladium based zeolite catalysts

A. Petrov; D. Ferri; F. Krumeich; M. Nachtegaal; J. van Bokhoven et al. 

Nature Communications. 2018. Vol. 9, p. 2545. DOI : 10.1038/s41467-018-04748-x.

Numerical Modeling of Hydroperoxyl-Mediated Oxidative Dehydrogenation of Formic Acid under SCR-Relevant Conditions

M. Sridhar; J. Mantzaras; J. van Bokhoven; O. Krocher 

INDUSTRIAL AND ENGINEERING CHEMISTRY RESEARCH. 2018. Vol. 57, num. 31, p. 10206-10215. DOI : 10.1021/acs.iecr.8b01592.

Impact of Catalyst Geometry on Diffusion and Selective Catalytic Reduction Kinetics under Elevated Pressures

D. Peitz; M. Elsener; O. Krocher 

CHEMIE INGENIEUR TECHNIK. 2018. Vol. 90, num. 6, p. 795-802. DOI : 10.1002/cite.201700146.

Reversible Segregation of Nickel from Perovskite-type Oxides – Applications in Energy Processes

P. S. Steiger / O. Kröcher; D. Ferri (Dir.)  

Lausanne, EPFL, 2018. 
publication thumbnail

Selective synthesis of dimethyl ether on eco-friendly K10 montmorillonite clay

A. M. Bahmanpour; F. Héroguel; C. J. Baranowski; J. S. Luterbacher; O. Kröcher 

Applied Catalysis A: General. 2018. Vol. 560, p. 165-170. DOI : 10.1016/j.apcata.2018.05.006.

Methane oxidation over a honeycomb Pd-only three-way catalyst under static and periodic operation

D. Ferri; M. Elsener; O. Krocher 

Applied Catalysis B-Environmental. 2018. Vol. 220, p. 67-77. DOI : 10.1016/j.apcatb.2017.07.070.

2017

Relationship between structures and activities of supported metal vanadates for the selective catalytic reduction of NO by NH3

A. Marberger; D. Ferri; M. Elsener; A. Sagar; C. Artner et al. 

Applied Catalysis B-Environmental. 2017. Vol. 218, p. 731-742. DOI : 10.1016/j.apcatb.2017.06.061.

Catalytic synthesis of polyoxymethylene dimethyl ethers (OME): A review

C. J. Baranowski; A. M. Bahmanpour; O. Krocher 

Applied Catalysis B-Environmental. 2017. Vol. 217, p. 407-420. DOI : 10.1016/j.apcatb.2017.06.007.

Water-assisted oxygen activation during gold-catalyzed formic acid decomposition under SCR-relevant conditions

M. Sridhar; D. Ferri; J. A. Van Bokhoven; O. Krocher 

Journal Of Catalysis. 2017. Vol. 349, p. 197-207. DOI : 10.1016/j.jcat.2017.01.006.

Increasing the Sensitivity to Short-Lived Species in a Modulated Excitation Experiment

V. Marchionni; D. Ferri; O. Krocher; A. Wokaun 

Analytical Chemistry. 2017. Vol. 89, num. 11, p. 5802-5810. DOI : 10.1021/acs.analchem.6b04939.

Structural Reversibility and Nickel Particle stability in Lanthanum Iron Nickel Perovskite-Type Catalysts

P. Steiger; R. Delmelle; D. Foppiano; L. Holzer; A. Heel et al. 

ChemSusChem. 2017. Vol. 10, num. 11, p. 2505-2517. DOI : 10.1002/cssc.201700358.

Deactivation Aspects of Methane Oxidation Catalysts Based on Palladium and ZSM-5

A. W. Petrov; D. Ferri; M. Tarik; O. Kroecher; J. A. V. Bokhoven 

Topics In Catalysis. 2017. Vol. 60, num. 1-2, p. 123-130. DOI : 10.1007/s11244-016-0724-6.

2016

Operando XAS study of the influence of CO and NO on methane oxidation by Pd/Al2O3

V. Marchionni; M. Nachtegaal; A. Petrov; O. Krocher; D. Ferri 

2016. 16th International Conference on X-ray Absorption Fine Structure (XAFS), Karlsruhe, Germany, 23 – 28 August 2015. p. 012051. DOI : 10.1088/1742-6596/712/1/012051.

An operando emission spectroscopy study of Pt/Al2O3 and Pt/CeO2/Al2O3

V. Marchionni; J. Szlachetko; M. Nachtegaal; A. Kambolis; O. Kröcher et al. 

Physical Chemistry Chemical Physics. 2016. Vol. 18, num. 42, p. 29268-29277. DOI : 10.1039/c6cp05992a.

The Significance of Lewis Acid Sites for the Selective Catalytic Reduction of Nitric Oxide on Vanadium-Based Catalysts

A. Marberger; D. Ferri; M. Elsener; O. Krocher 

Angewandte Chemie-International Edition. 2016. Vol. 55, num. 39, p. 11989-11994. DOI : 10.1002/anie.201605397.

Smart material concept: reversible microstructural self-regeneration for catalytic applications

D. Burnat; R. Kontic; L. Holzer; P. Steiger; D. Ferri et al. 

Journal Of Materials Chemistry A. 2016. Vol. 4, num. 30, p. 11939-11948. DOI : 10.1039/c6ta03417a.

Selectivity Control in Palladium-Catalyzed Alcohol Oxidation through Selective Blocking of Active Sites

S. Campisi; D. Ferri; A. Villa; W. Wang; D. Wang et al. 

Journal Of Physical Chemistry C. 2016. Vol. 120, num. 26, p. 14027-14033. DOI : 10.1021/acs.jpcc.6b01549.

Understanding the anomalous behavior of Vegard’s law in Ce1-xMxO2 (M = Sn and Ti; 0 < x <= 0.5) solid solutions

T. Baidya; P. Bera; O. Kroecher; O. Safonova; P. M. Abdala et al. 

Physical Chemistry Chemical Physics. 2016. Vol. 18, num. 20, p. 13974-13983. DOI : 10.1039/c6cp01525e.

2015

VOx Surface Coverage Optimization of V2O5/WO3-TiO2 SCR Catalysts by Variation of the V Loading and by Aging

A. Marberger; M. Elsener; D. Ferri; O. Kroecher 

Catalysts. 2015. Vol. 5, num. 4, p. 1704-1720. DOI : 10.3390/catal5041704.

CO Methanation for Synthetic Natural Gas Production

A. Kambolis; T. J. Schildhauer; O. Kroecher 

Chimia. 2015. Vol. 69, num. 10, p. 608-613. DOI : 10.2533/chimia.2015.608.

Flame-Made WO3/CeOx-TiO2 Catalysts for Selective Catalytic Reduction of NOx by NH3

K. A. Michalow-Mauke; Y. Lu; K. Kowalski; T. Graule; M. Nachtegaal et al. 

Acs Catalysis. 2015. Vol. 5, num. 10, p. 5657-5672. DOI : 10.1021/acscatal.5b01580.

Structural Modification of Ni/gamma-Al2O3 with Boron for Enhanced Carbon Resistance during CO Methanation

A. Kambolis; D. Ferri; Y. Lu; S. N. Yannopoulos; S. Pokrant et al. 

Chemcatchem. 2015. Vol. 7, num. 20, p. 3261-3265. DOI : 10.1002/cctc.201500567.

WO3/CeO2/TiO2 Catalysts for Selective Catalytic Reduction of NOx by NH3: Effect of the Synthesis Method

K. A. Michalow-Mauke; Y. Lu; D. Ferri; T. Graule; K. Kowalski et al. 

Chimia. 2015. Vol. 69, num. 4, p. 220-224. DOI : 10.2533/chimia.2015.220.

Generation of NH3 Selective Catalytic Reduction Active Catalysts from Decomposition of Supported FeVO4

A. Marberger; M. Elsener; D. Ferri; A. Sagar; K. Schermanz et al. 

Acs Catalysis. 2015. Vol. 5, num. 7, p. 4180-4188. DOI : 10.1021/acscatal.5b00738.

Operando Attenuated Total Reflectance FTIR Spectroscopy: Studies on the Different Selectivity Observed in Benzyl Alcohol Oxidation

A. Villa; D. Ferri; S. Campisi; C. E. Chan-Thaw; Y. Lu et al. 

Chemcatchem. 2015. Vol. 7, num. 16, p. 2534-2541. DOI : 10.1002/cctc.201500432.

Promotion of Ammonium Formate and Formic Acid Decomposition over Au/TiO2 by Support Basicity under SCR-Relevant Conditions

M. Sridhar; D. Ferri; M. Elsener; J. A. Van Bokhoven; O. Kroecher 

Acs Catalysis. 2015. Vol. 5, num. 8, p. 4772-4782. DOI : 10.1021/acscatal.5b01057.

2014

Effect of ammonia on the decomposition of ammonium formate over Au/TiO2 under oxidizing conditions relevant to SCR: Enhancement of formic acid decomposition rate and CO2 production

M. Sridhar; J. A. Van Bokhoven; O. Kröcher 

Applied Catalysis A: General. 2014. Vol. 486, p. 219-229. DOI : 10.1016/j.apcata.2014.08.034.

SCR vor Turbolader – Einfluss des Drucks auf die NOx-Reduktion

O. Kröcher; M. Elsener; M. Bothien; W. Doelling 

MTZ – Motortechnische Zeitschrift. 2014. Vol. 75, num. 4, p. 68-73. DOI : 10.1007/s35146-014-0323-7.

Ammonia Storage and Release in SCR Systems for Mobile Applications

D. Peitz; A. Bernhard; O. Kröcher 

Urea-SCR Technology for deNOx After Treatment of Diesel Exhausts; New York, NY: Springer New York, 2014. p. 485-506.

Ammonium formate decomposition over Au/TiO2: a unique case of preferential selectivity against NH3 oxidation

M. Sridhar; D. Peitz; J. A. Van Bokhoven; O. Kröcher 

Chemical Communications. 2014. Vol. 50, num. 53, p. 6998-7000. DOI : 10.1039/c4cc00196f.

2013

Subsecond and in Situ Chemical Speciation of Pt/Al2O3 during Oxidation Reduction Cycles Monitored by High-Energy Resolution Off-Resonant X-ray Spectroscopy

J. Szlachetko; D. Ferri; V. Marchionni; A. Kambolis; O. V. Safonova et al. 

Journal of the American Chemical Society. 2013. Vol. 135, num. 51, p. 19071-19074. DOI : 10.1021/ja410146c.

Publications 2013

  • D. Peitz, A.M. Bernhard, M. Mehring, M. Elsener, O. Kröcher, Harnstoffhydrolyse für die selektive katalytische Reduktion von NOx: Vergleich der Flüssig- und Gasphasenzersetzung, Chemie Ingenieur Technik 2013, 85(5), 625-631. doi:10.1002/cite.201200183
  • M. Mehring, M. Elsener, O. Kröcher, Diesel Soot Catalyzes the Selective Catalytic Reduction of NOx with NH3, Topics Catal. 2013, 56, 440-445. doi:10.1007/s11244-013-9993-5
  • A.M. Bernhard, D. Peitz, M. Elsener, O. Kröcher, Quantification of Gaseous Urea by FT-IR Spectroscopy and Its Application in Catalytic Urea Thermolysis, Topics Catal. 2013, 56, 130-133. doi:10.1007/s11244-013-9941-4
  • D. Peitz, A.M. Bernhard, M. Elsener, O. Kröcher, Liquid-Phase Catalytic Decomposition of Novel Ammonia Precursor Solutions for the Selective Catalytic Reduction of NOx, Topics Catal. 2013, 56, 19-22. doi:10.1007/s11244-013-9922-7
  • T. Baidya, A. Bernhard, M. Elsener, O. Kröcher, Hydrothermally Stable WO3/ZrO2–Ce0.6Zr0.4O2 Catalyst for the Selective Catalytic Reduction of NO with NH3, Topics Catal. 2013, 56, 23-28. doi:10.1007/s11244-013-9923-6
  • A.M. Bernhard, D. Peitz, M. Elsener, T. Schildhauer, O. Kröcher, Catalytic urea hydrolysis in the selective catalytic reduction of NOx: Catalyst screening and kinetics on anatase TiO2 and ZrO2, Catal. Sci. Technol. 2013, 3(4), 942-951. doi:10.1039/C2CY20668D
  • L. Sharifian, Y.M. Wright, K. Boulouchos, M. Elsener, O. Kröcher, Calibration of a model for selective catalytic reduction with ammonia, including NO oxidation, and simulation of NOx reduction over an Fe-zeolite catalyst under highly transient conditions, Int. J. Eng. Res. 2013, 149, 107-121. doi:10.1177/1468087412437825
  • I. Czekaj, S. Brandenberger, O. Kröcher, Theoretical studies on the stabilization of iron complexes in the ZSM-5 frame, Micropor. Mesopor. Mater. 2013, 169, 97-102. doi:10.1016/j.micromeso.2012.10.018
  • A.M. Bernhard, I. Czekaj, M. Elsener, O. Kröcher, Adsorption and catalytic thermolysis of gaseous urea on anatase TiO2 studied by HPLC analysis, DRIFT spectroscopy and DFT calculations, Appl. Catal. B 2013, 134-135, 316-323. doi:10.1016/j.apcatb.2013.01.009

Publications 2012

  • S. Brandenberger, O. Kröcher, Active sites, deactivation and stabilization of Fe-ZSM-5 for the selective catalytic reduction (SCR) of NO with NH3, Chimia 2012, 66, 687-693. doi:10.2533/chimia.2012.687
  • Ch. Gerhart, B. Schulz, O. Kröcher, D. Peitz, E. Jacob, Selektive katalytische Reduktion von Stickoxiden – Teil 1: Formiate als Ammoniak-Speicherverbindungen, MTZ 2012, 11, 906-912. Download from ATZ online
  • M. Mehring, M. Elsener, O. Kröcher, Selective catalytic reduction of NOx with ammonia over soot, ACS Catalysis 2012, 2, 1507-1518. doi:10.1021/cs300184q
  • Ch. Gerhart, H.-P. Krimmer, B. Hammer, B. Schulz, O. Kröcher, D. Peitz, Th. Sattelmayer, P. Toshev, G. Wachtmeister, A. Heubuch, E. Jacob, Development of a 3rd Generation SCR NH3-Direct Dosing System for Highly Efficient DeNOx, SAE Technical Paper Series 2012-01-1078. doi:10.4271/2012-01-1078
  • M. Mehring, M. Elsener, L. Bächli, O. Kröcher, The influence of H2SO4 on soot oxidation with NO2, Carbon 2012, 50, 2100-2109. doi:10.1016/j.carbon.2011.12.061
  • A.M. Bernhard, D. Peitz, M. Elsener, A. Wokaun, O. Kröcher, Hydrolysis and thermolysis of urea and its decomposition byproducts biuret, cyanuric acid and melamine over anatase TiO2, Appl. Catal. B 2012, 115-116, 129-137. doi:10.1016/j.apcatb.2011.12.013
  • T.J. Schildhauer, M. Elsener, O. Kröcher, J. Moser, I. Begsteiger, D. Chatterjee, K. Rusch, Measurement of vanadium emissions from SCR catalysts: Method development and temperature dependency, Proc. 7th International Exhaust Gas and Particulate Emissions Forum, 6-7 March 2012, Ludwigsburg (Germany), pp. 123-131.
  • A. Heubuch, G. Wachtmeister, P. Toshev, Th. Sattelmayer, D. Peitz, O. Kröcher, C. Gerhart, B. Schulz, R. Brunner, E. Jacob, Neue Verfahren zur Ammoniakbereitstellung und Messung für die SCR-Anwendung, Wissenschaftsymposium Automobiltechnik, 21–22 March 2012, Braunschweig (Germany).

Publications 2011

  • M. Mehring, M. Elsener, O. Kröcher, Mikroanalytik und Reaktivität von Dieselpartikeln, MTZ 2011, 09, 690-696. Download from ATZ online
  • D. Peitz, A. Bernhard, M. Elsener, O. Kröcher, Laboratory test reactor for the investigation of liquid reducing agents in the selective catalytic reduction of NOx, Rev. Sci. Inst. 2011, 82, 084101. doi:10.1063/1.3617463.
  • L. Sharifian, Y. M. Wright, K. Boulouchos, M. Elsener, O. Kröcher, Transient simulation of NOx reduction over a Fe-Zeolite catalyst in an NH3-SCR system and study of the performance under different operating conditions, SAE Int. J. Fuels Lubr. 2011, 5, 370-379. SAE Technical Paper Series 2011-01-2084. doi:10.4271/2011-01-2084.
  • E. Rohart, O. Kröcher, M. Casapu, R. Marques, D. Harris, C. Jones, Acidic Zirconia Mixed Oxides for NH3-SCR Catalysts for PC and HD Applications, SAE Technical Paper Series 2011-01-1327. doi:10.4271/2011-01-1327
  • S. Brandenberger, O. Kröcher, A. Tissler, R. Althoff, Effect of Structural and Preparation Parameters on the Activity and Hydrothermal Stability of Metal-Exchanged ZSM-5 in the Selective Catalytic Reduction of NO by NH3, Ind. Eng. Chem. Res. 2011, 50, 4308-4319. doi:10.1021/ie101771e.
  • A.M. Bernhard, I. Czekaj, M. Elsener, A. Wokaun, O. Kröcher, Evaporation of Urea at Atmospheric Pressure, J. Phys. Chem. A 2011, 115, 2581-2589. doi:10.1021/jp112066m.
  • M. Casapu, A. Bernhard, D. Peitz, M. Mehring, M. Elsener, O. Kröcher, A Niobia-Ceria based multi-purpose catalyst for selective catalytic reduction of NOx, urea hydrolysis and soot oxidation in diesel exhaust, Appl. Catal. B 2011, 103, 79-84. doi:10.1016/j.apcatb.2011.01.011.
  • M. Mehring, M. Elsener, O. Kröcher, Development of a TG-FTIR system for investigations with condensable and corrosive gases, J. Therm. Anal. Calorim. 2011, 105, 545–552. doi:10.1007/s10973-010-1178-x
  • T. Todorova, D. Peitz, O. Kröcher, A. Wokaun, B. Delley, Guanidinium Formate Decomposition on the (101) TiO2-Anatase Surface: Combined Minimum Energy Reaction Pathway Calculations and Temperature-Programmed Decomposition Experiments, J. Phys. Chem. C 2011, 115 (4), 1195–1203. doi:10.1021/jp106523b
  • S. Brandenberger, M. Casapu, O. Kröcher, A. Tissler, R. Althoff, Hydrothermal deactivation of Fe-ZSM-5 catalysts for the selective catalytic reduction of NO with NH3, Appl. Catal. B 2011, 101, 649–659. doi:10.1016/j.apcatb.2010.11.006

Publications 2010

  • L. Sharifian, Y. M. Wright, K. Boulouchos, M. Elsener, O. Kröcher, Simulation of NOx reduction in an ammonia-SCR system with a Fe-zeolite catalyst and calibration of related parameters, Proceedings of the ASME Conference 2010, IMECE2010-40431.
  • M. Casapu, O. Kröcher, M. Mehring, M. Nachtegaal, C. Borca, M. Harfouche, D. Grolimund, Characterization of Nb-Containing MnOx-CeO2 Catalyst for Low-Temperature Selective Catalytic Reduction of NO with NH3, J. Phys. Chem. C 2010, 114 (21), 9791–9801. doi:10.1021/jp911861q.
  • O. Kröcher, M. Elsener, M. Mehring, A. Bernhard, Hochentwickelte Thermoanalyse-Verfahren zur Charakterisierung von Russ und Ablagerungen in Harnstoff-SCR-Systemen / Highly developed thermal analysis methods for the characterization of soot and urea SCR systems, Proceedings of the 6th International Exhaust Gas and Particulate Emissions Forum, 9-10 March 2010, Ludwigsburg (Germany), pp. 148-159. Download
  • S. Brandenberger, O. Kröcher, A. Tissler, R. Althoff, The determination of the activities of different iron species in Fe-ZSM-5 for SCR of NO by NH3, Appl. Catal. B 2010, 95, 348-357. doi:10.1016/j.apcatb.2010.01.013
  • S. Brandenberger, O. Kröcher, A. Tissler, R. Althoff, Estimation of the fractions of different nuclear iron species in uniformly metal-exchanged Fe-ZSM-5 samples based on a Poisson distribution, Appl. Catal. A 2010, 373, 168-175. doi:10.1016/j.apcata.2009.11.012

Publications 2009

  • O. Kröcher, M. Elsener, M. Votsmeier, Determination of effective diffusion coefficients through the walls of coated diesel particulate filters, Ind. Eng. Chem. Res. 2009, 48 (23), 10746–10750. doi:10.1021/ie901269v
  • S. Brandenberger, O. Kröcher, A. Wokaun, A. Tissler, R. Althoff, The role of Bronsted-acidity in the selective catalytic reduction of NO with ammonia over Fe-ZSM-5, J. Catal. 2009, 268, 297-306. doi:10.1016/j.jcat.2009.09.028
  • I. Czekaj, J. Wambach, O. Kröcher, Modelling Catalyst Surfaces Using DFT Cluster Calculations, Int. J. Mol. Sci. 2009, 10, 4310-4329. Free download
  • O. Kröcher, M. Widmer, M. Elsener, D. Rothe, Adsorption and Desorption of SOx on Diesel Oxidation Catalysts, Ind. Eng. Chem. Res. 2009, 48, 9847–9857. doi:10.1021/ie900882p
  • O. Kröcher, M. Elsener, Hydrolysis and oxidation of gaseous HCN over heterogeneous catalysts, Appl. Catal. B 2009, 92, 75-89. doi:10.1016/j.apcatb.2009.07.021
  • I. Czekaj, O. Kröcher, Decomposition of Urea in the SCR Process: Combination of DFT Calculations and Experimental Results on the Catalytic Hydrolysis of Isocyanic Acid on TiO2 and Al2O3, Top. Catal. 2009, 52, 1740-1745. doi:10.1007/s11244-009-9344-8
  • T. Todorova, O. Kröcher, B. Delley, DFT study of structural and vibrational properties of guanidinium derivatives, Theochem 2009, 907, 16-21. doi:10.1016/j.theochem.2009.04.017
  • O. Kröcher, M. Elsener, Materials for thermohydrolysis of urea in a fluidized bed, Chem. Eng. J. 2009, 152, 167-176. doi:10.1016/j.cej.2009.04.030
  • M. Casapu, O. Kröcher, M. Elsener, Screening of doped MnOx-CeO2 catalysts for low-temperature NO-SCR, Appl. Catal. B 2009, 88, 413-419. doi:10.1016/j.apcatb.2008.10.014
  • O. Kröcher, M. Elsener, E. Jacob, A model gas study of ammonium formate, methanamide and guanidinium formate as alternative ammonia precursor compounds for the selective catalytic reduction of nitrogen oxides in diesel exhaust gas, Appl. Catal. B 2009, 88, 66-82. doi:10.1016/j.apcatb.2008.09.027

Publications 2008

  • O. Kröcher, M. Elsener, Combination of V2O5/WO3-TiO2, Fe-ZSM5, and Cu-ZSM5 catalysts for the selective catalytic reduction of nitric oxide with ammonia, Ind. Eng. Chem. Res. 2008, 47, 8588–8593. doi:10.1021/ie800951a
  • S. Brandenberger, O. Kröcher, A. Tissler, R. Althoff, The state of the art in selective catalytic reduction of NOx by ammonia using metal-exchanged zeolite catalysts, Catal. Rev. Sci. Eng. 2008, 50, 492-531. doi:10.1080/01614940802480122
  • I. Czekaj, O. Kröcher, G. Piazzesi, DFT Calculations, DRIFT Spectroscopy and Kinetic Studies on the Hydrolysis of Isocyanic Acid on the TiO2-Anatase (101) Surface, J. Mol. Catal. A 2008, 280, 68-80. doi:10.1016/j.molcata.2007.10.027
  • D. Nicosia, I. Czekaj, O. Kröcher, Chemical deactivation of V2O5/WO3-TiO2 SCR catalysts by additives and impurities from fuels, lubrication oils, and urea solution: Part II. Characterization study of the effect of alkali and alkaline earth metals, Appl. Catal. B 2008, 77, 228-236. doi:10.1016/j.apcatb.2007.07.032
  • O. Kröcher, M. Elsener, Chemical deactivation of V2O5/WO3-TiO2 SCR catalysts by additives and impurities from fuels, lubrication oils, and urea solution – I. Catalytic Studies, Appl. Catal. B 2008, 75, 215-227. doi:10.1016/j.apcatb.2007.04.021
  • O. Kröcher, M. Elsener, E. Jacob, Neue Reduktionsmittel für die Low NOx-SCR-Technik / New reducing agents for the low-NOx SCR technology, Proceedings of the 5th International Exhaust Gas and Particulate Emissions Forum, 19-20 February 2008, Ludwigsburg (Germany), pp. 98-119. Download

Publications 2007

  • O. Kröcher, Aspects of catalyst development for mobile urea-SCR systems – from vanadia-titania catalysts to metal-exchanged zeolites, Stud. Surf. Sci. Catal. 2007, 171, 261-289. doi:10.1016/S0167-2991(07)80210-2
  • D. Nicosia, M. Elsener, O. Kröcher, P. Jansohn, Basic investigation of the chemical deactivation of V2O5/WO3-TiO2 SCR catalysts by potassium, calcium, and phosphate, Topics Catal. 2007, 42-43, 333-336. doi:10.1007/s11244-007-0200-4
  • G. Piazzesi, D.Nicosia, M. Devadas, O. Kröcher, M. Elsener, A. Wokaun, Investigation of HNCO adsorption and hydrolysis on Fe-ZSM5, Catal. Lett. 2007, 115, 33-39. doi:10.1007/s10562-007-9072-2
  • O. Kröcher, M. Elsener, Ammonia measurement with a pH electrode in the ammonia/urea-SCR process, Meas. Sci. Technol. 2007, 18, 771-778. doi:10.1088/0957-0233/18/3/029
  • M. Devadas, O. Kröcher, M. Elsener, A. Wokaun, G. Mitrikas, N. Söger, M. Pfeifer, Y. Demel, L. Mussmann, Characterization and catalytic investigation of Fe-ZSM5 for urea-SCR, Catal. Today 2007, 119, 137-144. doi:10.1016/j.cattod.2006.08.018
  • O. Kröcher, New challenges for urea-SCR systems: From vanadia-based to zeolite-based SCR catalysts, 1st Conference: MinNOx – Minimization of NOx Emissions through Exhaust Aftertreatment, 1-2 February 2007, Berlin (Germany).

Publications 2006

  • I. Czekaj, G. Piazzesi, O. Kröcher, A. Wokaun, DFT modeling of the hydrolysis of isocyanic acid over the TiO2 anatase (1 0 1) surface: Adsorption of HNCO species, Surf. Sci. 2006, 600, 5158-5167. doi:10.1016/j.susc.2006.08.037
  • M. Devadas, O. Kröcher, M. Elsener, A. Wokaun, N. Söger, M. Pfeifer, Y. Demel, L. Mussmann, Influence of NO2 on the selective catalytic reduction of NO with ammonia over Fe-ZSM5, Appl. Catal. B 2006, 67, 187-196. doi:10.1016/j.apcatb.2006.04.015
  • K. Tikhomirov, O. Kröcher, M. Elsener, M. Widmer, A. Wokaun, Manganese based materials for diesel exhaust SO2 traps, Appl. Catal. B 2006, 67, 160-167. doi:10.1016/j.apcatb.2006.03.025
  • K. Tikhomirov, O. Kröcher, A. Wokaun, Influence of potassium doping on the activity and the sulfur poisoning resistance of soot oxidation catalysts, Catal. Lett. 2006, 109, 49-53. doi:10.1007/s10562-006-0055-5
  • O. Kröcher, M. Devadas, M. Elsener, A. Wokaun, N. Söger, M. Pfeifer, Y. Demel, L. Mussmann, Investigation of the selective catalytic reduction of NO by NH3 on Fe-ZSM5 monolith catalysts, Appl. Catal. B 2006, 66, 208-216. doi:10.1016/j.apcatb.2006.03.012
  • G. Piazzesi, M. Elsener, O. Kröcher, A. Wokaun, Influence of NO2 on the hydrolysis of isocyanic acid over TiO2, Appl. Catal. B 2006, 65, 169-174. doi:10.1016/j.apcatb.2006.01.002
  • G. Piazzesi, M. Devadas, O. Kröcher, M. Elsener, A. Wokaun, Isocyanic acid hydrolysis over Fe-ZSM5 in urea-SCR, Catal. Commun. 2006, 7, 600-603. doi:10.1016/j.catcom.2006.01.022
  • G. Piazzesi, O. Kröcher, M. Elsener, A. Wokaun, Adsorption and hydrolysis of isocyanic acid on TiO2, Appl. Catal. B 2006, 65, 55-61. doi:10.1016/j.apcatb.2005.12.018
  • K. Tikhomirov, O. Kröcher, M. Elsener, A. Wokaun, MnOx-CeO2 mixed oxides for the low-temperature oxidation of diesel soot, Appl. Catal. B 2006, 64, 72-78. doi:10.1016/j.apcatb.2005.11.003

Publications 2005

  • M. Devadas, O. Kröcher, A. Wokaun, Catalytic investigation of Fe-ZSM5 in the selective catalytic reduction of NOx with NH3, React. Kin. Catal. Lett. 2005, 86 (2), 347-354. doi:10.1007/s11144-005-0331-1
  • O. Kröcher, M. Elsener, M. Koebel, An ammonia and isocyanic acid measuring method for soot containing exhaust gases, Anal. Chim. Acta 2005, 537, 393-400. doi:10.1016/j.aca.2004.12.082
  • O. Kröcher, Aus der Forschung in die Praxis: Saubere Dieselmotoren dank Stickoxid-Umwandlung mit Harnstoff, Vjschr. Naturf. Ges. Zürich 2005, 150/1-2, 49-50.
  • K. Boulouchos, O. Kröcher, T. Lutz, NOx-Reduktion für PW-Dieselmotoren, auto&technik 2005, 4, 28-32. Link

Publications 2004

  • J. Despres, M. Elsener, M. Koebel, O. Kröcher, B. Schnyder, A. Wokaun, Catalytic oxidation of nitrogen monoxide over Pt/SiO2, Appl. Catal. B 2004, 50, 73-82. doi:10.1016/j.apcatb.2003.12.020
  • M. Koebel, M. Elsener, O. Kröcher, Ch. Schär, R. Röthlisberger, F. Jaussi, M. Mangold, NOx Reduction in the Exhaust of Mobile Heavy-Duty Diesel Engines by Urea-SCR, Topics Catal. 2004, 30/31, 43-48. doi:10.1023/B:TOCA.0000029726.38961.2b
  • C. M. Schär, C. Onder, M. Elsener, H. Geering, Model-Based Control of an SCR System for a Mobile Application, Proceedings of the FISITA 2004 World Automotive Congress.
  • C. M. Schär, C. Onder, H. Geering, M. Elsener, Modelling and control of an SCR system, Proceedings of the IFAC Symposium on Advances in Automotive Control AAC04.

Publications 2003

  • C. M. Schär, C. H. Onder, H. P. Geering, M. Elsener, Control of a Urea SCR Catalytic Converter System for a Mobile Heavy Duty Diesel Engine, SAE Technical Paper Series 2003-01-0776. Link
  • J. Despres, M. Koebel, O. Kröcher, M. Elsener, A. Wokaun, Storage of NO2 on BaO/TiO2 and the influence of NO, Appl. Catal. B 2003, 43, 389-395. doi:10.1016/S0926-3373(03)00004-3
  • M. Koebel, E. O. Strutz, Thermal and Hydrolytic Decomposition of Urea for Automotive Selective Catalytic Reduction Systems: Thermochemical and Practical Aspects, Ind. Eng. Chem. Res. 2003, 42, 2093-2100. doi:10.1021/ie020950o
  • J. Despres, M. Koebel, O. Kröcher, M. Elsener, A. Wokaun, Adsorption and desorption of NO and NO2 on Cu-ZSM-5, Micropor. Mesopor. Mater. 2003, 58, 175-183. doi:10.1016/S1387-1811(02)00627-3
  • M. Elsener, H. P. Geering, F. Jaussi, M. Koebel, O. Kröcher, M. Mangold, Ch. Onder, R. Röthlisberger, Ch. Schär, Aufbau und Vermessung eines DeNOx-Systems auf der Basis von Harnstoff-SCR, MTZ 2003, 11, 966-971. Download from ATZ online
  • NOx katalytisch reduzieren, auto&technik 2003, 3, 22-23.

Publications 2002

  • G. Madia, M. Koebel, M. Elsener, A. Wokaun, The Effect of an Oxidation Precatalyst on the NOx Reduction by Ammonia SCR, Ind. Eng. Chem. Res. 2002, 41, 3512-3517. doi:10.1021/ie0200555
  • G. Madia, M. Elsener, M. Koebel, F. Raimondi, A. Wokaun, Thermal stability of vanadia-tungsta-titania catalysts in the SCR process, Appl. Catal. B 2002, 39, 181-190. doi:10.1016/S0926-3373(02)00099-1
  • G. Madia, M. Koebel, M. Elsener, A. Wokaun, Side Reactions in the Selective Catalytic Reduction of NOx with Various NO2 Fractions, Ind. Eng. Chem. Res. 2002, 41, 4008-4015. doi:10.1021/ie020054c
  • M. Koebel, G. Madia, F. Raimondi, A. Wokaun, Enhanced Reoxidation of Vanadia by NO2 in the Fast SCR Reaction, J. Catal. 2002, 209, 159-165. doi:10.1006/jcat.2002.3624
  • M. Koebel, M. Elsener, G. Madia, Selective catalytic reduction of NO and NO2 at low temperatures, Catal. Today 2002, 73, 239-247. doi:10.1016/S0920-5861(02)00006-8
  • C. M. Schär, M. Elsener, C. Onder, H. Geering, Control Strategies for the DeNOx System of a Mobile Application, Proceedings of the FISITA 2002 World Automotive Congress, Helsinki, 2002.

Publications 2001

  • M. Koebel, M. Elsener, G. Madia, Recent Advances in the Development of Urea-SCR for Automotive Applications, SAE Technical Paper Series 2001-01-3625. doi:10.4271/2001-01-3625
  • M. Koebel, M. Elsener, G. Madia, Reaction Pathways in the Selective Catalytic Reduction Process with NO and NO2 at Low Temperatures, Ind. Eng. Chem. Res. 2001, 40, 52-59. doi:10.1021/ie000551y
  • M. Koebel, M. Elsener, G. Madia, NOx-Verminderung in Dieselabgasen mit Harnstoff-SCR bei tiefen Temperaturen, MTZ 2001, 62 (2), 166-175. Download from ATZ online

Publications 1990-2000

  • M. Kleemann, M. Elsener, M. Koebel, A. Wokaun, Hydrolysis of Isocyanic Acid on SCR Catalysts, Ind. Eng. Chem. Res. 2000, 39, 4120-4126. doi:10.1021/ie9906161
  • M. Kleemann, M. Elsener, M. Koebel, A. Wokaun, Investigation of the ammonia adsorption on monolithic SCR catalysts by transient response analysis, Appl. Catal. B 2000, 27, 231-242. doi:10.1016/S0926-3373(00)00158-2
  • M. Koebel, M. Elsener, M. Kleemann, Urea-SCR: a promising technique to reduce NOx emissions from automotive diesel engines, Catal. Today 2000, 59, 335-345. doi:10.1016/S0920-5861(00)00299-6
  • M. Koebel, M. Elsener, Oxidation of Diesel-Generated Volatile Organic Compounds in the Selective Catalytic Reduction Process, Ind. Eng. Chem. Res. 1998, 37, 3864-3868. DOI:10.1021/ie9801103
  • M. Koebel, M. Elsener, Selective Catalytic Reduction of NO over Commercial DeNOx-Catalysts: Comparison of the Measured and Calculated Performance, Ind. Eng. Chem. Res. 1998, 37, 327-335. doi:10.1021/ie970569h
  • M. Koebel, M. Elsener, Selective Catalytic Reduction of NO over Commercial DeNOx-Catalysts: Experimental Determination of Kinetic and Thermodynamic Parameters, Chem. Eng. Sci. 1998, 53, 657-669. doi:10.1016/S0009-2509(97)00342-4
  • M. Koebel, M. Elsener, T. Marti, NOx-Reduction in Diesel Exhaust Gas with Urea and Selective Catalytic Reduction, Combust. Sci. Technol. 1996, 121, 85-102. doi:10.1080/00102209608935588
  • M. Koebel, M. Elsener, Determination of Urea and its Thermal Decomposition Products by High-Performance Liquid Chromatography, J. Chromatogr. 1995, 689, 164-169. doi:10.1016/0021-9673(94)00922-V
  • M. Koebel, M. Elsener, Entstickung von Abgasen nach dem SNCR-Verfahren; Ammoniak oder Harnstoff als Reduktionsmittel?, Chem. Ing. Tech. 1992, 64 (10), 934-937. doi:10.1002/cite.330641014
  • M. Koebel, Vor- und Nachteile stickstoffhaltiger Reduktionsmittel beim Einsatz in mobilen SCR-Systemen, 3. Dresdner Motorenkolloquium, May 20-21, 1999, pp. 76-83.
  • M. Koebel, M. Elsener, Schwefeltrioxidbestimmung in Abgasen nach der Isopropanolmethode – eine kritische Betrachtung, Gefahrstoffe Reinhaltung der Luft 1997, 57, 193-199.
  • M. Koebel, Entstickung von Dieselabgasen mit Harnstoff-SCR, VDI-Berichte 1993, 1019, 195-211.
  • M. Koebel, Stickoxidminderung in Abgasen, SIA 1992, 110 (38), 693-700.
  • M. Koebel, M. Elsener, H. P. Eicher, Stickoxidminderung bei stationären Dieselmotoren mittels SCR und Harnstoff als Reduktionsmittel, BKW/TÜ/Umwelt 1991, No.3 (Special Luftreinhaltung), E24-E32.
  • M. Koebel, M. Elsener, Stickoxidminderung bei Dieselmotoren, SIA 1991, 109 (9), 187-192.
  • M. Koebel, M. Elsener, H. P. Eichler, Selektive katalytische Reduktion von Stickoxiden – mit Harnstoff gegen Stickoxide, Technische Rundschau 1990, 82 (49), 74-79.